mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-26 10:19:45 +03:00
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl": - WOK-generated header files from inc and sources from drv are moved to src - CDL files removed - All packages are converted to nocdlpack
347 lines
12 KiB
C++
347 lines
12 KiB
C++
// Created on: 1997-05-28
|
|
// Created by: Sergey SOKOLOV
|
|
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <math_Vector.hxx>
|
|
#include <PLib_DoubleJacobiPolynomial.hxx>
|
|
#include <PLib_JacobiPolynomial.hxx>
|
|
|
|
//=======================================================================
|
|
//function : PLib_DoubleJacobiPolynomial
|
|
//purpose :
|
|
//=======================================================================
|
|
PLib_DoubleJacobiPolynomial::PLib_DoubleJacobiPolynomial()
|
|
|
|
{
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : PLib_DoubleJacobiPolynomial
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
PLib_DoubleJacobiPolynomial::PLib_DoubleJacobiPolynomial(const Handle(PLib_JacobiPolynomial)& JacPolU,
|
|
const Handle(PLib_JacobiPolynomial)& JacPolV) :
|
|
myJacPolU(JacPolU),
|
|
myJacPolV(JacPolV)
|
|
{
|
|
Handle (TColStd_HArray1OfReal) TabMaxU =
|
|
new TColStd_HArray1OfReal (0,JacPolU->WorkDegree()-2*(JacPolU->NivConstr()+1));
|
|
JacPolU->MaxValue(TabMaxU->ChangeArray1());
|
|
myTabMaxU = TabMaxU;
|
|
|
|
Handle (TColStd_HArray1OfReal) TabMaxV =
|
|
new TColStd_HArray1OfReal (0,JacPolV->WorkDegree()-2*(JacPolV->NivConstr()+1));
|
|
JacPolV->MaxValue(TabMaxV->ChangeArray1());
|
|
myTabMaxV = TabMaxV;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : MaxErrorU
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Real
|
|
PLib_DoubleJacobiPolynomial::MaxErrorU(const Standard_Integer Dimension,
|
|
const Standard_Integer DegreeU,
|
|
const Standard_Integer DegreeV,
|
|
const Standard_Integer dJacCoeff,
|
|
const TColStd_Array1OfReal& JacCoeff) const
|
|
{
|
|
Standard_Integer ii,idim,dJac,MinU,MinV,WorkDegreeU,WorkDegreeV;
|
|
Standard_Real Bid0;
|
|
|
|
math_Vector MaxErrDim(1,Dimension,0.);
|
|
|
|
MinU = 2*(myJacPolU->NivConstr()+1);
|
|
MinV = 2*(myJacPolV->NivConstr()+1);
|
|
WorkDegreeU = myJacPolU->WorkDegree();
|
|
WorkDegreeV = myJacPolV->WorkDegree();
|
|
|
|
Bid0 = myTabMaxV->Value(DegreeV-MinV);
|
|
for (idim=1; idim<=Dimension; idim++) {
|
|
dJac = dJacCoeff + (idim-1)*(WorkDegreeU+1)*(WorkDegreeV+1);
|
|
for (ii=MinU; ii<=DegreeU; ii++) {
|
|
MaxErrDim(idim) += (Abs(JacCoeff(ii + DegreeV*(WorkDegreeU+1) + dJac)) *
|
|
myTabMaxU->Value(ii-MinU) * Bid0);
|
|
}
|
|
}
|
|
return (MaxErrDim.Norm());
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : MaxErrorV
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Real
|
|
