1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-26 10:19:45 +03:00
occt/src/PLib/PLib_DoubleJacobiPolynomial.cxx
abv 42cf5bc1ca 0024002: Overall code and build procedure refactoring -- automatic
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl":
- WOK-generated header files from inc and sources from drv are moved to src
- CDL files removed
- All packages are converted to nocdlpack
2015-07-12 07:42:38 +03:00

347 lines
12 KiB
C++

// Created on: 1997-05-28
// Created by: Sergey SOKOLOV
// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <math_Vector.hxx>
#include <PLib_DoubleJacobiPolynomial.hxx>
#include <PLib_JacobiPolynomial.hxx>
//=======================================================================
//function : PLib_DoubleJacobiPolynomial
//purpose :
//=======================================================================
PLib_DoubleJacobiPolynomial::PLib_DoubleJacobiPolynomial()
{
}
//=======================================================================
//function : PLib_DoubleJacobiPolynomial
//purpose :
//=======================================================================
PLib_DoubleJacobiPolynomial::PLib_DoubleJacobiPolynomial(const Handle(PLib_JacobiPolynomial)& JacPolU,
const Handle(PLib_JacobiPolynomial)& JacPolV) :
myJacPolU(JacPolU),
myJacPolV(JacPolV)
{
Handle (TColStd_HArray1OfReal) TabMaxU =
new TColStd_HArray1OfReal (0,JacPolU->WorkDegree()-2*(JacPolU->NivConstr()+1));
JacPolU->MaxValue(TabMaxU->ChangeArray1());
myTabMaxU = TabMaxU;
Handle (TColStd_HArray1OfReal) TabMaxV =
new TColStd_HArray1OfReal (0,JacPolV->WorkDegree()-2*(JacPolV->NivConstr()+1));
JacPolV->MaxValue(TabMaxV->ChangeArray1());
myTabMaxV = TabMaxV;
}
//=======================================================================
//function : MaxErrorU
//purpose :
//=======================================================================
Standard_Real
PLib_DoubleJacobiPolynomial::MaxErrorU(const Standard_Integer Dimension,
const Standard_Integer DegreeU,
const Standard_Integer DegreeV,
const Standard_Integer dJacCoeff,
const TColStd_Array1OfReal& JacCoeff) const
{
Standard_Integer ii,idim,dJac,MinU,MinV,WorkDegreeU,WorkDegreeV;
Standard_Real Bid0;
math_Vector MaxErrDim(1,Dimension,0.);
MinU = 2*(myJacPolU->NivConstr()+1);
MinV = 2*(myJacPolV->NivConstr()+1);
WorkDegreeU = myJacPolU->WorkDegree();
WorkDegreeV = myJacPolV->WorkDegree();
Bid0 = myTabMaxV->Value(DegreeV-MinV);
for (idim=1; idim<=Dimension; idim++) {
dJac = dJacCoeff + (idim-1)*(WorkDegreeU+1)*(WorkDegreeV+1);
for (ii=MinU; ii<=DegreeU; ii++) {
MaxErrDim(idim) += (Abs(JacCoeff(ii + DegreeV*(WorkDegreeU+1) + dJac)) *
myTabMaxU->Value(ii-MinU) * Bid0);
}
}
return (MaxErrDim.Norm());
}
//=======================================================================
//function : MaxErrorV
//purpose :
//=======================================================================
Standard_Real
PLib_DoubleJacobiPolynomial::MaxErrorV(const Standard_Integer Dimension,
const Standard_Integer DegreeU,
const Standard_Integer DegreeV,
const Standard_Integer dJacCoeff,
const TColStd_Array1OfReal& JacCoeff) const
{
Standard_Integer jj,idim,dJac,MinU,MinV,WorkDegreeU,WorkDegreeV;
Standard_Real Bid0;
math_Vector MaxErrDim(1,Dimension,0.);
MinU = 2*(myJacPolU->NivConstr()+1);
MinV = 2*(myJacPolV->NivConstr()+1);
WorkDegreeU = myJacPolU->WorkDegree();
WorkDegreeV = myJacPolV->WorkDegree();
Bid0 = myTabMaxU->Value(DegreeU-MinU);
for (idim=1; idim<=Dimension; idim++) {
dJac = dJacCoeff + (idim-1)*(WorkDegreeU+1)*(WorkDegreeV+1);
