1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-16 10:08:36 +03:00
occt/src/GeomFill/GeomFill_ConstantBiNormal.cxx
abv 92efcf78a6 0026936: Drawbacks of inlining in new type system in OCCT 7.0 -- automatic
Automatic restore of IMPLEMENT_STANDARD_RTTIEXT macro (upgrade -rtti)
2015-12-04 14:15:06 +03:00

266 lines
8.6 KiB
C++

// Created on: 1998-03-03
// Created by: Roman BORISOV
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Adaptor3d_HCurve.hxx>
#include <GeomFill_ConstantBiNormal.hxx>
#include <GeomFill_Frenet.hxx>
#include <GeomFill_TrihedronLaw.hxx>
#include <gp_Ax1.hxx>
#include <gp_Dir.hxx>
#include <gp_Lin.hxx>
#include <gp_Vec.hxx>
#include <Precision.hxx>
#include <Standard_ConstructionError.hxx>
#include <Standard_OutOfRange.hxx>
#include <Standard_Type.hxx>
IMPLEMENT_STANDARD_RTTIEXT(GeomFill_ConstantBiNormal,GeomFill_TrihedronLaw)
//=======================================================================
//function : FDeriv
//purpose : computes (F/|F|)'
//=======================================================================
static gp_Vec FDeriv(const gp_Vec& F, const gp_Vec& DF)
{
Standard_Real Norma = F.Magnitude();
gp_Vec Result = (DF - F*(F*DF)/(Norma*Norma))/Norma;
return Result;
}
//=======================================================================
//function : DDeriv
//purpose : computes (F/|F|)''
//=======================================================================
static gp_Vec DDeriv(const gp_Vec& F, const gp_Vec& DF, const gp_Vec& D2F)
{
Standard_Real Norma = F.Magnitude();
gp_Vec Result = (D2F - 2*DF*(F*DF)/(Norma*Norma))/Norma -
F*((DF.SquareMagnitude() + F*D2F
- 3*(F*DF)*(F*DF)/(Norma*Norma))/(Norma*Norma*Norma));
return Result;
}
GeomFill_ConstantBiNormal::GeomFill_ConstantBiNormal(const gp_Dir& BiNormal) : BN(BiNormal)
{
frenet = new GeomFill_Frenet();
}
Handle(GeomFill_TrihedronLaw) GeomFill_ConstantBiNormal::Copy() const
{
Handle(GeomFill_TrihedronLaw) copy = new GeomFill_ConstantBiNormal(gp_Dir(BN));
if (!myCurve.IsNull()) copy->SetCurve(myCurve);
return copy;
}
void GeomFill_ConstantBiNormal::SetCurve(const Handle(Adaptor3d_HCurve)& C)
{
GeomFill_TrihedronLaw::SetCurve(C);
if (! C.IsNull()) {
frenet->SetCurve(C);
}
}
Standard_Boolean GeomFill_ConstantBiNormal::D0(const Standard_Real Param,gp_Vec& Tangent,gp_Vec& Normal,gp_Vec& BiNormal)
{
// if BN^T != 0 then N = (BN^T).Normalized ; T = N^BN
// else T = (N^BN).Normalized ; N = BN^T
frenet->D0(Param, Tangent, Normal, BiNormal);
BiNormal = BN;
if(BiNormal.Crossed(Tangent).Magnitude() > Precision::Confusion()) {
Normal = BiNormal.Crossed(Tangent).Normalized();