PLib_DoubleJacobiPolynomial::MaxErrorV(const Standard_Integer Dimension,
|
|
const Standard_Integer DegreeU,
|
|
const Standard_Integer DegreeV,
|
|
const Standard_Integer dJacCoeff,
|
|
const TColStd_Array1OfReal& JacCoeff) const
|
|
{
|
|
Standard_Integer jj,idim,dJac,MinU,MinV,WorkDegreeU,WorkDegreeV;
|
|
Standard_Real Bid0;
|
|
|
|
math_Vector MaxErrDim(1,Dimension,0.);
|
|
|
|
MinU = 2*(myJacPolU->NivConstr()+1);
|
|
MinV = 2*(myJacPolV->NivConstr()+1);
|
|
WorkDegreeU = myJacPolU->WorkDegree();
|
|
WorkDegreeV = myJacPolV->WorkDegree();
|
|
|
|
Bid0 = myTabMaxU->Value(DegreeU-MinU);
|
|
for (idim=1; idim<=Dimension; idim++) {
|
|
dJac = dJacCoeff + (idim-1)*(WorkDegreeU+1)*(WorkDegreeV+1);
|
|
for (jj=MinV; jj<=DegreeV; jj++) {
|
|
MaxErrDim(idim) += (Abs(JacCoeff(DegreeU + jj*(WorkDegreeU+1) + dJac)) *
|
|
myTabMaxV->Value(jj-MinV) * Bid0);
|
|
}
|
|
}
|
|
return (MaxErrDim.Norm());
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : MaxError
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Real
|
|
PLib_DoubleJacobiPolynomial::MaxError(const Standard_Integer Dimension,
|
|
const Standard_Integer MinDegreeU,
|
|
const Standard_Integer MaxDegreeU,
|
|
const Standard_Integer MinDegreeV,
|
|
const Standard_Integer MaxDegreeV,
|
|
const Standard_Integer dJacCoeff,
|
|
const TColStd_Array1OfReal& JacCoeff,
|
|
const Standard_Real Error) const
|
|
{
|
|
Standard_Integer ii,jj,idim,dJac,MinU,MinV,WorkDegreeU,WorkDegreeV;
|
|
Standard_Real Bid0,Bid1;
|
|
|
|
math_Vector MaxErrDim(1,Dimension,0.);
|
|
|
|
MinU = 2*(myJacPolU->NivConstr()+1);
|
|
MinV = 2*(myJacPolV->NivConstr()+1);
|
|
WorkDegreeU = myJacPolU->WorkDegree();
|
|
WorkDegreeV = myJacPolV->WorkDegree();
|
|
|
|
//------------------- Calcul du majorant de l'erreur max ---------------
|
|
//----- lorsque sont enleves les coeff. d'indices MinDegreeU a MaxDegreeU ------
|
|
//---------------- en U et d'indices MinDegreeV a MaxDegreeV en V --------------
|
|
|
|
for (idim=1; idim<=Dimension; idim++) {
|
|
dJac = dJacCoeff + (idim-1)*(WorkDegreeU+1)*(WorkDegreeV+1);
|
|
Bid1 = 0.;
|
|
for (jj=MinDegreeV; jj<=MaxDegreeV; jj++) {
|
|
Bid0 = 0.;
|
|
for (ii=MinDegreeU; ii<=MaxDegreeU; ii++) {
|
|
Bid0 += fabs(JacCoeff(ii + jj*(WorkDegreeU+1) + dJac)) * myTabMaxU->Value(ii-MinU);
|
|
}
|
|
Bid1 += Bid0 * myTabMaxV->Value(jj-MinV);
|
|
}
|
|
MaxErrDim(idim) = Bid1;
|
|
}
|
|
|
|
//----------------------- Calcul de l' erreur max ----------------------
|
|
|
|
math_Vector MaxErr2(1,2);
|
|
MaxErr2(1) = Error;
|
|
MaxErr2(2) = MaxErrDim.Norm();
|
|
return (MaxErr2.Norm());
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ReduceDegree
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void PLib_DoubleJacobiPolynomial::ReduceDegree(const Standard_Integer Dimension,
|
|
const Standard_Integer MinDegreeU,
