mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
Found via `codespell -q 3 -S "*.fr" -L aadd,abnd,abord,acount,adn,afile,aline,alo,alocation,alog,als,anc,ane,anid,anormal,anout,ans,anumber,aother,aparent,apoints,aprogram,asender,asign,asnd,ba,bbuild,bloc,bord,bu,caf,cas,childrens,childs,classe,clen,commun,cylindre,don,dout,dum,ede,entites,fo,fonction,guid,hist,identic,ii,indx,inout,invalide,ist,iterm,llength,lod,mape,modeling,methode,mye,myu,nam,nd,nin,normale,normales,ons,parametre,parametres,periode,pres,reste,resul,secont,serie,shs,slin,som,somme,syntaxe,sur,te,thei,theis,ther,theres,thes,thev,thex,thet,tol,transfert,va,vas,verifie,vertexes,weight`
2321 lines
75 KiB
C++
2321 lines
75 KiB
C++
// Created on: 1997-09-23
|
|
// Created by: Roman BORISOV
|
|
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <algorithm>
|
|
|
|
#include <Approx_CurveOnSurface.hxx>
|
|
#include <Extrema_ExtCS.hxx>
|
|
#include <Extrema_ExtPS.hxx>
|
|
#include <Extrema_POnCurv.hxx>
|
|
#include <Extrema_POnSurf.hxx>
|
|
#include <GeomAbs_CurveType.hxx>
|
|
#include <GeomAdaptor_Surface.hxx>
|
|
#include <GeomLib.hxx>
|
|
#include <gp_Mat2d.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <gp_Vec2d.hxx>
|
|
#include <gp_XY.hxx>
|
|
#include <Precision.hxx>
|
|
#include <ProjLib_CompProjectedCurve.hxx>
|
|
#include <ProjLib_HCompProjectedCurve.hxx>
|
|
#include <ProjLib_PrjResolve.hxx>
|
|
#include <Standard_DomainError.hxx>
|
|
#include <Standard_NoSuchObject.hxx>
|
|
#include <Standard_NotImplemented.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <Standard_TypeMismatch.hxx>
|
|
#include <TColgp_HSequenceOfPnt.hxx>
|
|
#include <Adaptor3d_CurveOnSurface.hxx>
|
|
#include <Geom_BSplineCurve.hxx>
|
|
#include <Geom2d_BSplineCurve.hxx>
|
|
#include <Geom2d_Line.hxx>
|
|
#include <Geom2d_TrimmedCurve.hxx>
|
|
#include <Geom2dAdaptor_Curve.hxx>
|
|
#include <Extrema_ExtCC.hxx>
|
|
#include <NCollection_Vector.hxx>
|
|
|
|
#define FuncTol 1.e-10
|
|
|
|
IMPLEMENT_STANDARD_RTTIEXT(ProjLib_CompProjectedCurve, Adaptor2d_Curve2d)
|
|
|
|
#ifdef OCCT_DEBUG_CHRONO
|
|
#include <OSD_Timer.hxx>
|
|
|
|
static OSD_Chronometer chr_init_point, chr_dicho_bound;
|
|
|
|
Standard_EXPORT Standard_Real t_init_point, t_dicho_bound;
|
|
Standard_EXPORT Standard_Integer init_point_count, dicho_bound_count;
|
|
|
|
static void InitChron(OSD_Chronometer& ch)
|
|
{
|
|
ch.Reset();
|
|
ch.Start();
|
|
}
|
|
|
|
static void ResultChron(OSD_Chronometer& ch, Standard_Real& time)
|
|
{
|
|
Standard_Real tch;
|
|
ch.Stop();
|
|
ch.Show(tch);
|
|
time = time + tch;
|
|
}
|
|
#endif
|
|
|
|
// Structure to perform splits computation.
|
|
// This structure is not thread-safe since operations under mySplits should be performed in a
|
|
// critical section. myPeriodicDir - 0 for U periodicity and 1 for V periodicity.
|
|
struct SplitDS
|
|
{
|
|
SplitDS(const Handle(Adaptor3d_Curve)& theCurve,
|
|
const Handle(Adaptor3d_Surface)& theSurface,
|
|
NCollection_Vector<Standard_Real>& theSplits)
|
|
: myCurve(theCurve),
|
|
mySurface(theSurface),
|
|
mySplits(theSplits),
|
|
myPerMinParam(0.0),
|
|
myPerMaxParam(0.0),
|
|
myPeriodicDir(0),
|
|
myExtCCCurve1(NULL),
|
|
myExtCCLast2DParam(0.0),
|
|
myExtPS(NULL)
|
|
{
|
|
}
|
|
|
|
const Handle(Adaptor3d_Curve) myCurve;
|
|
const Handle(Adaptor3d_Surface) mySurface;
|
|
NCollection_Vector<Standard_Real>& mySplits;
|
|
|
|
Standard_Real myPerMinParam;
|
|
Standard_Real myPerMaxParam;
|
|
Standard_Integer myPeriodicDir;
|
|
|
|
Adaptor3d_CurveOnSurface* myExtCCCurve1;
|
|
Standard_Real myExtCCLast2DParam;
|
|
|
|
Extrema_ExtPS* myExtPS;
|
|
|
|
private:
|
|
// Assignment operator is forbidden.
|
|
void operator=(const SplitDS& theSplitDS);
|
|
};
|
|
|
|
//! Compute split points in the parameter space of the curve.
|
|
static void BuildCurveSplits(const Handle(Adaptor3d_Curve)& theCurve,
|
|
const Handle(Adaptor3d_Surface)& theSurface,
|
|
const Standard_Real theTolU,
|
|
const Standard_Real theTolV,
|
|
NCollection_Vector<Standard_Real>& theSplits);
|
|
|
|
//! Perform splitting on a specified direction. Sub-method in BuildCurveSplits.
|
|
static void SplitOnDirection(SplitDS& theSplitDS);
|
|
|
|
//! Perform recursive search of the split points.
|
|
static void FindSplitPoint(SplitDS& theSplitDS,
|
|
const Standard_Real theMinParam,
|
|
const Standard_Real theMaxParam);
|
|
|
|
//=======================================================================
|
|
// function : Comparator
|
|
// purpose : used in sort algorithm
|
|
//=======================================================================
|
|
inline Standard_Boolean Comparator(const Standard_Real theA, const Standard_Real theB)
|
|
{
|
|
return theA < theB;
|
|
}
|
|
|
|
//=======================================================================
|
|
// function : d1
|
|
// purpose : computes first derivative of the projected curve
|
|
//=======================================================================
|
|
|
|
static void d1(const Standard_Real t,
|
|
const Standard_Real u,
|
|
const Standard_Real v,
|
|
gp_Vec2d& V,
|
|
const Handle(Adaptor3d_Curve)& Curve,
|
|
const Handle(Adaptor3d_Surface)& Surface)
|
|
{
|
|
gp_Pnt S, C;
|
|
gp_Vec DS1_u, DS1_v, DS2_u, DS2_uv, DS2_v, DC1_t;
|
|
Surface->D2(u, v, S, DS1_u, DS1_v, DS2_u, DS2_v, DS2_uv);
|
|
Curve->D1(t, C, DC1_t);
|
|
gp_Vec Ort(C, S); // Ort = S - C
|
|
|
|
gp_Vec2d dE_dt(-DC1_t * DS1_u, -DC1_t * DS1_v);
|
|
gp_XY dE_du(DS1_u * DS1_u + Ort * DS2_u, DS1_u * DS1_v + Ort * DS2_uv);
|
|
gp_XY dE_dv(DS1_v * DS1_u + Ort * DS2_uv, DS1_v * DS1_v + Ort * DS2_v);
|
|
|
|
Standard_Real det = dE_du.X() * dE_dv.Y() - dE_du.Y() * dE_dv.X();
|
|
if (fabs(det) < gp::Resolution())
|
|
throw Standard_ConstructionError();
|
|
|
|
gp_Mat2d M(gp_XY(dE_dv.Y() / det, -dE_du.Y() / det), gp_XY(-dE_dv.X() / det, dE_du.X() / det));
|
|
|
|
V = -gp_Vec2d(gp_Vec2d(M.Row(1)) * dE_dt, gp_Vec2d(M.Row(2)) * dE_dt);
|
|
}
|
|
|
|
//=======================================================================