Tangent = Normal.Crossed(BiNormal);
}
else {
Tangent = Normal.Crossed(BiNormal).Normalized();
Normal = BiNormal.Crossed(Tangent);
}
/*for Test
gp_Vec DTangent, D2Tangent, DNormal, D2Normal, DBiNormal, D2BiNormal;
D2(Param, Tangent, DTangent, D2Tangent,
Normal, DNormal, D2Normal, BiNormal, DBiNormal, D2BiNormal);
*/
return Standard_True;
}
Standard_Boolean GeomFill_ConstantBiNormal::D1(const Standard_Real Param,gp_Vec& Tangent,gp_Vec& DTangent,gp_Vec& Normal,gp_Vec& DNormal,gp_Vec& BiNormal,gp_Vec& DBiNormal)
{
gp_Vec F, DF;
frenet->D1(Param, Tangent, DTangent, Normal, DNormal, BiNormal, DBiNormal);
BiNormal = BN;
DBiNormal = gp_Vec(0, 0, 0);
if(BiNormal.Crossed(Tangent).Magnitude() > Precision::Confusion()) {
F = BiNormal.Crossed(Tangent);
DF = BiNormal.Crossed(DTangent);
Normal = F.Normalized();
DNormal = FDeriv(F, DF);
Tangent = Normal.Crossed(BiNormal);
DTangent = DNormal.Crossed(BiNormal);
}
else {
F = Normal.Crossed(BiNormal);
DF = DNormal.Crossed(BiNormal);
Tangent = F.Normalized();
DTangent = FDeriv(F, DF);
Normal = BiNormal.Crossed(Tangent);
DNormal = BiNormal.Crossed(DTangent);
}
/*test
Standard_Real h = 1.e-10;
gp_Vec cTangent, cNormal, cBiNormal, Tangent_, Normal_, BiNormal_;
D0(Param, cTangent, cNormal, cBiNormal);
D0(Param + h, Tangent_, Normal_, BiNormal_);
cTangent = (Tangent_ - cTangent)/h;
cNormal = (Normal_ - cNormal)/h;
cBiNormal = (BiNormal_ - cBiNormal)/h;
cout<<"DTangent = ("<<DTangent.X()<<", "<<DTangent.Y()<<", "<<DTangent.Z()<<")"<<endl;
cout<<"CTangent = ("<<cTangent.X()<<", "<<cTangent.Y()<<", "<<cTangent.Z()<<")"<<endl;
cout<<"DNormal = ("<<DNormal.X()<<", "<<DNormal.Y()<<", "<<DNormal.Z()<<")"<<endl;
cout<<"CNormal = ("<<cNormal.X()<<", "<<cNormal.Y()<<", "<<cNormal.Z()<<")"<<endl;
cout<<"DBiNormal = ("<<DBiNormal.X()<<", "<<DBiNormal.Y()<<", "<<DBiNormal.Z()<<")"<<endl;
cout<<"CBiNormal = ("<<cBiNormal.X()<<", "<<cBiNormal.Y()<<", "<<cBiNormal.Z()<<")"<<endl;
*/
return Standard_True;
}
Standard_Boolean GeomFill_ConstantBiNormal::D2(const Standard_Real Param,
gp_Vec& Tangent,
gp_Vec& DTangent,
gp_Vec& D2Tangent,
gp_Vec& Normal,
gp_Vec& DNormal,
gp_Vec& D2Normal,
gp_Vec& BiNormal,
gp_Vec& DBiNormal,
gp_Vec& D2BiNormal)
{
gp_Vec F, DF, D2F;
frenet->D2(Param, Tangent, DTangent, D2Tangent,
Normal, DNormal, D2Normal,
BiNormal, DBiNormal, D2BiNormal);
BiNormal = BN;
DBiNormal = gp_Vec(0, 0, 0);
D2BiNormal = gp_Vec(0, 0, 0);
if(BiNormal.Crossed(Tangent).Magnitude() > Precision::Confusion()) {
F = BiNormal.Crossed(Tangent);
DF = BiNormal.Crossed(DTangent);
D2F = BiNormal.Crossed(D2Tangent);
Normal = F.Normalized();
DNormal = FDeriv(F, DF);
D2Normal = DDeriv(F, DF, D2F);