|
|
const Standard_Integer MaxDegreeU,
|
|
const Standard_Integer MinDegreeV,
|
|
const Standard_Integer MaxDegreeV,
|
|
const Standard_Integer dJacCoeff,
|
|
const TColStd_Array1OfReal& JacCoeff,
|
|
const Standard_Real EpmsCut,
|
|
Standard_Real& MaxError,
|
|
Standard_Integer& NewDegreeU,
|
|
Standard_Integer& NewDegreeV) const
|
|
{
|
|
Standard_Integer NewU,NewV;
|
|
Standard_Real ErrU,ErrV;
|
|
|
|
NewU = MaxDegreeU;
|
|
NewV = MaxDegreeV;
|
|
math_Vector MaxErr2(1,2);
|
|
|
|
//**********************************************************************
|
|
//-------------------- Coupure des coefficients ------------------------
|
|
//**********************************************************************
|
|
|
|
do {
|
|
|
|
//------------------- Calcul du majorant de l'erreur max ---------------
|
|
//----- lorsque sont enleves les coeff. d'indices MinU a NewU ------
|
|
//---------------- en U, le degre en V etant fixe a NewV -----------------
|
|
if (NewV > MinDegreeV)
|
|
ErrV = MaxErrorU(Dimension,NewU,NewV,dJacCoeff,JacCoeff);
|
|
else {
|
|
ErrV = 2*EpmsCut;
|
|
}
|
|
|
|
//------------------- Calcul du majorant de l'erreur max ---------------
|
|
//----- lorsque sont enleves les coeff. d'indices MinV a NewV ------
|
|
//---------------- en V, le degre en U etant fixe a NewU -----------------
|
|
if (NewU > MinDegreeU)
|
|
ErrU = MaxErrorV(Dimension,NewU,NewV,dJacCoeff,JacCoeff);
|
|
else {
|
|
ErrU = 2*EpmsCut;
|
|
}
|
|
|
|
//----------------------- Calcul de l' erreur max ----------------------
|
|
MaxErr2(1) = MaxError;
|
|
MaxErr2(2) = ErrU;
|
|
ErrU = MaxErr2.Norm();
|
|
MaxErr2(2) = ErrV;
|
|
ErrV = MaxErr2.Norm();
|
|
|
|
if (ErrU > ErrV) {
|
|
if (ErrV < EpmsCut) {
|
|
MaxError = ErrV;
|
|
NewV--;
|
|
}
|
|
}
|
|
else {
|
|
if (ErrU < EpmsCut) {
|
|
MaxError = ErrU;
|
|
NewU--;
|
|
}
|
|
}
|
|
}
|
|
while ((ErrU > ErrV && ErrV <= EpmsCut) || (ErrV >= ErrU && ErrU <= EpmsCut));
|
|
|
|
//-------------------------- Recuperation des degres -------------------
|
|
|
|
NewDegreeU = Max(NewU,1);
|
|
NewDegreeV = Max(NewV,1);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : AverageError
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Real
|
|
PLib_DoubleJacobiPolynomial::AverageError(const Standard_Integer Dimension,
|
|
const Standard_Integer DegreeU,
|
|
const Standard_Integer DegreeV,
|
|
const Standard_Integer dJacCoeff,
|
|
const TColStd_Array1OfReal& JacCoeff) const
|
|
{
|
|
Standard_Integer ii,jj,idim,dJac,IDebU,IDebV,MinU,MinV,WorkDegreeU,WorkDegreeV;
|
|
Standard_Real Bid0,Bid1,AverageErr;
|
|
|
|
//----------------------------- Initialisations ------------------------
|
|
|
|
IDebU = 2*(myJacPolU->NivConstr()+1);
|
|
IDebV = 2*(myJacPolV->NivConstr()+1);
|
|
