1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-26 10:19:45 +03:00
occt/src/IntAna2d/IntAna2d_AnaIntersection_6.cxx
abv 42cf5bc1ca 0024002: Overall code and build procedure refactoring -- automatic
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl":
- WOK-generated header files from inc and sources from drv are moved to src
- CDL files removed
- All packages are converted to nocdlpack
2015-07-12 07:42:38 +03:00

89 lines
2.8 KiB
C++

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
//============================================ IntAna2d_AnaIntersection_6.cxx
//============================================================================
#include <gp_Circ2d.hxx>
#include <gp_Elips2d.hxx>
#include <gp_Hypr2d.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Parab2d.hxx>
#include <IntAna2d_AnaIntersection.hxx>
#include <IntAna2d_Conic.hxx>
#include <IntAna2d_IntPoint.hxx>
#include <IntAna2d_Outils.hxx>
#include <Standard_OutOfRange.hxx>
#include <StdFail_NotDone.hxx>
void IntAna2d_AnaIntersection::Perform(const gp_Elips2d& Elips,
const IntAna2d_Conic& Conic)
{
Standard_Boolean EIsDirect = Elips.IsDirect();
Standard_Real A,B,C,D,E,F;
Standard_Real pcte,ps,pc,p2sc,pcc,pss;
Standard_Real minor_radius=Elips.MinorRadius();
Standard_Real major_radius=Elips.MajorRadius();
Standard_Integer i;
Standard_Real tx,ty,S;
done = Standard_False;
nbp = 0;
para = Standard_False;
iden = Standard_False;
empt = Standard_False;
gp_Ax2d Axe_rep(Elips.XAxis());
Conic.Coefficients(A,B,C,D,E,F);
Conic.NewCoefficients(A,B,C,D,E,F,Axe_rep);
// Parametre : a avec x=MajorRadius Cos(a) et y=MinorRadius Sin(a)
pss= B*minor_radius*minor_radius; // SIN ^2
pcc= A*major_radius*major_radius-pss; // COS ^2
p2sc=C*major_radius*minor_radius; // 2 SIN COS
pc= 2.0*D*major_radius; // COS
ps= 2.0*E*minor_radius; // SIN
pcte=F+pss; // 1
math_TrigonometricFunctionRoots Sol(pcc,p2sc,pc,ps,pcte,0.0,2.0*M_PI);
if (!Sol.IsDone()) {
done=Standard_False;
return;
}
else {
if(Sol.InfiniteRoots()) {
iden=Standard_True;
done=Standard_True;
return;
}
nbp=Sol.NbSolutions();
for(i=1;i<=nbp;i++) {
S = Sol.Value(i);
tx=major_radius*Cos(S);
ty=minor_radius*Sin(S);
Coord_Ancien_Repere(tx,ty,Axe_rep);
if(!EIsDirect)
S = M_PI+M_PI-S;
lpnt[i-1].SetValue(tx,ty,S);
}
Traitement_Points_Confondus(nbp,lpnt);
}
done = Standard_True;
}