1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-05-31 11:15:31 +03:00
occt/src/Contap/Contap_SurfFunction.gxx
abv ed4415982c 0024624: Lost word in license statement in source files
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast
Wrong license statements corrected in several files.
Copyright and license statements added in XSD and GLSL files.
Copyright year updated in some files.
Obsolete documentation files removed from DrawResources.
2014-03-25 16:38:55 +04:00

283 lines
7.6 KiB
Plaintext

// Created on: 1993-06-03
// Created by: Jacques GOUSSARD
// Copyright (c) 1993-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// jag 940616 #define Tolpetit 1.e-16
#include <gp.hxx>
Contap_SurfFunction::Contap_SurfFunction ():
myMean(1.),
myType(Contap_ContourStd),
myDir(0.,0.,1.),
myCosAng(0.), // PI/2 - Angle de depouille
tol(1.e-6),
computed(Standard_False),
derived(Standard_False)
{}
void Contap_SurfFunction::Set(const TheSurface& S)
{
mySurf = S;
Standard_Integer i;
Standard_Integer nbs = TheContTool::NbSamplePoints(S);
Standard_Real U,V;
gp_Vec norm;
if (nbs > 0) {
myMean = 0.;
for (i = 1; i <= nbs; i++) {
TheContTool::SamplePoint(S,i,U,V);
// TheSurfaceTool::D1(S,U,V,solpt,d1u,d1v);
// myMean = myMean + d1u.Crossed(d1v).Magnitude();
TheSurfProps::Normale(S,U,V,solpt,norm);
myMean = myMean + norm.Magnitude();
}
myMean = myMean / ((Standard_Real)nbs);
}
computed = Standard_False;
derived = Standard_False;
}
Standard_Integer Contap_SurfFunction::NbVariables () const
{
return 2;
}
Standard_Integer Contap_SurfFunction::NbEquations () const
{
return 1;
}
Standard_Boolean Contap_SurfFunction::Value(const math_Vector& X,
math_Vector& F)
{
Usol = X(1); Vsol = X(2);
// TheSurfaceTool::D1(mySurf,Usol,Vsol,solpt,d1u,d1v);
// gp_Vec norm(d1u.Crossed(d1v));
gp_Vec norm;
TheSurfProps::Normale(mySurf,Usol,Vsol,solpt,norm);
switch (myType) {
case Contap_ContourStd:
{
F(1) = valf = (norm.Dot(myDir))/myMean;
}
break;
case Contap_ContourPrs:
{
F(1) = valf = (norm.Dot(gp_Vec(myEye,solpt)))/myMean;
}
break;
case Contap_DraftStd:
{
F(1) = valf = (norm.Dot(myDir)-myCosAng*norm.Magnitude())/myMean;
}
break;
default:
{
}
}
computed = Standard_False;
derived = Standard_False;
return Standard_True;
}
Standard_Boolean Contap_SurfFunction::Derivatives(const math_Vector& X,
math_Matrix& Grad)
{
// gp_Vec d2u,d2v,d2uv;
Usol = X(1); Vsol = X(2);
// TheSurfaceTool::D2(mySurf,Usol,Vsol,solpt,d1u,d1v,d2u,d2v,d2uv);
gp_Vec norm,dnu,dnv;
TheSurfProps::NormAndDn(mySurf,Usol,Vsol,solpt,norm,dnu,dnv);
switch (myType) {
case Contap_ContourStd:
{
// Grad(1,1) = ((d2u.Crossed(d1v) + d1u.Crossed(d2uv)).Dot(myDir))/myMean;
// Grad(1,2) = ((d2uv.Crossed(d1v) + d1u.Crossed(d2v)).Dot(myDir))/myMean;
Grad(1,1) = (dnu.Dot(myDir))/myMean;
Grad(1,2) = (dnv.Dot(myDir))/myMean;
}
break;
case Contap_ContourPrs:
{
gp_Vec Ep(myEye,solpt);
Grad(1,1) = (dnu.Dot(Ep))/myMean;
Grad(1,2) = (dnv.Dot(Ep))/myMean;
}
break;
case Contap_DraftStd:
{
// gp_Vec norm(d1u.Crossed(d1v).Normalized());
// gp_Vec dnorm(d2u.Crossed(d1v) + d1u.Crossed(d2uv));
// Grad(1,1) = (dnorm.Dot(myDir)-myCosAng*dnorm.Dot(norm))/myMean;
// dnorm = d2uv.Crossed(d1v) + d1u.Crossed(d2v);
// Grad(1,2) = (dnorm.Dot(myDir)-myCosAng*dnorm.Dot(norm))/myMean;
norm.Normalize();
Grad(1,1) = (dnu.Dot(myDir)-myCosAng*dnu.Dot(norm))/myMean;
Grad(1,2) = (dnv.Dot(myDir)-myCosAng*dnv.Dot(norm))/myMean;
}
break;
case Contap_DraftPrs:
default:
{
}
}