for (jj=MinV; jj<=DegreeV; jj++) {
MaxErrDim(idim) += (Abs(JacCoeff(DegreeU + jj*(WorkDegreeU+1) + dJac)) *
myTabMaxV->Value(jj-MinV) * Bid0);
}
}
return (MaxErrDim.Norm());
}
//=======================================================================
//function : MaxError
//purpose :
//=======================================================================
Standard_Real
PLib_DoubleJacobiPolynomial::MaxError(const Standard_Integer Dimension,
const Standard_Integer MinDegreeU,
const Standard_Integer MaxDegreeU,
const Standard_Integer MinDegreeV,
const Standard_Integer MaxDegreeV,
const Standard_Integer dJacCoeff,
const TColStd_Array1OfReal& JacCoeff,
const Standard_Real Error) const
{
Standard_Integer ii,jj,idim,dJac,MinU,MinV,WorkDegreeU,WorkDegreeV;
Standard_Real Bid0,Bid1;
math_Vector MaxErrDim(1,Dimension,0.);
MinU = 2*(myJacPolU->NivConstr()+1);
MinV = 2*(myJacPolV->NivConstr()+1);
WorkDegreeU = myJacPolU->WorkDegree();
WorkDegreeV = myJacPolV->WorkDegree();
//------------------- Calcul du majorant de l'erreur max ---------------
//----- lorsque sont enleves les coeff. d'indices MinDegreeU a MaxDegreeU ------
//---------------- en U et d'indices MinDegreeV a MaxDegreeV en V --------------
for (idim=1; idim<=Dimension; idim++) {
dJac = dJacCoeff + (idim-1)*(WorkDegreeU+1)*(WorkDegreeV+1);
Bid1 = 0.;
for (jj=MinDegreeV; jj<=MaxDegreeV; jj++) {
Bid0 = 0.;
for (ii=MinDegreeU; ii<=MaxDegreeU; ii++) {
Bid0 += fabs(JacCoeff(ii + jj*(WorkDegreeU+1) + dJac)) * myTabMaxU->Value(ii-MinU);
}
Bid1 += Bid0 * myTabMaxV->Value(jj-MinV);
}
MaxErrDim(idim) = Bid1;
}
//----------------------- Calcul de l' erreur max ----------------------
math_Vector MaxErr2(1,2);
MaxErr2(1) = Error;
MaxErr2(2) = MaxErrDim.Norm();
return (MaxErr2.Norm());
}
//=======================================================================
//function : ReduceDegree
//purpose :
//=======================================================================
void PLib_DoubleJacobiPolynomial::ReduceDegree(const Standard_Integer Dimension,
const Standard_Integer MinDegreeU,
const Standard_Integer MaxDegreeU,
const Standard_Integer MinDegreeV,
const Standard_Integer MaxDegreeV,
const Standard_Integer dJacCoeff,
const TColStd_Array1OfReal& JacCoeff,
const Standard_Real EpmsCut,
Standard_Real& MaxError,
Standard_Integer& NewDegreeU,
Standard_Integer& NewDegreeV) const
{
Standard_Integer NewU,NewV;
Standard_Real ErrU,ErrV;
NewU = MaxDegreeU;
NewV = MaxDegreeV;
math_Vector MaxErr2(1,2);
//**********************************************************************
//-------------------- Coupure des coefficients ------------------------
//**********************************************************************
do {
//------------------- Calcul du majorant de l'erreur max ---------------
//----- lorsque sont enleves les coeff. d'indices MinU a NewU ------
//---------------- en U, le degre en V etant fixe a NewV -----------------
if (NewV > MinDegreeV)
ErrV = MaxErrorU(Dimension,NewU,NewV,dJacCoeff,JacCoeff);
else {
ErrV = 2*EpmsCut;
}
//------------------- Calcul du majorant de l'erreur max ---------------
//----- lorsque sont enleves les coeff. d'indices MinV a NewV ------
//---------------- en V, le degre en U etant fixe a NewU -----------------
if (NewU > MinDegreeU)
ErrU = MaxErrorV(Dimension,NewU,NewV,dJacCoeff,JacCoeff);
else {
ErrU = 2*EpmsCut;
}
//----------------------- Calcul de l' erreur max ----------------------
MaxErr2(1) = MaxError;
MaxErr2(2) = ErrU;
ErrU = MaxErr2.Norm();
MaxErr2(2) = ErrV;
ErrV = MaxErr2.Norm();
if (ErrU > ErrV) {