|
|
// function : d2
|
|
// purpose : computes second derivative of the projected curve
|
|
//=======================================================================
|
|
|
|
static void d2(const Standard_Real t,
|
|
const Standard_Real u,
|
|
const Standard_Real v,
|
|
gp_Vec2d& V1,
|
|
gp_Vec2d& V2,
|
|
const Handle(Adaptor3d_Curve)& Curve,
|
|
const Handle(Adaptor3d_Surface)& Surface)
|
|
{
|
|
gp_Pnt S, C;
|
|
gp_Vec DS1_u, DS1_v, DS2_u, DS2_uv, DS2_v, DS3_u, DS3_v, DS3_uuv, DS3_uvv, DC1_t, DC2_t;
|
|
Surface->D3(u, v, S, DS1_u, DS1_v, DS2_u, DS2_v, DS2_uv, DS3_u, DS3_v, DS3_uuv, DS3_uvv);
|
|
Curve->D2(t, C, DC1_t, DC2_t);
|
|
gp_Vec Ort(C, S);
|
|
|
|
gp_Vec2d dE_dt(-DC1_t * DS1_u, -DC1_t * DS1_v);
|
|
gp_XY dE_du(DS1_u * DS1_u + Ort * DS2_u, DS1_u * DS1_v + Ort * DS2_uv);
|
|
gp_XY dE_dv(DS1_v * DS1_u + Ort * DS2_uv, DS1_v * DS1_v + Ort * DS2_v);
|
|
|
|
Standard_Real det = dE_du.X() * dE_dv.Y() - dE_du.Y() * dE_dv.X();
|
|
if (fabs(det) < gp::Resolution())
|
|
throw Standard_ConstructionError();
|
|
|
|
gp_Mat2d M(gp_XY(dE_dv.Y() / det, -dE_du.Y() / det), gp_XY(-dE_dv.X() / det, dE_du.X() / det));
|
|
|
|
// First derivative
|
|
V1 = -gp_Vec2d(gp_Vec2d(M.Row(1)) * dE_dt, gp_Vec2d(M.Row(2)) * dE_dt);
|
|
|
|
/* Second derivative */
|
|
|
|
// Computation of d2E_dt2 = S1
|
|
gp_Vec2d d2E_dt(-DC2_t * DS1_u, -DC2_t * DS1_v);
|
|
|
|
// Computation of 2*(d2E/dtdX)(dX/dt) = S2
|
|
gp_Vec2d d2E1_dtdX(-DC1_t * DS2_u, -DC1_t * DS2_uv);
|
|
gp_Vec2d d2E2_dtdX(-DC1_t * DS2_uv, -DC1_t * DS2_v);
|
|
gp_Vec2d S2 = 2 * gp_Vec2d(d2E1_dtdX * V1, d2E2_dtdX * V1);
|
|
|
|
// Computation of (d2E/dX2)*(dX/dt)2 = S3
|
|
|
|
// Row11 = (d2E1/du2, d2E1/dudv)
|
|
Standard_Real tmp;
|
|
gp_Vec2d Row11(3 * DS1_u * DS2_u + Ort * DS3_u,
|
|
tmp = 2 * DS1_u * DS2_uv + DS1_v * DS2_u + Ort * DS3_uuv);
|
|
|
|
// Row12 = (d2E1/dudv, d2E1/dv2)
|
|
gp_Vec2d Row12(tmp, DS2_v * DS1_u + 2 * DS1_v * DS2_uv + Ort * DS3_uvv);
|
|
|
|
// Row21 = (d2E2/du2, d2E2/dudv)
|
|
gp_Vec2d Row21(DS2_u * DS1_v + 2 * DS1_u * DS2_uv + Ort * DS3_uuv,
|
|
tmp = 2 * DS2_uv * DS1_v + DS1_u * DS2_v + Ort * DS3_uvv);
|
|
|
|
// Row22 = (d2E2/duv, d2E2/dvdv)
|
|
gp_Vec2d Row22(tmp, 3 * DS1_v * DS2_v + Ort * DS3_v);
|
|
|
|
gp_Vec2d S3(V1 * gp_Vec2d(Row11 * V1, Row12 * V1), V1 * gp_Vec2d(Row21 * V1, Row22 * V1));
|
|
|
|
gp_Vec2d Sum = d2E_dt + S2 + S3;
|
|
|
|
V2 = -gp_Vec2d(gp_Vec2d(M.Row(1)) * Sum, gp_Vec2d(M.Row(2)) * Sum);
|
|
}
|
|
|
|
//=======================================================================
|
|
// function : d1CurveOnSurf
|
|
// purpose : computes first derivative of the 3d projected curve
|
|
//=======================================================================
|
|
|
|
#if 0
|
|
static void d1CurvOnSurf(const Standard_Real t,
|
|
const Standard_Real u,
|
|
const Standard_Real v,
|
|
gp_Vec& V,
|
|
const Handle(Adaptor3d_Curve)& Curve,
|
|
const Handle(Adaptor3d_Surface)& Surface)
|
|
{
|
|
gp_Pnt S, C;
|
|
gp_Vec2d V2d;
|
|
gp_Vec DS1_u, DS1_v, DS2_u, DS2_uv, DS2_v, DC1_t;
|
|
Surface->D2(u, v, S, DS1_u, DS1_v, DS2_u, DS2_v, DS2_uv);
|
|
Curve->D1(t, C, DC1_t);
|
|
gp_Vec Ort(C, S);// Ort = S - C
|
|
|
|
gp_Vec2d dE_dt(-DC1_t*DS1_u, -DC1_t*DS1_v);
|
|
gp_XY dE_du(DS1_u*DS1_u + Ort*DS2_u,
|
|
DS1_u*DS1_v + Ort*DS2_uv);
|
|
gp_XY dE_dv(DS1_v*DS1_u + Ort*DS2_uv,
|
|
DS1_v*DS1_v + Ort*DS2_v);
|
|
|
|
Standard_Real det = dE_du.X()*dE_dv.Y() - dE_du.Y()*dE_dv.X();
|
|
if (fabs(det) < gp::Resolution()) throw Standard_ConstructionError();
|
|
|
|
gp_Mat2d M(gp_XY(dE_dv.Y()/det, -dE_du.Y()/det),
|
|
gp_XY(-dE_dv.X()/det, dE_du.X()/det));
|
|
|
|
V2d = - gp_Vec2d(gp_Vec2d(M.Row(1))*dE_dt, gp_Vec2d(M.Row(2))*dE_dt);
|
|
|
|
V = DS1_u * V2d.X() + DS1_v * V2d.Y();
|
|
|
|
}
|
|
#endif
|
|
|
|
//=======================================================================
|
|
// function : d2CurveOnSurf
|
|
// purpose : computes second derivative of the 3D projected curve
|
|
//=======================================================================
|
|
|
|
static void d2CurvOnSurf(const Standard_Real t,
|
|
const Standard_Real u,
|
|
const Standard_Real v,
|
|
gp_Vec& V1,
|
|
gp_Vec& V2,
|
|
const Handle(Adaptor3d_Curve)& Curve,
|
|
const Handle(Adaptor3d_Surface)& Surface)
|
|
{
|
|
gp_Pnt S, C;
|
|
gp_Vec2d V12d, V22d;
|
|
gp_Vec DS1_u, DS1_v, DS2_u, DS2_uv, DS2_v, DS3_u, DS3_v, DS3_uuv, DS3_uvv, DC1_t, DC2_t;
|
|
Surface->D3(u, v, S, DS1_u, DS1_v, DS2_u, DS2_v, DS2_uv, DS3_u, DS3_v, DS3_uuv, DS3_uvv);
|
|
Curve->D2(t, C, DC1_t, DC2_t);
|
|
gp_Vec Ort(C, S);
|
|
|
|
gp_Vec2d dE_dt(-DC1_t * DS1_u, -DC1_t * DS1_v);
|
|
gp_XY dE_du(DS1_u * DS1_u + Ort * DS2_u, DS1_u * DS1_v + Ort * DS2_uv);
|
|
gp_XY dE_dv(DS1_v * DS1_u + Ort * DS2_uv, DS1_v * DS1_v + Ort * DS2_v);
|
|
|
|
Standard_Real det = dE_du.X() * dE_dv.Y() - dE_du.Y() * dE_dv.X();
|
|
if (fabs(det) < gp::Resolution())
|
|
throw Standard_ConstructionError();
|
|
|
|
gp_Mat2d M(gp_XY(dE_dv.Y() / det, -dE_du.Y() / det), gp_XY(-dE_dv.X() / det, dE_du.X() / det));
|
|
|
|
// First derivative
|
|
V12d = -gp_Vec2d(gp_Vec2d(M.Row(1)) * dE_dt, gp_Vec2d(M.Row(2)) * dE_dt);
|
|
|
|
/* Second derivative */
|
|
|
|
// Computation of d2E_dt2 = S1
|
|
gp_Vec2d d2E_dt(-DC2_t * DS1_u, -DC2_t * DS1_v);
|
|
|
|
// Computation of 2*(d2E/dtdX)(dX/dt) = S2
|
|
gp_Vec2d d2E1_dtdX(-DC1_t * DS2_u, -DC1_t * DS2_uv);
|
|
gp_Vec2d d2E2_dtdX(-DC1_t * DS2_uv, -DC1_t * DS2_v);
|
|
gp_Vec2d S2 = 2 * gp_Vec2d(d2E1_dtdX * V12d, d2E2_dtdX * V12d);
|
|
|
|
// Computation of (d2E/dX2)*(dX/dt)2 = S3
|
|
|
|
// Row11 = (d2E1/du2, d2E1/dudv)
|
|
Standard_Real tmp;
|
|
gp_Vec2d Row11(3 * DS1_u * DS2_u + Ort * DS3_u,
|
|
tmp = 2 * DS1_u * DS2_uv + DS1_v * DS2_u + Ort * DS3_uuv);
|
|
|
|
// Row12 = (d2E1/dudv, d2E1/dv2)
|
|
gp_Vec2d Row12(tmp, DS2_v * DS1_u + 2 * DS1_v * DS2_uv + Ort * DS3_uvv);
|
|
|
|
// Row21 = (d2E2/du2, d2E2/dudv)
|
|
gp_Vec2d Row21(DS2_u * DS1_v + 2 * DS1_u * DS2_uv + Ort * DS3_uuv,
|
|
tmp = 2 * DS2_uv * DS1_v + DS1_u * DS2_v + Ort * DS3_uvv);
|
|
|
|
// Row22 = (d2E2/duv, d2E2/dvdv)
|
|
