1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-26 10:19:45 +03:00
occt/src/BRepBlend/BRepBlend_AppFuncRoot.hxx
abv 92efcf78a6 0026936: Drawbacks of inlining in new type system in OCCT 7.0 -- automatic
Automatic restore of IMPLEMENT_STANDARD_RTTIEXT macro (upgrade -rtti)
2015-12-04 14:15:06 +03:00

172 lines
7.0 KiB
C++

// Created on: 1998-05-12
// Created by: Philippe NOUAILLE
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _BRepBlend_AppFuncRoot_HeaderFile
#define _BRepBlend_AppFuncRoot_HeaderFile
#include <Standard.hxx>
#include <Standard_Type.hxx>
#include <Standard_Address.hxx>
#include <math_Vector.hxx>
#include <Blend_Point.hxx>
#include <gp_Pnt.hxx>
#include <Approx_SweepFunction.hxx>
#include <Standard_Real.hxx>
#include <Standard_Boolean.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColgp_Array1OfVec.hxx>
#include <TColgp_Array1OfVec2d.hxx>
#include <Standard_Integer.hxx>
#include <TColStd_Array1OfInteger.hxx>
#include <GeomAbs_Shape.hxx>
class BRepBlend_Line;
class Standard_OutOfRange;
class Blend_AppFunction;
class gp_Pnt;
class Blend_Point;
class BRepBlend_AppFuncRoot;
DEFINE_STANDARD_HANDLE(BRepBlend_AppFuncRoot, Approx_SweepFunction)
//! Function to approximate by AppSurface
class BRepBlend_AppFuncRoot : public Approx_SweepFunction
{
public:
//! compute the section for v = param
Standard_EXPORT virtual Standard_Boolean D0 (const Standard_Real Param, const Standard_Real First, const Standard_Real Last, TColgp_Array1OfPnt& Poles, TColgp_Array1OfPnt2d& Poles2d, TColStd_Array1OfReal& Weigths) Standard_OVERRIDE;
//! compute the first derivative in v direction of the
//! section for v = param
Standard_EXPORT virtual Standard_Boolean D1 (const Standard_Real Param, const Standard_Real First, const Standard_Real Last, TColgp_Array1OfPnt& Poles, TColgp_Array1OfVec& DPoles, TColgp_Array1OfPnt2d& Poles2d, TColgp_Array1OfVec2d& DPoles2d, TColStd_Array1OfReal& Weigths, TColStd_Array1OfReal& DWeigths) Standard_OVERRIDE;
//! compute the second derivative in v direction of the
//! section for v = param
Standard_EXPORT virtual Standard_Boolean D2 (const Standard_Real Param, const Standard_Real First, const Standard_Real Last, TColgp_Array1OfPnt& Poles, TColgp_Array1OfVec& DPoles, TColgp_Array1OfVec& D2Poles, TColgp_Array1OfPnt2d& Poles2d, TColgp_Array1OfVec2d& DPoles2d, TColgp_Array1OfVec2d& D2Poles2d, TColStd_Array1OfReal& Weigths, TColStd_Array1OfReal& DWeigths, TColStd_Array1OfReal& D2Weigths) Standard_OVERRIDE;
//! get the number of 2d curves to approximate.
Standard_EXPORT virtual Standard_Integer Nb2dCurves() const Standard_OVERRIDE;
//! get the format of an section
Standard_EXPORT virtual void SectionShape (Standard_Integer& NbPoles, Standard_Integer& NbKnots, Standard_Integer& Degree) const Standard_OVERRIDE;
//! get the Knots of the section
Standard_EXPORT virtual void Knots (TColStd_Array1OfReal& TKnots) const Standard_OVERRIDE;
//! get the Multplicities of the section
Standard_EXPORT virtual void Mults (TColStd_Array1OfInteger& TMults) const Standard_OVERRIDE;
//! Returns if the section is rationnal or not
Standard_EXPORT virtual Standard_Boolean IsRational() const Standard_OVERRIDE;
//! Returns the number of intervals for continuity
//! <S>. May be one if Continuity(me) >= <S>
Standard_EXPORT virtual Standard_Integer NbIntervals (const GeomAbs_Shape S) const Standard_OVERRIDE;
//! Stores in <T> the parameters bounding the intervals
//! of continuity <S>.