Tangent = Normal.Crossed(BiNormal);
DTangent = DNormal.Crossed(BiNormal);
D2Tangent = D2Normal.Crossed(BiNormal);
}
else {
F = Normal.Crossed(BiNormal);
DF = DNormal.Crossed(BiNormal);
D2F = D2Normal.Crossed(BiNormal);
Tangent = F.Normalized();
DTangent = FDeriv(F, DF);
D2Tangent = DDeriv(F, DF, D2F);
Normal = BiNormal.Crossed(Tangent);
DNormal = BiNormal.Crossed(DTangent);
D2Normal = BiNormal.Crossed(D2Tangent);
}
/* cout<<"Param = "<<Param<<endl;
cout<<"Tangent = ("<<Tangent.X()<<", "<<Tangent.Y()<<", "<<Tangent.Z()<<")"<<endl;
cout<<"DTangent = ("<<DTangent.X()<<", "<<DTangent.Y()<<", "<<DTangent.Z()<<")"<<endl;
cout<<"D2Tangent = ("<<D2Tangent.X()<<", "<<D2Tangent.Y()<<", "<<D2Tangent.Z()<<")"<<endl;
cout<<"BiNormal = ("<<BiNormal.X()<<", "<<BiNormal.Y()<<", "<<BiNormal.Z()<<")"<<endl;
cout<<"DBiNormal = ("<<DBiNormal.X()<<", "<<DBiNormal.Y()<<", "<<DBiNormal.Z()<<")"<<endl;
cout<<"D2BiNormal = ("<<D2BiNormal.X()<<", "<<D2BiNormal.Y()<<", "<<D2BiNormal.Z()<<")"<<endl;
*/
return Standard_True;
}
Standard_Integer GeomFill_ConstantBiNormal::NbIntervals(const GeomAbs_Shape S) const
{
return frenet->NbIntervals(S);
}
void GeomFill_ConstantBiNormal::Intervals(TColStd_Array1OfReal& T,const GeomAbs_Shape S) const
{
frenet->Intervals(T, S);
}
void GeomFill_ConstantBiNormal::GetAverageLaw(gp_Vec& ATangent,gp_Vec& ANormal,gp_Vec& ABiNormal)
{
frenet->GetAverageLaw(ATangent, ANormal, ABiNormal);
ABiNormal = BN;
if(ABiNormal.Crossed(ATangent).Magnitude() > Precision::Confusion()) {
ANormal = ABiNormal.Crossed(ATangent).Normalized();
ATangent = ANormal.Crossed(ABiNormal);
}
else {
ATangent = ANormal.Crossed(ABiNormal).Normalized();
ANormal = ABiNormal.Crossed(ATangent);
}
}
Standard_Boolean GeomFill_ConstantBiNormal::IsConstant() const
{
return frenet->IsConstant();
}
Standard_Boolean GeomFill_ConstantBiNormal::IsOnlyBy3dCurve() const
{
GeomAbs_CurveType TheType = myCurve->GetType();
gp_Ax1 TheAxe;
switch (TheType) {
case GeomAbs_Circle:
{
TheAxe = myCurve->Circle().Axis();
break;
}
case GeomAbs_Ellipse:
{
TheAxe = myCurve->Ellipse().Axis();
break;
}
case GeomAbs_Hyperbola:
{
TheAxe = myCurve->Hyperbola().Axis();
break;
}
case GeomAbs_Parabola:
{
TheAxe = myCurve->Parabola().Axis();
break;
}
case GeomAbs_Line:
{ //La normale du plan de la courbe est il perpendiculaire a la BiNormale ?
gp_Vec V;
V.SetXYZ(myCurve->Line().Direction().XYZ());
return V.IsNormal(BN, Precision::Angular());
}
default:
return Standard_False; // pas de risques
}
// La normale du plan de la courbe est il // a la BiNormale ?
gp_Vec V;
V.SetXYZ(TheAxe.Direction().XYZ());
return V.IsParallel(BN, Precision::Angular());
}