gp_Vec2d Row22(tmp, 3 * DS1_v * DS2_v + Ort * DS3_v);
|
|
|
|
gp_Vec2d S3(V12d * gp_Vec2d(Row11 * V12d, Row12 * V12d),
|
|
V12d * gp_Vec2d(Row21 * V12d, Row22 * V12d));
|
|
|
|
gp_Vec2d Sum = d2E_dt + S2 + S3;
|
|
|
|
V22d = -gp_Vec2d(gp_Vec2d(M.Row(1)) * Sum, gp_Vec2d(M.Row(2)) * Sum);
|
|
|
|
V1 = DS1_u * V12d.X() + DS1_v * V12d.Y();
|
|
V2 = DS2_u * V12d.X() * V12d.X() + DS1_u * V22d.X() + 2 * DS2_uv * V12d.X() * V12d.Y()
|
|
+ DS2_v * V12d.Y() * V12d.Y() + DS1_v * V22d.Y();
|
|
}
|
|
|
|
//=======================================================================
|
|
// function : ExactBound
|
|
// purpose : computes exact boundary point
|
|
//=======================================================================
|
|
|
|
static Standard_Boolean ExactBound(gp_Pnt& Sol,
|
|
const Standard_Real NotSol,
|
|
const Standard_Real Tol,
|
|
const Standard_Real TolU,
|
|
const Standard_Real TolV,
|
|
const Handle(Adaptor3d_Curve)& Curve,
|
|
const Handle(Adaptor3d_Surface)& Surface)
|
|
{
|
|
Standard_Real U0, V0, t, t1, t2, FirstU, LastU, FirstV, LastV;
|
|
gp_Pnt2d POnS;
|
|
U0 = Sol.Y();
|
|
V0 = Sol.Z();
|
|
FirstU = Surface->FirstUParameter();
|
|
LastU = Surface->LastUParameter();
|
|
FirstV = Surface->FirstVParameter();
|
|
LastV = Surface->LastVParameter();
|
|
// Here we have to compute the boundary that projection is going to intersect
|
|
gp_Vec2d D2d;
|
|
// these variables are to estimate which boundary has more opportunity
|
|
// to be intersected
|
|
Standard_Real RU1, RU2, RV1, RV2;
|
|
d1(Sol.X(), U0, V0, D2d, Curve, Surface);
|
|
// Here we assume that D2d != (0, 0)
|
|
if (Abs(D2d.X()) < gp::Resolution())
|
|
{
|
|
RU1 = Precision::Infinite();
|
|
RU2 = Precision::Infinite();
|
|
RV1 = V0 - FirstV;
|
|
RV2 = LastV - V0;
|
|
}
|
|
else if (Abs(D2d.Y()) < gp::Resolution())
|
|
{
|
|
RU1 = U0 - FirstU;
|
|
RU2 = LastU - U0;
|
|
RV1 = Precision::Infinite();
|
|
RV2 = Precision::Infinite();
|
|
}
|
|
else
|
|
{
|
|
RU1 = gp_Pnt2d(U0, V0).Distance(gp_Pnt2d(FirstU, V0 + (FirstU - U0) * D2d.Y() / D2d.X()));
|
|
RU2 = gp_Pnt2d(U0, V0).Distance(gp_Pnt2d(LastU, V0 + (LastU - U0) * D2d.Y() / D2d.X()));
|
|
RV1 = gp_Pnt2d(U0, V0).Distance(gp_Pnt2d(U0 + (FirstV - V0) * D2d.X() / D2d.Y(), FirstV));
|
|
RV2 = gp_Pnt2d(U0, V0).Distance(gp_Pnt2d(U0 + (LastV - V0) * D2d.X() / D2d.Y(), LastV));
|
|
}
|
|
TColgp_SequenceOfPnt Seq;
|
|
Seq.Append(gp_Pnt(FirstU, RU1, 2));
|
|
Seq.Append(gp_Pnt(LastU, RU2, 2));
|
|
Seq.Append(gp_Pnt(FirstV, RV1, 3));
|
|
Seq.Append(gp_Pnt(LastV, RV2, 3));
|
|
Standard_Integer i, j;
|
|
for (i = 1; i <= 3; i++)
|
|
{
|
|
for (j = 1; j <= 4 - i; j++)
|
|
{
|
|
if (Seq(j).Y() < Seq(j + 1).Y())
|
|
{
|
|
gp_Pnt swp;
|
|
swp = Seq.Value(j + 1);
|
|
Seq.ChangeValue(j + 1) = Seq.Value(j);
|
|
Seq.ChangeValue(j) = swp;
|
|
}
|
|
}
|
|
}
|
|
|
|
t = Sol.X();
|
|
t1 = Min(Sol.X(), NotSol);
|
|
t2 = Max(Sol.X(), NotSol);
|
|
|
|
Standard_Boolean isDone = Standard_False;
|
|
while (!Seq.IsEmpty())
|
|
{
|
|
gp_Pnt P;
|
|
P = Seq.Last();
|
|
Seq.Remove(Seq.Length());
|
|
ProjLib_PrjResolve aPrjPS(*Curve, *Surface, Standard_Integer(P.Z()));
|
|
if (Standard_Integer(P.Z()) == 2)
|
|
{
|
|
aPrjPS.Perform(t,
|
|
P.X(),
|
|
V0,
|
|
gp_Pnt2d(Tol, TolV),
|
|
gp_Pnt2d(t1, Surface->FirstVParameter()),
|
|
gp_Pnt2d(t2, Surface->LastVParameter()),
|
|
FuncTol);
|
|
if (!aPrjPS.IsDone())
|
|
continue;
|
|
POnS = aPrjPS.Solution();
|
|
Sol = gp_Pnt(POnS.X(), P.X(), POnS.Y());
|
|
isDone = Standard_True;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
aPrjPS.Perform(t,
|
|
U0,
|
|
P.X(),
|
|
gp_Pnt2d(Tol, TolU),
|
|
gp_Pnt2d(t1, Surface->FirstUParameter()),
|
|
gp_Pnt2d(t2, Surface->LastUParameter()),
|
|
FuncTol);
|
|
if (!aPrjPS.IsDone())
|
|
continue;
|
|
POnS = aPrjPS.Solution();
|
|
Sol = gp_Pnt(POnS.X(), POnS.Y(), P.X());
|
|
isDone = Standard_True;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return isDone;
|
|
}
|
|
|
|
//=======================================================================
|
|
// function : DichExactBound
|
|
// purpose : computes exact boundary point
|
|
//=======================================================================
|
|
|
|
static void DichExactBound(gp_Pnt& Sol,
|
|
const Standard_Real NotSol,
|
|
const Standard_Real Tol,
|
|
const Standard_Real TolU,
|
|
const Standard_Real TolV,
|
|
const Handle(Adaptor3d_Curve)& Curve,
|
|
const Handle(Adaptor3d_Surface)& Surface)
|
|
{
|
|
#ifdef OCCT_DEBUG_CHRONO
|
|
InitChron(chr_dicho_bound);
|
|
#endif
|
|
|
|
Standard_Real U0, V0, t;
|
|
gp_Pnt2d POnS;
|
|
U0 = Sol.Y();
|
|
V0 = Sol.Z();
|
|
ProjLib_PrjResolve aPrjPS(*Curve, *Surface, 1);
|
|
|
|
Standard_Real aNotSol = NotSol;
|
|
while (fabs(Sol.X() - aNotSol) > Tol)
|
|
{
|
|
t = (Sol.X() + aNotSol) / 2;
|
|
aPrjPS.Perform(t,
|
|
U0,
|
|
V0,
|
|
gp_Pnt2d(TolU, TolV),
|
|
gp_Pnt2d(Surface->FirstUParameter(), Surface->FirstVParameter()),
|
|
gp_Pnt2d(Surface->LastUParameter(), Surface->LastVParameter()),
|
|
FuncTol,
|
|
Standard_True);
|
|
|
|
if (aPrjPS.IsDone())
|
|
{
|
|
POnS = aPrjPS.Solution();
|
|
Sol = gp_Pnt(t, POnS.X(), POnS.Y());
|
|
U0 = Sol.Y();
|
|
V0 = Sol.Z();
|
|
}
|
|
else
|
|
aNotSol = t;
|
|
}
|
|
#ifdef OCCT_DEBUG_CHRONO
|
|
ResultChron(chr_dicho_bound, t_dicho_bound);
|
|
dicho_bound_count++;
|
|
#endif
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
static Standard_Boolean InitialPoint(const gp_Pnt& Point,
|
|
const Standard_Real t,
|
|
const Handle(Adaptor3d_Curve)& C,
|
|
const Handle(Adaptor3d_Surface)& S,
|
|
const Standard_Real TolU,
|
|
const Standard_Real TolV,
|
|
Standard_Real& U,
|
|
Standard_Real& V,
|
|
Standard_Real theMaxDist)
|
|
{
|
|
|
|
ProjLib_PrjResolve aPrjPS(*C, *S, 1);
|
|
Standard_Real ParU, ParV;
|
|
Extrema_ExtPS aExtPS;
|
|
aExtPS.Initialize(*S,
|
|
S->FirstUParameter(),
|
|
S->LastUParameter(),
|
|
S->FirstVParameter(),
|
|
S->LastVParameter(),
|
|
TolU,
|
|
TolV);
|
|
|
|
aExtPS.Perform(Point);
|
|
Standard_Integer argmin = 0;
|
|
Standard_Real aMaxDist = theMaxDist;
|
|
if (aMaxDist > 0.)