//!
//! The array must provide enough room to accomodate
//! for the parameters. i.e. T.Length() > NbIntervals()
Standard_EXPORT virtual void Intervals (TColStd_Array1OfReal& T, const GeomAbs_Shape S) const Standard_OVERRIDE;
//! Sets the bounds of the parametric interval on
//! the fonction
//! This determines the derivatives in these values if the
//! function is not Cn.
Standard_EXPORT virtual void SetInterval (const Standard_Real First, const Standard_Real Last) Standard_OVERRIDE;
//! Returns the resolutions in the sub-space 2d <Index> --
//! This information is usfull to find an good tolerance in
//! 2d approximation
Standard_EXPORT virtual void Resolution (const Standard_Integer Index, const Standard_Real Tol, Standard_Real& TolU, Standard_Real& TolV) const Standard_OVERRIDE;
//! Returns the tolerance to reach in approximation
//! to respecte
//! BoundTol error at the Boundary
//! AngleTol tangent error at the Boundary (in radian)
//! SurfTol error inside the surface.
Standard_EXPORT virtual void GetTolerance (const Standard_Real BoundTol, const Standard_Real SurfTol, const Standard_Real AngleTol, TColStd_Array1OfReal& Tol3d) const Standard_OVERRIDE;
//! Is usfull, if (me) have to be run numerical
//! algorithme to perform D0, D1 or D2
Standard_EXPORT virtual void SetTolerance (const Standard_Real Tol3d, const Standard_Real Tol2d) Standard_OVERRIDE;
//! Get the barycentre of Surface. An very poor
//! estimation is sufficent. This information is usefull
//! to perform well conditionned rational approximation.
Standard_EXPORT virtual gp_Pnt BarycentreOfSurf() const Standard_OVERRIDE;
//! Returns the length of the maximum section. This
//! information is usefull to perform well conditionned rational
//! approximation.
Standard_EXPORT virtual Standard_Real MaximalSection() const Standard_OVERRIDE;
//! Compute the minimal value of weight for each poles
//! of all sections. This information is usefull to
//! perform well conditionned rational approximation.
Standard_EXPORT virtual void GetMinimalWeight (TColStd_Array1OfReal& Weigths) const Standard_OVERRIDE;
Standard_EXPORT virtual void Point (const Blend_AppFunction& Func, const Standard_Real Param, const math_Vector& Sol, Blend_Point& Pnt) const = 0;
Standard_EXPORT virtual void Vec (math_Vector& Sol, const Blend_Point& Pnt) const = 0;
DEFINE_STANDARD_RTTIEXT(BRepBlend_AppFuncRoot,Approx_SweepFunction)
protected:
Standard_EXPORT BRepBlend_AppFuncRoot(Handle(BRepBlend_Line)& Line, Blend_AppFunction& Func, const Standard_Real Tol3d, const Standard_Real Tol2d);
private:
Standard_EXPORT Standard_Boolean SearchPoint (Blend_AppFunction& Func, const Standard_Real Param, Blend_Point& Pnt);
Standard_EXPORT Standard_Boolean SearchLocation (const Standard_Real Param, const Standard_Integer FirstIndex, const Standard_Integer LastIndex, Standard_Integer& ParamIndex) const;
Handle(BRepBlend_Line) myLine;
Standard_Address myFunc;
math_Vector myTolerance;
Blend_Point myPnt;
gp_Pnt myBary;
math_Vector X1;
math_Vector X2;
math_Vector XInit;
math_Vector Sol;
};
#endif // _BRepBlend_AppFuncRoot_HeaderFile