mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-26 10:19:45 +03:00
73 lines
2.3 KiB
C++
Executable File
73 lines
2.3 KiB
C++
Executable File
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2012 OPEN CASCADE SAS
|
|
//
|
|
// The content of this file is subject to the Open CASCADE Technology Public
|
|
// License Version 6.5 (the "License"). You may not use the content of this file
|
|
// except in compliance with the License. Please obtain a copy of the License
|
|
// at http://www.opencascade.org and read it completely before using this file.
|
|
//
|
|
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
|
|
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
|
|
//
|
|
// The Original Code and all software distributed under the License is
|
|
// distributed on an "AS IS" basis, without warranty of any kind, and the
|
|
// Initial Developer hereby disclaims all such warranties, including without
|
|
// limitation, any warranties of merchantability, fitness for a particular
|
|
// purpose or non-infringement. Please see the License for the specific terms
|
|
// and conditions governing the rights and limitations under the License.
|
|
|
|
//============================================ IntAna2d_AnaIntersection_4.cxx
|
|
//============================================================================
|
|
#include <IntAna2d_AnaIntersection.jxx>
|
|
#include <IntAna2d_Outils.hxx>
|
|
|
|
void IntAna2d_AnaIntersection::Perform (const gp_Lin2d& L,
|
|
const IntAna2d_Conic& Conic)
|
|
{
|
|
Standard_Real A,B,C,D,E,F;
|
|
Standard_Real px0,px1,px2;
|
|
Standard_Real DR_A,DR_B,DR_C,X0,Y0;
|
|
Standard_Integer i;
|
|
Standard_Real tx,ty,S;
|
|
|
|
done = Standard_False;
|
|
nbp = 0;
|
|
para = Standard_False;
|
|
iden = Standard_False;
|
|
|
|
Conic.Coefficients(A,B,C,D,E,F);
|
|
L.Coefficients(DR_A,DR_B,DR_C);
|
|
X0=L.Location().X();
|
|
Y0=L.Location().Y();
|
|
|
|
// Parametre: L
|
|
// X = Xo - L DR_B et Y = Yo + L DR_A
|
|
|
|
px0=F + X0*(D+D + A*X0 + 2.0*C*Y0) + Y0*(E+E + B*Y0);
|
|
px1=2.0*(E*DR_A - D*DR_B + X0*(C*DR_A - A*DR_B) + Y0*(B*DR_A - C*DR_B));
|
|
px2=DR_A*(B*DR_A - 2.0*C*DR_B) + A*(DR_B*DR_B);
|
|
|
|
MyDirectPolynomialRoots Sol(px2,px1,px0);
|
|
|
|
if(!Sol.IsDone()) {
|
|
done=Standard_False;
|
|
return;
|
|
}
|
|
else {
|
|
if(Sol.InfiniteRoots()) {
|
|
iden=Standard_True;
|
|
done=Standard_True;
|
|
return;
|
|
}
|
|
nbp=Sol.NbSolutions();
|
|
for(i=1;i<=nbp;i++) {
|
|
S=Sol.Value(i);
|
|
tx=X0 - S*DR_B;
|
|
ty=Y0 + S*DR_A;
|
|
lpnt[i-1].SetValue(tx,ty,S);
|
|
}
|
|
Traitement_Points_Confondus(nbp,lpnt);
|
|
}
|
|
done=Standard_True;
|
|
}
|