|
|
{
|
|
aMaxDist *= aMaxDist;
|
|
}
|
|
if (aExtPS.IsDone() && aExtPS.NbExt())
|
|
{
|
|
Standard_Integer i, Nend;
|
|
// Search for the nearest solution which is also a normal projection
|
|
Nend = aExtPS.NbExt();
|
|
for (i = 1; i <= Nend; i++)
|
|
{
|
|
if (aMaxDist > 0. && aMaxDist < aExtPS.SquareDistance(i))
|
|
{
|
|
continue;
|
|
}
|
|
Extrema_POnSurf POnS = aExtPS.Point(i);
|
|
POnS.Parameter(ParU, ParV);
|
|
aPrjPS.Perform(t,
|
|
ParU,
|
|
ParV,
|
|
gp_Pnt2d(TolU, TolV),
|
|
gp_Pnt2d(S->FirstUParameter(), S->FirstVParameter()),
|
|
gp_Pnt2d(S->LastUParameter(), S->LastVParameter()),
|
|
FuncTol,
|
|
Standard_True);
|
|
if (aPrjPS.IsDone())
|
|
if (argmin == 0 || aExtPS.SquareDistance(i) < aExtPS.SquareDistance(argmin))
|
|
argmin = i;
|
|
}
|
|
}
|
|
if (argmin == 0)
|
|
return Standard_False;
|
|
else
|
|
{
|
|
Extrema_POnSurf POnS = aExtPS.Point(argmin);
|
|
POnS.Parameter(U, V);
|
|
return Standard_True;
|
|
}
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
ProjLib_CompProjectedCurve::ProjLib_CompProjectedCurve()
|
|
: myNbCurves(0),
|
|
myMaxDist(0.0),
|
|
myTolU(0.0),
|
|
myTolV(0.0)
|
|
{
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
ProjLib_CompProjectedCurve::ProjLib_CompProjectedCurve(const Handle(Adaptor3d_Surface)& theSurface,
|
|
const Handle(Adaptor3d_Curve)& theCurve,
|
|
const Standard_Real theTolU,
|
|
const Standard_Real theTolV)
|
|
: mySurface(theSurface),
|
|
myCurve(theCurve),
|
|
myNbCurves(0),
|
|
mySequence(new ProjLib_HSequenceOfHSequenceOfPnt()),
|
|
myTol3d(1.e-6),
|
|
myContinuity(GeomAbs_C2),
|
|
myMaxDegree(14),
|
|
myMaxSeg(16),
|
|
myProj2d(Standard_True),
|
|
myProj3d(Standard_False),
|
|
myMaxDist(-1.0),
|
|
myTolU(theTolU),
|
|
myTolV(theTolV)
|
|
{
|
|
Init();
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
ProjLib_CompProjectedCurve::ProjLib_CompProjectedCurve(const Handle(Adaptor3d_Surface)& theSurface,
|
|
const Handle(Adaptor3d_Curve)& theCurve,
|
|
const Standard_Real theTolU,
|
|
const Standard_Real theTolV,
|
|
const Standard_Real theMaxDist)
|
|
: mySurface(theSurface),
|
|
myCurve(theCurve),
|
|
myNbCurves(0),
|
|
mySequence(new ProjLib_HSequenceOfHSequenceOfPnt()),
|
|
myTol3d(1.e-6),
|
|
myContinuity(GeomAbs_C2),
|
|
myMaxDegree(14),
|
|
myMaxSeg(16),
|
|
myProj2d(Standard_True),
|
|
myProj3d(Standard_False),
|
|
myMaxDist(theMaxDist),
|
|
myTolU(theTolU),
|
|
myTolV(theTolV)
|
|
{
|
|
Init();
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
ProjLib_CompProjectedCurve::ProjLib_CompProjectedCurve(const Standard_Real theTol3d,
|
|
const Handle(Adaptor3d_Surface)& theSurface,
|
|
const Handle(Adaptor3d_Curve)& theCurve,
|
|
const Standard_Real theMaxDist)
|
|
: mySurface(theSurface),
|
|
myCurve(theCurve),
|
|
myNbCurves(0),
|
|
mySequence(new ProjLib_HSequenceOfHSequenceOfPnt()),
|
|
myTol3d(theTol3d),
|
|
myContinuity(GeomAbs_C2),
|
|
myMaxDegree(14),
|
|
myMaxSeg(16),
|
|
myProj2d(Standard_True),
|
|
myProj3d(Standard_False),
|
|
myMaxDist(theMaxDist)
|
|
{
|
|
myTolU = Max(Precision::PConfusion(), mySurface->UResolution(theTol3d));
|
|
myTolV = Max(Precision::PConfusion(), mySurface->VResolution(theTol3d));
|
|
|
|
Init();
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Handle(Adaptor2d_Curve2d) ProjLib_CompProjectedCurve::ShallowCopy() const
|
|
{
|
|
Handle(ProjLib_CompProjectedCurve) aCopy = new ProjLib_CompProjectedCurve();
|
|
|
|
if (!mySurface.IsNull())
|
|
{
|
|
aCopy->mySurface = mySurface->ShallowCopy();
|
|
}
|
|
if (!myCurve.IsNull())
|
|
{
|
|
aCopy->myCurve = myCurve->ShallowCopy();
|
|
}
|
|
aCopy->myNbCurves = myNbCurves;
|
|
aCopy->mySequence = mySequence;
|
|
aCopy->myTolU = myTolU;
|
|
aCopy->myTolV = myTolV;
|
|
aCopy->myMaxDist = myMaxDist;
|
|
aCopy->myUIso = myUIso;
|
|
aCopy->myVIso = myVIso;
|
|
aCopy->mySnglPnts = mySnglPnts;
|
|
aCopy->myMaxDistance = myMaxDistance;
|
|
|
|
return aCopy;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::Init()
|
|
{
|
|
myTabInt.Nullify();
|
|
NCollection_Vector<Standard_Real> aSplits;
|
|
aSplits.Clear();
|
|
|
|
Standard_Real Tol; // Tolerance for ExactBound
|
|
Standard_Integer i, Nend = 0, aSplitIdx = 0;
|
|
Standard_Boolean FromLastU = Standard_False, isSplitsComputed = Standard_False;
|
|
|
|
constexpr Standard_Real aTolExt = Precision::PConfusion();
|
|
Extrema_ExtCS CExt(*myCurve, *mySurface, aTolExt, aTolExt);
|
|
if (CExt.IsDone() && CExt.NbExt())
|
|
{
|
|
// Search for the minimum solution.
|
|
// Avoid usage of extrema result that can be wrong for extrusion.
|
|
if (myMaxDist > 0 &&
|
|
|
|
mySurface->GetType() != GeomAbs_SurfaceOfExtrusion)
|
|
{
|
|
Standard_Real min_val2;
|
|
min_val2 = CExt.SquareDistance(1);
|
|
|
|
Nend = CExt.NbExt();
|
|
for (i = 2; i <= Nend; i++)
|
|
{
|
|
if (CExt.SquareDistance(i) < min_val2)
|
|
min_val2 = CExt.SquareDistance(i);
|
|
}
|
|
if (min_val2 > myMaxDist * myMaxDist)
|
|
return; // No near solution -> exit.
|
|
}
|
|
}
|
|
|
|
Standard_Real FirstU, LastU, Step, SearchStep, WalkStep, t;
|
|
|
|
FirstU = myCurve->FirstParameter();
|
|
LastU = myCurve->LastParameter();
|
|
const Standard_Real GlobalMinStep = 1.e-4;
|
|
//<GlobalMinStep> is sufficiently small to provide solving from initial point
|
|
// and, on the other hand, it is sufficiently large to avoid too close solutions.
|
|
const Standard_Real MinStep = 0.01 * (LastU - FirstU), MaxStep = 0.1 * (LastU - FirstU);
|
|
SearchStep = 10 * MinStep;
|
|
Step = SearchStep;
|
|
|
|
gp_Pnt2d aLowBorder(mySurface->FirstUParameter(), mySurface->FirstVParameter());
|
|
gp_Pnt2d aUppBorder(mySurface->LastUParameter(), mySurface->LastVParameter());
|
|
gp_Pnt2d aTol(myTolU, myTolV);
|
|
ProjLib_PrjResolve aPrjPS(*myCurve, *mySurface, 1);
|
|
|
|
t = FirstU;
|
|
Standard_Boolean new_part;
|
|
Standard_Real prevDeb = 0.;
|
|
Standard_Boolean SameDeb = Standard_False;
|
|
|
|
gp_Pnt Triple, prevTriple;
|
|
|
|
// Basic loop
|
|
while (t <= LastU)
|
|
{
|
|
// Search for the beginning of a new continuous part
|
|
// to avoid infinite computation in some difficult cases.
|
|
new_part = Standard_False;
|
|
if (t > FirstU && Abs(t - prevDeb) <= Precision::PConfusion())
|
|
SameDeb = Standard_True;
|
|
while (t <= LastU && !new_part && !FromLastU && !SameDeb)
|
|
{
|
|
prevDeb = t;
|
|
if (t == LastU)
|
|
FromLastU = Standard_True;
|
|
Standard_Boolean initpoint = Standard_False;
|
|
Standard_Real U = 0., V = 0.;
|
|
gp_Pnt CPoint;
|
|
Standard_Real ParT, ParU, ParV;
|
|
|
|
// Search an initial point in the list of Extrema Curve-Surface
|
|
if (Nend != 0 && !CExt.IsParallel())
|
|
{
|
|
for (i = 1; i <= Nend; i++)
|
|
{
|
|
Extrema_POnCurv P1;
|
|
Extrema_POnSurf P2;
|
|
CExt.Points(i, P1, P2);
|
|
ParT = P1.Parameter();
|
|
P2.Parameter(ParU, ParV);
|
|
|
|
aPrjPS.Perform(ParT, ParU, ParV, aTol, aLowBorder, aUppBorder, FuncTol, Standard_True);
|
|
|
|
if (aPrjPS.IsDone() && P1.Parameter() > Max(FirstU, t - Step + Precision::PConfusion())
|
|
&& P1.Parameter() <= t)
|
|
{
|
|
t = ParT;
|
|
U = ParU;
|
|
V = ParV;
|
|
CPoint = P1.Value();
|
|
initpoint = Standard_True;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!initpoint)
|
|
{
|
|
myCurve->D0(t, CPoint);
|
|
#ifdef OCCT_DEBUG_CHRONO
|
|
InitChron(chr_init_point);
|
|
#endif
|
|
// PConfusion - use geometric tolerances in extrema / optimization.