MinU = Max(IDebU,DegreeU);
|
|
MinV = Max(IDebV,DegreeV);
|
|
WorkDegreeU = myJacPolU->WorkDegree();
|
|
WorkDegreeV = myJacPolV->WorkDegree();
|
|
Bid0 = 0.;
|
|
|
|
//------------------ Calcul du majorant de l'erreur moyenne ------------
|
|
//----- lorsque sont enleves les coeff. d'indices DegreeU a WorkDegreeU ------
|
|
//---------------- en U et d'indices DegreeV a WorkDegreeV en V --------------
|
|
|
|
for (idim=1; idim<=Dimension; idim++) {
|
|
dJac = dJacCoeff + (idim-1)*(WorkDegreeU+1)*(WorkDegreeV+1);
|
|
for (jj=MinV; jj<=WorkDegreeV; jj++) {
|
|
for (ii=IDebU; ii<=WorkDegreeU; ii++) {
|
|
Bid1 = JacCoeff(ii + jj*(WorkDegreeU+1) + dJac);
|
|
Bid0 += Bid1*Bid1;
|
|
}
|
|
}
|
|
for (jj=IDebV; jj<=MinV-1; jj++) {
|
|
for (ii=MinU; ii<=WorkDegreeU; ii++) {
|
|
Bid1 = JacCoeff(ii + jj*(WorkDegreeU+1) + dJac);
|
|
Bid0 += Bid1*Bid1;
|
|
}
|
|
}
|
|
}
|
|
AverageErr = sqrt(Bid0/4);
|
|
return (AverageErr);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : WDoubleJacobiToCoefficients
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void PLib_DoubleJacobiPolynomial::WDoubleJacobiToCoefficients(const Standard_Integer Dimension,
|
|
const Standard_Integer DegreeU,
|
|
const Standard_Integer DegreeV,
|
|
const TColStd_Array1OfReal& JacCoeff,
|
|
TColStd_Array1OfReal& Coefficients) const
|
|
{
|
|
Standard_Integer iu,iv,idim,WorkDegreeU,WorkDegreeV;
|
|
|
|
Coefficients.Init(0.);
|
|
|
|
WorkDegreeU = myJacPolU->WorkDegree();
|
|
WorkDegreeV = myJacPolV->WorkDegree();
|
|
|
|
TColStd_Array1OfReal Aux1(0, (DegreeU+1)*(DegreeV+1)*Dimension-1);
|
|
TColStd_Array1OfReal Aux2(0, (DegreeU+1)*(DegreeV+1)*Dimension-1);
|
|
|
|
for (iu=0; iu<=DegreeU; iu++) {
|
|
for (iv=0; iv<=DegreeV; iv++) {
|
|
for (idim=1; idim<=Dimension; idim++) {
|
|
Aux1(idim-1 + iv*Dimension + iu*Dimension*(DegreeV+1)) =
|
|
JacCoeff(iu + iv*(WorkDegreeU+1) + (idim-1)*(WorkDegreeU+1)*(WorkDegreeV+1));
|
|
}
|
|
}
|
|
}
|
|
// Passage dans canonique en u.
|
|
myJacPolU->ToCoefficients(Dimension*(DegreeV+1),DegreeU,Aux1,Aux2);
|
|
|
|
// Permutation des u et des v.
|
|
for (iu=0; iu<=DegreeU; iu++) {
|
|
for (iv=0; iv<=DegreeV; iv++) {
|
|
for (idim=1; idim<=Dimension; idim++) {
|
|
Aux1(idim-1 + iu*Dimension + iv*Dimension*(DegreeU+1)) =
|
|
Aux2(idim-1 + iv*Dimension + iu*Dimension*(DegreeV+1));
|
|
}
|
|
}
|
|
}
|
|
// Passage dans canonique en v.
|
|
myJacPolV->ToCoefficients(Dimension*(DegreeU+1),DegreeV,Aux1,Aux2);
|
|
|
|
// Permutation des u et des v.
|
|
for (iu=0; iu<=DegreeU; iu++) {
|
|
for (iv=0; iv<=DegreeV; iv++) {
|
|
for (idim=1; idim<=Dimension; idim++) {
|
|
Coefficients(iu + iv*(DegreeU+1) + (idim-1)*(DegreeU+1)*(DegreeV+1)) =
|
|
Aux2(idim-1 + iu*Dimension + iv*Dimension*(DegreeU+1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|