if (ErrV < EpmsCut) {
MaxError = ErrV;
NewV--;
}
}
else {
if (ErrU < EpmsCut) {
MaxError = ErrU;
NewU--;
}
}
}
while ((ErrU > ErrV && ErrV <= EpmsCut) || (ErrV >= ErrU && ErrU <= EpmsCut));
//-------------------------- Recuperation des degres -------------------
NewDegreeU = Max(NewU,1);
NewDegreeV = Max(NewV,1);
}
//=======================================================================
//function : AverageError
//purpose :
//=======================================================================
Standard_Real
PLib_DoubleJacobiPolynomial::AverageError(const Standard_Integer Dimension,
const Standard_Integer DegreeU,
const Standard_Integer DegreeV,
const Standard_Integer dJacCoeff,
const TColStd_Array1OfReal& JacCoeff) const
{
Standard_Integer ii,jj,idim,dJac,IDebU,IDebV,MinU,MinV,WorkDegreeU,WorkDegreeV;
Standard_Real Bid0,Bid1,AverageErr;
//----------------------------- Initialisations ------------------------
IDebU = 2*(myJacPolU->NivConstr()+1);
IDebV = 2*(myJacPolV->NivConstr()+1);
MinU = Max(IDebU,DegreeU);
MinV = Max(IDebV,DegreeV);
WorkDegreeU = myJacPolU->WorkDegree();
WorkDegreeV = myJacPolV->WorkDegree();
Bid0 = 0.;
//------------------ Calcul du majorant de l'erreur moyenne ------------
//----- lorsque sont enleves les coeff. d'indices DegreeU a WorkDegreeU ------
//---------------- en U et d'indices DegreeV a WorkDegreeV en V --------------
for (idim=1; idim<=Dimension; idim++) {
dJac = dJacCoeff + (idim-1)*(WorkDegreeU+1)*(WorkDegreeV+1);
for (jj=MinV; jj<=WorkDegreeV; jj++) {
for (ii=IDebU; ii<=WorkDegreeU; ii++) {
Bid1 = JacCoeff(ii + jj*(WorkDegreeU+1) + dJac);
Bid0 += Bid1*Bid1;
}
}
for (jj=IDebV; jj<=MinV-1; jj++) {
for (ii=MinU; ii<=WorkDegreeU; ii++) {
Bid1 = JacCoeff(ii + jj*(WorkDegreeU+1) + dJac);
Bid0 += Bid1*Bid1;
}
}
}
AverageErr = sqrt(Bid0/4);
return (AverageErr);
}
//=======================================================================
//function : WDoubleJacobiToCoefficients
//purpose :
//=======================================================================
void PLib_DoubleJacobiPolynomial::WDoubleJacobiToCoefficients(const Standard_Integer Dimension,
const Standard_Integer DegreeU,
const Standard_Integer DegreeV,
const TColStd_Array1OfReal& JacCoeff,
TColStd_Array1OfReal& Coefficients) const
{
Standard_Integer iu,iv,idim,WorkDegreeU,WorkDegreeV;
Coefficients.Init(0.);
WorkDegreeU = myJacPolU->WorkDegree();
WorkDegreeV = myJacPolV->WorkDegree();
TColStd_Array1OfReal Aux1(0, (DegreeU+1)*(DegreeV+1)*Dimension-1);
TColStd_Array1OfReal Aux2(0, (DegreeU+1)*(DegreeV+1)*Dimension-1);
for (iu=0; iu<=DegreeU; iu++) {
for (iv=0; iv<=DegreeV; iv++) {
for (idim=1; idim<=Dimension; idim++) {
Aux1(idim-1 + iv*Dimension + iu*Dimension*(DegreeV+1)) =
JacCoeff(iu + iv*(WorkDegreeU+1) + (idim-1)*(WorkDegreeU+1)*(WorkDegreeV+1));
}
}
}
// Passage dans canonique en u.
myJacPolU->ToCoefficients(Dimension*(DegreeV+1),DegreeU,Aux1,Aux2);
// Permutation des u et des v.
for (iu=0; iu<=DegreeU; iu++) {
for (iv=0; iv<=DegreeV; iv++) {
for (idim=1; idim<=Dimension; idim++) {
Aux1(idim-1 + iu*Dimension + iv*Dimension*(DegreeU+1)) =
Aux2(idim-1 + iv*Dimension + iu*Dimension*(DegreeV+1));
}
}
}
// Passage dans canonique en v.
myJacPolV->ToCoefficients(Dimension*(DegreeU+1),DegreeV,Aux1,Aux2);
// Permutation des u et des v.
for (iu=0; iu<=DegreeU; iu++) {
for (iv=0; iv<=DegreeV; iv++) {
for (idim=1; idim<=Dimension; idim++) {
Coefficients(iu + iv*(DegreeU+1) + (idim-1)*(DegreeU+1)*(DegreeV+1)) =
Aux2(idim-1 + iu*Dimension + iv*Dimension*(DegreeU+1));
}
}
}
}