|
|
initpoint = InitialPoint(CPoint, t, myCurve, mySurface, myTolU, myTolV, U, V, myMaxDist);
|
|
#ifdef OCCT_DEBUG_CHRONO
|
|
ResultChron(chr_init_point, t_init_point);
|
|
init_point_count++;
|
|
#endif
|
|
}
|
|
if (initpoint)
|
|
{
|
|
// When U or V lie on surface joint in some cases we cannot use them
|
|
// as initial point for aPrjPS, so we switch them
|
|
gp_Vec2d D;
|
|
|
|
if ((mySurface->IsUPeriodic()
|
|
&& Abs(aUppBorder.X() - aLowBorder.X() - mySurface->UPeriod())
|
|
< Precision::Confusion())
|
|
|| (mySurface->IsVPeriodic()
|
|
&& Abs(aUppBorder.Y() - aLowBorder.Y() - mySurface->VPeriod())
|
|
< Precision::Confusion()))
|
|
{
|
|
if ((Abs(U - aLowBorder.X()) < mySurface->UResolution(Precision::PConfusion()))
|
|
&& mySurface->IsUPeriodic())
|
|
{
|
|
d1(t, U, V, D, myCurve, mySurface);
|
|
if (D.X() < 0)
|
|
U = aUppBorder.X();
|
|
}
|
|
else if ((Abs(U - aUppBorder.X()) < mySurface->UResolution(Precision::PConfusion()))
|
|
&& mySurface->IsUPeriodic())
|
|
{
|
|
d1(t, U, V, D, myCurve, mySurface);
|
|
if (D.X() > 0)
|
|
U = aLowBorder.X();
|
|
}
|
|
|
|
if ((Abs(V - aLowBorder.Y()) < mySurface->VResolution(Precision::PConfusion()))
|
|
&& mySurface->IsVPeriodic())
|
|
{
|
|
d1(t, U, V, D, myCurve, mySurface);
|
|
if (D.Y() < 0)
|
|
V = aUppBorder.Y();
|
|
}
|
|
else if ((Abs(V - aUppBorder.Y()) <= mySurface->VResolution(Precision::PConfusion()))
|
|
&& mySurface->IsVPeriodic())
|
|
{
|
|
d1(t, U, V, D, myCurve, mySurface);
|
|
if (D.Y() > 0)
|
|
V = aLowBorder.Y();
|
|
}
|
|
}
|
|
|
|
if (myMaxDist > 0)
|
|
{
|
|
// Here we are going to stop if the distance between projection and
|
|
// corresponding curve point is greater than myMaxDist
|
|
gp_Pnt POnS;
|
|
Standard_Real d;
|
|
mySurface->D0(U, V, POnS);
|
|
d = CPoint.Distance(POnS);
|
|
if (d > myMaxDist)
|
|
{
|
|
mySequence->Clear();
|
|
myNbCurves = 0;
|
|
return;
|
|
}
|
|
}
|
|
Triple = gp_Pnt(t, U, V);
|
|
if (t != FirstU)
|
|
{
|
|
// Search for exact boundary point
|
|
Tol = Min(myTolU, myTolV);
|
|
gp_Vec2d aD;
|
|
d1(Triple.X(), Triple.Y(), Triple.Z(), aD, myCurve, mySurface);
|
|
Tol /= Max(Abs(aD.X()), Abs(aD.Y()));
|
|
|
|
if (!ExactBound(Triple, t - Step, Tol, myTolU, myTolV, myCurve, mySurface))
|
|
{
|
|
#ifdef OCCT_DEBUG
|
|
std::cout << "There is a problem with ExactBound computation" << std::endl;
|
|
#endif
|
|
DichExactBound(Triple, t - Step, Tol, myTolU, myTolV, myCurve, mySurface);
|
|
}
|
|
}
|
|
new_part = Standard_True;
|
|
}
|
|
else
|
|
{
|
|
if (t == LastU)
|
|
break;
|
|
t += Step;
|
|
if (t > LastU)
|
|
{
|
|
Step = Step + LastU - t;
|
|
t = LastU;
|
|
}
|
|
}
|
|
}
|
|
if (!new_part)
|
|
break;
|
|
|
|
// We have found a new continuous part
|
|
Handle(TColgp_HSequenceOfPnt) hSeq = new TColgp_HSequenceOfPnt();
|
|
mySequence->Append(hSeq);
|
|
myNbCurves++;
|
|
mySequence->Value(myNbCurves)->Append(Triple);
|
|
prevTriple = Triple;
|
|
|
|
if (Triple.X() == LastU)
|
|
break; // return;
|
|
|
|
// Computation of WalkStep
|
|
gp_Vec D1, D2;
|
|
Standard_Real MagnD1, MagnD2;
|
|
d2CurvOnSurf(Triple.X(), Triple.Y(), Triple.Z(), D1, D2, myCurve, mySurface);
|
|
MagnD1 = D1.Magnitude();
|
|
MagnD2 = D2.Magnitude();
|
|
if (MagnD2 < Precision::Confusion())
|
|
WalkStep = MaxStep;
|
|
else
|
|
WalkStep = Min(MaxStep, Max(MinStep, 0.1 * MagnD1 / MagnD2));
|
|
|
|
Step = WalkStep;
|
|
|
|
t = Triple.X() + Step;
|
|
if (t > LastU)
|
|
t = LastU;
|
|
Standard_Real prevStep = Step;
|
|
Standard_Real U0, V0;
|
|
|
|
// Here we are trying to prolong continuous part
|
|
while (t <= LastU && new_part)
|
|
{
|
|
|
|
U0 = Triple.Y() + (Step / prevStep) * (Triple.Y() - prevTriple.Y());
|
|
V0 = Triple.Z() + (Step / prevStep) * (Triple.Z() - prevTriple.Z());
|
|
// adjust U0 to be in [mySurface->FirstUParameter(),mySurface->LastUParameter()]
|
|
U0 = Min(Max(U0, aLowBorder.X()), aUppBorder.X());
|
|
// adjust V0 to be in [mySurface->FirstVParameter(),mySurface->LastVParameter()]
|
|
V0 = Min(Max(V0, aLowBorder.Y()), aUppBorder.Y());
|
|
|
|
aPrjPS.Perform(t, U0, V0, aTol, aLowBorder, aUppBorder, FuncTol, Standard_True);
|
|
if (!aPrjPS.IsDone())
|
|
{
|
|
if (Step <= GlobalMinStep)
|
|
{
|
|
// Search for exact boundary point
|
|
Tol = Min(myTolU, myTolV);
|
|
gp_Vec2d D;
|
|
d1(Triple.X(), Triple.Y(), Triple.Z(), D, myCurve, mySurface);
|
|
Tol /= Max(Abs(D.X()), Abs(D.Y()));
|
|
|
|
if (!ExactBound(Triple, t, Tol, myTolU, myTolV, myCurve, mySurface))
|
|
{
|
|
#ifdef OCCT_DEBUG
|
|
std::cout << "There is a problem with ExactBound computation" << std::endl;
|
|
#endif
|
|
DichExactBound(Triple, t, Tol, myTolU, myTolV, myCurve, mySurface);
|
|
}
|
|
|
|
if ((Triple.X()
|
|
- mySequence->Value(myNbCurves)->Value(mySequence->Value(myNbCurves)->Length()).X())
|
|
> 1.e-10)
|
|
mySequence->Value(myNbCurves)->Append(Triple);
|
|
if ((LastU - Triple.X()) < Tol)
|
|
{
|
|
t = LastU + 1;
|
|
break;
|
|
} // return;
|
|
|
|
Step = SearchStep;
|
|
t = Triple.X() + Step;
|
|
if (t > (LastU - MinStep / 2))
|
|
{
|
|
Step = Step + LastU - t;
|
|
t = LastU;
|
|
}
|
|
new_part = Standard_False;
|
|
}
|
|
else
|
|
{
|
|
// decrease step
|
|
Standard_Real SaveStep = Step;
|
|
Step /= 2.;
|
|
t = Triple.X() + Step;
|
|
if (t > (LastU - MinStep / 4))
|
|
{
|
|
Step = Step + LastU - t;
|
|
if (Abs(Step - SaveStep) <= Precision::PConfusion())
|
|
Step = GlobalMinStep; // to avoid looping
|
|
t = LastU;
|
|
}
|
|
}
|
|
}
|
|
// Go further
|
|
else
|
|
{
|
|
prevTriple = Triple;
|
|
prevStep = Step;
|
|
Triple = gp_Pnt(t, aPrjPS.Solution().X(), aPrjPS.Solution().Y());
|
|
|
|
// Check for possible local traps.
|
|
UpdateTripleByTrapCriteria(Triple);
|
|
|
|
// Protection from case when the whole curve lies on a seam.
|
|
if (!isSplitsComputed)
|
|
{
|
|
Standard_Boolean isUPossible = Standard_False;
|
|
if (mySurface->IsUPeriodic()
|
|
&& (Abs(Triple.Y() - mySurface->FirstUParameter()) > Precision::PConfusion()
|
|
&& Abs(Triple.Y() - mySurface->LastUParameter()) > Precision::PConfusion()))
|
|
{
|
|
isUPossible = Standard_True;
|
|
}
|
|
|
|
Standard_Boolean isVPossible = Standard_False;
|
|
if (mySurface->IsVPeriodic()
|
|
&& (Abs(Triple.Z() - mySurface->FirstVParameter()) > Precision::PConfusion()
|
|
&& Abs(Triple.Z() - mySurface->LastVParameter()) > Precision::PConfusion()))
|
|
{
|
|
isVPossible = Standard_True;
|
|
}
|
|
|
|
if (isUPossible || isVPossible)
|
|
{
|
|
// When point is good conditioned.