Fpu = Grad(1,1); Fpv = Grad(1,2);
computed = Standard_False;
derived = Standard_True;
return Standard_True;
}
Standard_Boolean Contap_SurfFunction::Values (const math_Vector& X,
math_Vector& F,
math_Matrix& Grad)
{
// gp_Vec d2u,d2v,d2uv;
Usol = X(1); Vsol = X(2);
// TheSurfaceTool::D2(mySurf,Usol,Vsol,solpt,d1u,d1v,d2u,d2v,d2uv);
// gp_Vec norm(d1u.Crossed(d1v));
gp_Vec norm,dnu,dnv;
TheSurfProps::NormAndDn(mySurf,Usol,Vsol,solpt,norm,dnu,dnv);
switch (myType) {
case Contap_ContourStd:
{
F(1) = (norm.Dot(myDir))/myMean;
// Grad(1,1) = ((d2u.Crossed(d1v) + d1u.Crossed(d2uv)).Dot(myDir))/myMean;
// Grad(1,2) = ((d2uv.Crossed(d1v) + d1u.Crossed(d2v)).Dot(myDir))/myMean;
Grad(1,1) = (dnu.Dot(myDir))/myMean;
Grad(1,2) = (dnv.Dot(myDir))/myMean;
}
break;
case Contap_ContourPrs:
{
gp_Vec Ep(myEye,solpt);
F(1) = (norm.Dot(Ep))/myMean;
// Grad(1,1) = ((d2u.Crossed(d1v) + d1u.Crossed(d2uv)).Dot(Ep))/myMean;
// Grad(1,2) = ((d2uv.Crossed(d1v) + d1u.Crossed(d2v)).Dot(Ep))/myMean;
Grad(1,1) = (dnu.Dot(Ep))/myMean;
Grad(1,2) = (dnv.Dot(Ep))/myMean;
}
break;
case Contap_DraftStd:
{
F(1) = (norm.Dot(myDir)-myCosAng*norm.Magnitude())/myMean;
norm.Normalize();
/*
gp_Vec dnorm(d2u.Crossed(d1v) + d1u.Crossed(d2uv));
Grad(1,1) = (dnorm.Dot(myDir)-myCosAng*dnorm.Dot(norm))/myMean;
dnorm = d2uv.Crossed(d1v) + d1u.Crossed(d2v);
Grad(1,2) = (dnorm.Dot(myDir)-myCosAng*dnorm.Dot(norm))/myMean;
*/
Grad(1,1) = (dnu.Dot(myDir)-myCosAng*dnu.Dot(norm))/myMean;
Grad(1,2) = (dnv.Dot(myDir)-myCosAng*dnv.Dot(norm))/myMean;
}
break;
case Contap_DraftPrs:
default:
{
}
}
valf = F(1);
Fpu = Grad(1,1); Fpv = Grad(1,2);
computed = Standard_False;
derived = Standard_True;
return Standard_True;
}
Standard_Boolean Contap_SurfFunction::IsTangent ()
{
if (!computed) {
computed = Standard_True;
if(!derived) {
// gp_Vec d2u,d2v,d2uv;
// TheSurfaceTool::D2(mySurf, Usol, Vsol, solpt, d1u, d1v, d2u, d2v, d2uv);
gp_Vec norm,dnu,dnv;
TheSurfProps::NormAndDn(mySurf,Usol,Vsol,solpt,norm,dnu,dnv);
switch (myType) {
case Contap_ContourStd:
{
// Fpu = ((d2u.Crossed(d1v) + d1u.Crossed(d2uv)).Dot(myDir))/myMean;
// Fpv = ((d2uv.Crossed(d1v) + d1u.Crossed(d2v)).Dot(myDir))/myMean;
Fpu = (dnu.Dot(myDir))/myMean;
Fpv = (dnv.Dot(myDir))/myMean;
}
break;
case Contap_ContourPrs:
{
gp_Vec Ep(myEye,solpt);
// Fpu = ((d2u.Crossed(d1v) + d1u.Crossed(d2uv)).Dot(Ep))/myMean;
// Fpv = ((d2uv.Crossed(d1v) + d1u.Crossed(d2v)).Dot(Ep))/myMean;
Fpu = (dnu.Dot(Ep))/myMean;
Fpv = (dnv.Dot(Ep))/myMean;
}
break;
case Contap_DraftStd:
{
/*
gp_Vec norm(d1u.Crossed(d1v).Normalized());
gp_Vec dnorm(d2u.Crossed(d1v) + d1u.Crossed(d2uv));
Fpu = (dnorm.Dot(myDir)-myCosAng*dnorm.Dot(norm))/myMean;
dnorm = d2uv.Crossed(d1v) + d1u.Crossed(d2v);
Fpv = (dnorm.Dot(myDir)-myCosAng*dnorm.Dot(norm))/myMean;
*/
norm.Normalize();
Fpu = (dnu.Dot(myDir)-myCosAng*dnu.Dot(norm))/myMean;
Fpv = (dnv.Dot(myDir)-myCosAng*dnv.Dot(norm))/myMean;
}
break;
case Contap_DraftPrs:
default:
{
}
}
derived = Standard_True;
}
tangent = Standard_False;
Standard_Real D = Sqrt (Fpu * Fpu + Fpv * Fpv);
if (D <= gp::Resolution()) {
tangent = Standard_True;
}
else {
d2d = gp_Dir2d(-Fpv,Fpu);
gp_Vec d1u,d1v;
TheSurfaceTool::D1(mySurf, Usol, Vsol, solpt, d1u, d1v); // ajout jag 02.95
gp_XYZ d3dxyz(-Fpv*d1u.XYZ());
d3dxyz.Add(Fpu*d1v.XYZ());
d3d.SetXYZ(d3dxyz);
//jag 940616 if (d3d.Magnitude() <= Tolpetit) {
if (d3d.Magnitude() <= tol) {
tangent = Standard_True;
}
}
}
return tangent;
}