|
|
BuildCurveSplits(myCurve, mySurface, myTolU, myTolV, aSplits);
|
|
isSplitsComputed = Standard_True;
|
|
}
|
|
}
|
|
|
|
if ((Triple.X()
|
|
- mySequence->Value(myNbCurves)->Value(mySequence->Value(myNbCurves)->Length()).X())
|
|
> 1.e-10)
|
|
mySequence->Value(myNbCurves)->Append(Triple);
|
|
if (t == LastU)
|
|
{
|
|
t = LastU + 1;
|
|
break;
|
|
} // return;
|
|
// Computation of WalkStep
|
|
d2CurvOnSurf(Triple.X(), Triple.Y(), Triple.Z(), D1, D2, myCurve, mySurface);
|
|
MagnD1 = D1.Magnitude();
|
|
MagnD2 = D2.Magnitude();
|
|
if (MagnD2 < Precision::Confusion())
|
|
WalkStep = MaxStep;
|
|
else
|
|
WalkStep = Min(MaxStep, Max(MinStep, 0.1 * MagnD1 / MagnD2));
|
|
|
|
Step = WalkStep;
|
|
t += Step;
|
|
if (t > (LastU - MinStep / 2))
|
|
{
|
|
Step = Step + LastU - t;
|
|
t = LastU;
|
|
}
|
|
|
|
// We assume at least one point of cache inside of a split.
|
|
const Standard_Integer aSize = aSplits.Size();
|
|
for (Standard_Integer anIdx = aSplitIdx; anIdx < aSize; ++anIdx)
|
|
{
|
|
const Standard_Real aParam = aSplits(anIdx);
|
|
if (Abs(aParam - Triple.X()) < Precision::PConfusion())
|
|
{
|
|
// The current point is equal to a split point.
|
|
new_part = Standard_False;
|
|
|
|
// Move split index to avoid check of the whole list.
|
|
++aSplitIdx;
|
|
break;
|
|
}
|
|
else if (aParam < t + Precision::PConfusion())
|
|
{
|
|
// The next point crosses the split point.
|
|
t = aParam;
|
|
Step = t - prevTriple.X();
|
|
}
|
|
} // for(Standard_Integer anIdx = aSplitIdx; anIdx < aSize; ++anIdx)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sequence post-proceeding.
|
|
Standard_Integer j;
|
|
|
|
// 1. Removing poor parts
|
|
Standard_Integer NbPart = myNbCurves;
|
|
Standard_Integer ipart = 1;
|
|
for (i = 1; i <= NbPart; i++)
|
|
{
|
|
// Standard_Integer NbPoints = mySequence->Value(i)->Length();
|
|
if (mySequence->Value(ipart)->Length() < 2)
|
|
{
|
|
mySequence->Remove(ipart);
|
|
myNbCurves--;
|
|
}
|
|
else
|
|
ipart++;
|
|
}
|
|
|
|
if (myNbCurves == 0)
|
|
return;
|
|
|
|
// 2. Removing common parts of bounds
|
|
for (i = 1; i < myNbCurves; i++)
|
|
{
|
|
if (mySequence->Value(i)->Value(mySequence->Value(i)->Length()).X()
|
|
>= mySequence->Value(i + 1)->Value(1).X())
|
|
{
|
|
mySequence->ChangeValue(i + 1)->ChangeValue(1).SetX(
|
|
mySequence->Value(i)->Value(mySequence->Value(i)->Length()).X() + 1.e-12);
|
|
}
|
|
}
|
|
|
|
// 3. Computation of the maximum distance from each part of curve to surface
|
|
|
|
myMaxDistance = new TColStd_HArray1OfReal(1, myNbCurves);
|
|
myMaxDistance->Init(0);
|
|
for (i = 1; i <= myNbCurves; i++)
|
|
{
|
|
for (j = 1; j <= mySequence->Value(i)->Length(); j++)
|
|
{
|
|
gp_Pnt POnC, POnS, aTriple;
|
|
Standard_Real Distance;
|
|
aTriple = mySequence->Value(i)->Value(j);
|
|
myCurve->D0(aTriple.X(), POnC);
|
|
mySurface->D0(aTriple.Y(), aTriple.Z(), POnS);
|
|
Distance = POnC.Distance(POnS);
|
|
if (myMaxDistance->Value(i) < Distance)
|
|
{
|
|
myMaxDistance->ChangeValue(i) = Distance;
|
|
}
|
|
}
|
|
}
|
|
|
|
// 4. Check the projection to be a single point
|
|
|
|
gp_Pnt2d Pmoy, Pcurr, P;
|
|
Standard_Real AveU, AveV;
|
|
mySnglPnts = new TColStd_HArray1OfBoolean(1, myNbCurves);
|
|
mySnglPnts->Init(Standard_True);
|
|
|
|
for (i = 1; i <= myNbCurves; i++)
|
|
{
|
|
// compute an average U and V
|
|
|
|
for (j = 1, AveU = 0., AveV = 0.; j <= mySequence->Value(i)->Length(); j++)
|
|
{
|
|
AveU += mySequence->Value(i)->Value(j).Y();
|
|
AveV += mySequence->Value(i)->Value(j).Z();
|
|
}
|
|
AveU /= mySequence->Value(i)->Length();
|
|
AveV /= mySequence->Value(i)->Length();
|
|
|
|
Pmoy.SetCoord(AveU, AveV);
|
|
for (j = 1; j <= mySequence->Value(i)->Length(); j++)
|
|
{
|
|
Pcurr = gp_Pnt2d(mySequence->Value(i)->Value(j).Y(), mySequence->Value(i)->Value(j).Z());
|
|
if (Pcurr.Distance(Pmoy) > ((myTolU < myTolV) ? myTolV : myTolU))
|
|
{
|
|
mySnglPnts->SetValue(i, Standard_False);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// 5. Check the projection to be an isoparametric curve of the surface
|
|
|
|
myUIso = new TColStd_HArray1OfBoolean(1, myNbCurves);
|
|
myUIso->Init(Standard_True);
|
|
|
|
myVIso = new TColStd_HArray1OfBoolean(1, myNbCurves);
|
|
myVIso->Init(Standard_True);
|
|
|
|
for (i = 1; i <= myNbCurves; i++)
|
|
{
|
|
if (IsSinglePnt(i, P) || mySequence->Value(i)->Length() <= 2)
|
|
{
|
|
myUIso->SetValue(i, Standard_False);
|
|
myVIso->SetValue(i, Standard_False);
|
|
continue;
|
|
}
|
|
|
|
// new test for isoparametrics
|
|
|
|
if (mySequence->Value(i)->Length() > 2)
|
|
{
|
|
// compute an average U and V
|
|
|
|
for (j = 1, AveU = 0., AveV = 0.; j <= mySequence->Value(i)->Length(); j++)
|
|
{
|
|
AveU += mySequence->Value(i)->Value(j).Y();
|
|
AveV += mySequence->Value(i)->Value(j).Z();
|
|
}
|
|
AveU /= mySequence->Value(i)->Length();
|
|
AveV /= mySequence->Value(i)->Length();
|
|
|
|
// is i-part U-isoparametric ?
|
|
for (j = 1; j <= mySequence->Value(i)->Length(); j++)
|
|
{
|
|
if (Abs(mySequence->Value(i)->Value(j).Y() - AveU) > myTolU)
|
|
{
|
|
myUIso->SetValue(i, Standard_False);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// is i-part V-isoparametric ?
|
|
for (j = 1; j <= mySequence->Value(i)->Length(); j++)
|
|
{
|
|
if (Abs(mySequence->Value(i)->Value(j).Z() - AveV) > myTolV)
|
|
{
|
|
myVIso->SetValue(i, Standard_False);
|
|
break;
|
|
}
|
|
}
|
|
//
|
|
}
|
|
}
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::Perform()
|
|
{
|
|
if (myNbCurves == 0)
|
|
return;
|
|
|
|
Standard_Boolean approx2d = myProj2d;
|
|
Standard_Boolean approx3d = myProj3d;
|
|
Standard_Real Udeb, Ufin, UIso, VIso;
|
|
gp_Pnt2d P2d, Pdeb, Pfin;
|
|
gp_Pnt P;
|
|
Handle(Adaptor2d_Curve2d) HPCur;
|
|
Handle(Adaptor3d_Surface) HS = mySurface->ShallowCopy(); // For expand bounds of surface
|
|
Handle(Geom2d_Curve) PCur2d; // Only for isoparametric projection
|
|
Handle(Geom_Curve) PCur3d;
|
|
|
|
if (myProj2d == Standard_True)
|
|
{
|
|
myResult2dPoint = new TColgp_HArray1OfPnt2d(1, myNbCurves);
|
|
myResult2dCurve = new TColGeom2d_HArray1OfCurve(1, myNbCurves);
|
|
}
|
|
|
|
if (myProj3d == Standard_True)
|
|
{
|
|
myResult3dPoint = new TColgp_HArray1OfPnt(1, myNbCurves);
|
|
myResult3dCurve = new TColGeom_HArray1OfCurve(1, myNbCurves);
|
|
}
|
|
|
|
myResultIsPoint = new TColStd_HArray1OfBoolean(1, myNbCurves);
|
|
myResultIsPoint->Init(Standard_False);
|
|
|
|
myResult3dApproxError = new TColStd_HArray1OfReal(1, myNbCurves);
|
|
myResult3dApproxError->Init(0.0);
|
|
|
|
myResult2dUApproxError = new TColStd_HArray1OfReal(1, myNbCurves);
|
|
myResult2dUApproxError->Init(0.0);
|
|
|
|
myResult2dVApproxError = new TColStd_HArray1OfReal(1, myNbCurves);
|
|
myResult2dVApproxError->Init(0.0);
|
|
|
|
for (Standard_Integer k = 1; k <= myNbCurves; k++)
|
|
{
|
|
if (IsSinglePnt(k, P2d)) // Part k of the projection is punctual
|
|
{
|
|
GetSurface()->D0(P2d.X(), P2d.Y(), P);
|
|
if (myProj2d == Standard_True)
|
|
{
|
|
myResult2dPoint->SetValue(k, P2d);
|
|
}
|
|
if (myProj3d == Standard_True)
|
|
{
|
|
myResult3dPoint->SetValue(k, P);
|
|
}
|
|
myResultIsPoint->SetValue(k, Standard_True);
|
|
}
|
|
else
|
|
{
|
|
Bounds(k, Udeb, Ufin);
|
|
gp_Dir2d Dir; // Only for isoparametric projection
|
|
|
|
if (IsUIso(k, UIso)) // Part k of the projection is U-isoparametric curve
|
|
{
|
|
approx2d = Standard_False;
|
|
|
|
D0(Udeb, Pdeb);
|
|
D0(Ufin, Pfin);
|
|
Udeb = Pdeb.Y();
|
|
Ufin = Pfin.Y();
|
|
if (Udeb > Ufin)
|
|
{
|
|
Dir = gp_Dir2d(0, -1);
|
|
Udeb = -Udeb;
|
|
Ufin = -Ufin;
|
|
}
|
|
else
|
|
Dir = gp_Dir2d(0, 1);
|
|
PCur2d = new Geom2d_TrimmedCurve(new Geom2d_Line(gp_Pnt2d(UIso, 0), Dir), Udeb, Ufin);
|
|
HPCur = new Geom2dAdaptor_Curve(PCur2d);
|
|
}
|
|
else if (IsVIso(k, VIso)) // Part k of the projection is V-isoparametric curve
|
|
{
|
|
approx2d = Standard_False;
|
|
|
|
D0(Udeb, Pdeb);
|
|
D0(Ufin, Pfin);
|
|
Udeb = Pdeb.X();
|
|
Ufin = Pfin.X();
|
|
if (Udeb > Ufin)
|
|
{
|
|
Dir = gp_Dir2d(-1, 0);
|
|
Udeb = -Udeb;
|
|
Ufin = -Ufin;
|
|
}
|
|
else
|
|
Dir = gp_Dir2d(1, 0);
|
|
PCur2d = new Geom2d_TrimmedCurve(new Geom2d_Line(gp_Pnt2d(0, VIso), Dir), Udeb, Ufin);
|
|
HPCur = new Geom2dAdaptor_Curve(PCur2d);
|
|
}
|
|
else
|
|
{
|
|
if (!mySurface->IsUPeriodic())
|
|
{
|
|
Standard_Real U1, U2;
|
|
Standard_Real dU = 10. * myTolU;
|
|
|
|
U1 = mySurface->FirstUParameter();
|
|
U2 = mySurface->LastUParameter();
|
|
U1 -= dU;
|
|
U2 += dU;
|
|
|
|
HS = HS->UTrim(U1, U2, 0.0);
|
|
}
|
|
|
|
if (!mySurface->IsVPeriodic())
|
|
{
|
|
Standard_Real V1, V2;
|
|
Standard_Real dV = 10. * myTolV;
|
|
|
|
V1 = mySurface->FirstVParameter();
|
|
V2 = mySurface->LastVParameter();
|
|
V1 -= dV;
|
|
V2 += dV;
|
|
|
|
HS = HS->VTrim(V1, V2, 0.0);
|
|
}
|
|
|
|
Handle(ProjLib_CompProjectedCurve) HP =
|
|
Handle(ProjLib_CompProjectedCurve)::DownCast(this->ShallowCopy());
|
|
HP->Load(HS);
|
|
HPCur = HP;
|
|
}
|
|
|
|
if (approx2d || approx3d)
|
|
{
|
|
Standard_Boolean only2d, only3d;
|
|
if (approx2d && approx3d)
|
|
{
|
|
only2d = !approx2d;
|
|
only3d = !approx3d;
|
|
}
|
|
else
|
|
{
|
|
only2d = approx2d;
|
|
only3d = approx3d;
|
|
}
|
|
|
|
Approx_CurveOnSurface appr(HPCur, HS, Udeb, Ufin, myTol3d);
|
|
appr.Perform(myMaxSeg, myMaxDegree, myContinuity, only3d, only2d);
|
|
|
|
if (approx2d)
|
|
{
|
|
PCur2d = appr.Curve2d();
|
|
myResult2dUApproxError->SetValue(k, appr.MaxError2dU());
|
|
myResult2dVApproxError->SetValue(k, appr.MaxError2dV());
|
|
}
|
|
|
|
if (approx3d)
|
|
{
|
|
PCur3d = appr.Curve3d();
|
|
myResult3dApproxError->SetValue(k, appr.MaxError3d());
|
|
}
|
|
}
|
|
|
|
if (myProj2d == Standard_True)
|
|
{
|
|
myResult2dCurve->SetValue(k, PCur2d);
|
|
}
|
|
|
|
if (myProj3d == Standard_True)
|
|
{
|
|
myResult3dCurve->SetValue(k, PCur3d);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::SetTol3d(const Standard_Real theTol3d)
|
|
{
|
|
myTol3d = theTol3d;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::SetContinuity(const GeomAbs_Shape theContinuity)
|
|
{
|
|
myContinuity = theContinuity;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::SetMaxDegree(const Standard_Integer theMaxDegree)
|
|
{
|
|
if (theMaxDegree < 1)
|
|
return;
|
|
myMaxDegree = theMaxDegree;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::SetMaxSeg(const Standard_Integer theMaxSeg)
|
|
{
|
|
if (theMaxSeg < 1)
|
|
return;
|
|
myMaxSeg = theMaxSeg;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::SetProj3d(const Standard_Boolean theProj3d)
|
|
{
|
|
myProj3d = theProj3d;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::SetProj2d(const Standard_Boolean theProj2d)
|
|
{
|
|
myProj2d = theProj2d;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::Load(const Handle(Adaptor3d_Surface)& S)
|
|
{
|
|
mySurface = S;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::Load(const Handle(Adaptor3d_Curve)& C)
|
|
{
|
|
myCurve = C;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
const Handle(Adaptor3d_Surface)& ProjLib_CompProjectedCurve::GetSurface() const
|
|
{
|
|
return mySurface;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
const Handle(Adaptor3d_Curve)& ProjLib_CompProjectedCurve::GetCurve() const
|
|
{
|
|
return myCurve;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::GetTolerance(Standard_Real& TolU, Standard_Real& TolV) const
|
|
{
|
|
TolU = myTolU;
|
|
TolV = myTolV;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Integer ProjLib_CompProjectedCurve::NbCurves() const
|
|
{
|
|
return myNbCurves;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::Bounds(const Standard_Integer Index,
|
|
Standard_Real& Udeb,
|
|
Standard_Real& Ufin) const
|
|
{
|
|
if (Index < 1 || Index > myNbCurves)
|
|
throw Standard_NoSuchObject();
|
|
Udeb = mySequence->Value(Index)->Value(1).X();
|
|
Ufin = mySequence->Value(Index)->Value(mySequence->Value(Index)->Length()).X();
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Boolean ProjLib_CompProjectedCurve::IsSinglePnt(const Standard_Integer Index,
|
|
gp_Pnt2d& P) const
|
|
{
|
|
if (Index < 1 || Index > myNbCurves)
|
|
throw Standard_NoSuchObject();
|
|
P = gp_Pnt2d(mySequence->Value(Index)->Value(1).Y(), mySequence->Value(Index)->Value(1).Z());
|
|
return mySnglPnts->Value(Index);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Boolean ProjLib_CompProjectedCurve::IsUIso(const Standard_Integer Index,
|
|
Standard_Real& U) const
|
|
{
|
|
if (Index < 1 || Index > myNbCurves)
|
|
throw Standard_NoSuchObject();
|
|
U = mySequence->Value(Index)->Value(1).Y();
|
|
return myUIso->Value(Index);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Boolean ProjLib_CompProjectedCurve::IsVIso(const Standard_Integer Index,
|
|
Standard_Real& V) const
|
|
{
|
|
if (Index < 1 || Index > myNbCurves)
|
|
throw Standard_NoSuchObject();
|
|
V = mySequence->Value(Index)->Value(1).Z();
|
|
return myVIso->Value(Index);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
gp_Pnt2d ProjLib_CompProjectedCurve::Value(const Standard_Real t) const
|
|
{
|
|
gp_Pnt2d P;
|
|
D0(t, P);
|
|
return P;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::D0(const Standard_Real U, gp_Pnt2d& P) const
|
|
{
|
|
Standard_Integer i, j;
|
|
Standard_Real Udeb, Ufin;
|
|
Standard_Boolean found = Standard_False;
|
|
|
|
for (i = 1; i <= myNbCurves; i++)
|
|
{
|
|
Bounds(i, Udeb, Ufin);
|
|
if (U >= Udeb && U <= Ufin)
|
|
{
|
|
found = Standard_True;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
{
|
|
throw Standard_DomainError("ProjLib_CompProjectedCurve::D0");
|
|
}
|
|
|
|
Standard_Real U0, V0;
|
|
|
|
Standard_Integer End = mySequence->Value(i)->Length();
|
|
for (j = 1; j < End; j++)
|
|
if ((U >= mySequence->Value(i)->Value(j).X()) && (U <= mySequence->Value(i)->Value(j + 1).X()))
|
|
break;
|
|
|
|
// U0 = mySequence->Value(i)->Value(j).Y();
|
|
// V0 = mySequence->Value(i)->Value(j).Z();
|
|
|
|
// Cubic Interpolation
|
|
if (mySequence->Value(i)->Length() < 4
|
|
|| (Abs(U - mySequence->Value(i)->Value(j).X()) <= Precision::PConfusion()))
|
|
{
|
|
U0 = mySequence->Value(i)->Value(j).Y();
|
|
V0 = mySequence->Value(i)->Value(j).Z();
|
|
}
|
|
else if (Abs(U - mySequence->Value(i)->Value(j + 1).X()) <= Precision::PConfusion())
|
|
{
|
|
U0 = mySequence->Value(i)->Value(j + 1).Y();
|
|
V0 = mySequence->Value(i)->Value(j + 1).Z();
|
|
}
|
|
else
|
|
{
|
|
if (j == 1)
|
|
j = 2;
|
|
if (j > mySequence->Value(i)->Length() - 2)
|
|
j = mySequence->Value(i)->Length() - 2;
|
|
|
|
gp_Vec2d I1, I2, I3, I21, I22, I31, Y1, Y2, Y3, Y4, Res;
|
|
Standard_Real X1, X2, X3, X4;
|
|
|
|
X1 = mySequence->Value(i)->Value(j - 1).X();
|
|
X2 = mySequence->Value(i)->Value(j).X();
|
|
X3 = mySequence->Value(i)->Value(j + 1).X();
|
|
X4 = mySequence->Value(i)->Value(j + 2).X();
|
|
|
|
Y1 = gp_Vec2d(mySequence->Value(i)->Value(j - 1).Y(), mySequence->Value(i)->Value(j - 1).Z());
|
|
Y2 = gp_Vec2d(mySequence->Value(i)->Value(j).Y(), mySequence->Value(i)->Value(j).Z());
|
|
Y3 = gp_Vec2d(mySequence->Value(i)->Value(j + 1).Y(), mySequence->Value(i)->Value(j + 1).Z());
|
|
Y4 = gp_Vec2d(mySequence->Value(i)->Value(j + 2).Y(), mySequence->Value(i)->Value(j + 2).Z());
|
|
|
|
I1 = (Y1 - Y2) / (X1 - X2);
|
|
I2 = (Y2 - Y3) / (X2 - X3);
|
|
I3 = (Y3 - Y4) / (X3 - X4);
|
|
|
|
I21 = (I1 - I2) / (X1 - X3);
|
|
I22 = (I2 - I3) / (X2 - X4);
|
|
|
|
I31 = (I21 - I22) / (X1 - X4);
|
|
|
|
Res = Y1 + (U - X1) * (I1 + (U - X2) * (I21 + (U - X3) * I31));
|
|
|
|
U0 = Res.X();
|
|
V0 = Res.Y();
|
|
|
|
if (U0 < mySurface->FirstUParameter())
|
|
U0 = mySurface->FirstUParameter();
|
|
else if (U0 > mySurface->LastUParameter())
|
|
U0 = mySurface->LastUParameter();
|
|
|
|
if (V0 < mySurface->FirstVParameter())
|
|
V0 = mySurface->FirstVParameter();
|
|
else if (V0 > mySurface->LastVParameter())
|
|
V0 = mySurface->LastVParameter();
|
|
}
|
|
// End of cubic interpolation
|
|
|
|
ProjLib_PrjResolve aPrjPS(*myCurve, *mySurface, 1);
|
|
aPrjPS.Perform(U,
|
|
U0,
|
|
V0,
|
|
gp_Pnt2d(myTolU, myTolV),
|
|
gp_Pnt2d(mySurface->FirstUParameter(), mySurface->FirstVParameter()),
|
|
gp_Pnt2d(mySurface->LastUParameter(), mySurface->LastVParameter()),
|
|
FuncTol);
|
|
if (aPrjPS.IsDone())
|
|
P = aPrjPS.Solution();
|
|
else
|
|
{
|
|
gp_Pnt thePoint = myCurve->Value(U);
|
|
Extrema_ExtPS aExtPS(thePoint, *mySurface, myTolU, myTolV);
|
|
if (aExtPS.IsDone() && aExtPS.NbExt())
|
|
{
|
|
Standard_Integer k, Nend, imin = 1;
|
|
// Search for the nearest solution which is also a normal projection
|
|
Nend = aExtPS.NbExt();
|
|
for (k = 2; k <= Nend; k++)
|
|
if (aExtPS.SquareDistance(k) < aExtPS.SquareDistance(imin))
|
|
imin = k;
|
|
const Extrema_POnSurf& POnS = aExtPS.Point(imin);
|
|
Standard_Real ParU, ParV;
|
|
POnS.Parameter(ParU, ParV);
|
|
P.SetCoord(ParU, ParV);
|
|
}
|
|
else
|
|
P.SetCoord(U0, V0);
|
|
}
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::D1(const Standard_Real t, gp_Pnt2d& P, gp_Vec2d& V) const
|
|
{
|
|
Standard_Real u, v;
|
|
D0(t, P);
|
|
u = P.X();
|
|
v = P.Y();
|
|
d1(t, u, v, V, myCurve, mySurface);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::D2(const Standard_Real t,
|
|
gp_Pnt2d& P,
|
|
gp_Vec2d& V1,
|
|
gp_Vec2d& V2) const
|
|
{
|
|
Standard_Real u, v;
|
|
D0(t, P);
|
|
u = P.X();
|
|
v = P.Y();
|
|
d2(t, u, v, V1, V2, myCurve, mySurface);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
gp_Vec2d ProjLib_CompProjectedCurve::DN(const Standard_Real t, const Standard_Integer N) const
|
|
{
|
|
if (N < 1)
|
|
throw Standard_OutOfRange("ProjLib_CompProjectedCurve : N must be greater than 0");
|
|
else if (N == 1)
|
|
{
|
|
gp_Pnt2d P;
|
|
gp_Vec2d V;
|
|
D1(t, P, V);
|
|
return V;
|
|
}
|
|
else if (N == 2)
|
|
{
|
|
gp_Pnt2d P;
|
|
gp_Vec2d V1, V2;
|
|
D2(t, P, V1, V2);
|
|
return V2;
|
|
}
|
|
else if (N > 2)
|
|
throw Standard_NotImplemented("ProjLib_CompProjectedCurve::DN");
|
|
return gp_Vec2d();
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
const Handle(ProjLib_HSequenceOfHSequenceOfPnt)& ProjLib_CompProjectedCurve::GetSequence() const
|
|
{
|
|
return mySequence;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Real ProjLib_CompProjectedCurve::FirstParameter() const
|
|
{
|
|
return myCurve->FirstParameter();
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Real ProjLib_CompProjectedCurve::LastParameter() const
|
|
{
|
|
return myCurve->LastParameter();
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
GeomAbs_Shape ProjLib_CompProjectedCurve::Continuity() const
|
|
{
|
|
GeomAbs_Shape ContC = myCurve->Continuity();
|
|
GeomAbs_Shape ContSu = mySurface->UContinuity();
|
|
if (ContSu < ContC)
|
|
ContC = ContSu;
|
|
GeomAbs_Shape ContSv = mySurface->VContinuity();
|
|
if (ContSv < ContC)
|
|
ContC = ContSv;
|
|
|
|
return ContC;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Real ProjLib_CompProjectedCurve::MaxDistance(const Standard_Integer Index) const
|
|
{
|
|
if (Index < 1 || Index > myNbCurves)
|
|
throw Standard_NoSuchObject();
|
|
return myMaxDistance->Value(Index);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Integer ProjLib_CompProjectedCurve::NbIntervals(const GeomAbs_Shape S) const
|
|
{
|
|
const_cast<ProjLib_CompProjectedCurve*>(this)->myTabInt.Nullify();
|
|
BuildIntervals(S);
|
|
return myTabInt->Length() - 1;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::Intervals(TColStd_Array1OfReal& T, const GeomAbs_Shape S) const
|
|
{
|
|
if (myTabInt.IsNull())
|
|
BuildIntervals(S);
|
|
T = myTabInt->Array1();
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::BuildIntervals(const GeomAbs_Shape S) const
|
|
{
|
|
GeomAbs_Shape SforS = GeomAbs_CN;
|
|
switch (S)
|
|
{
|
|
case GeomAbs_C0:
|
|
SforS = GeomAbs_C1;
|
|
break;
|
|
case GeomAbs_C1:
|
|
SforS = GeomAbs_C2;
|
|
break;
|
|
case GeomAbs_C2:
|
|
SforS = GeomAbs_C3;
|
|
break;
|
|
case GeomAbs_C3:
|
|
SforS = GeomAbs_CN;
|
|
break;
|
|
case GeomAbs_CN:
|
|
SforS = GeomAbs_CN;
|
|
break;
|
|
default:
|
|
throw Standard_OutOfRange();
|
|
}
|
|
Standard_Integer i, j, k;
|
|
Standard_Integer NbIntCur = myCurve->NbIntervals(S);
|
|
Standard_Integer NbIntSurU = mySurface->NbUIntervals(SforS);
|
|
Standard_Integer NbIntSurV = mySurface->NbVIntervals(SforS);
|
|
|
|
TColStd_Array1OfReal CutPntsT(1, NbIntCur + 1);
|
|
TColStd_Array1OfReal CutPntsU(1, NbIntSurU + 1);
|
|
TColStd_Array1OfReal CutPntsV(1, NbIntSurV + 1);
|
|
|
|
myCurve->Intervals(CutPntsT, S);
|
|
mySurface->UIntervals(CutPntsU, SforS);
|
|
mySurface->VIntervals(CutPntsV, SforS);
|
|
|
|
Standard_Real Tl, Tr, Ul, Ur, Vl, Vr, Tol;
|
|
|
|
Handle(TColStd_HArray1OfReal) BArr = NULL, CArr = NULL, UArr = NULL, VArr = NULL;
|
|
|
|
// processing projection bounds
|
|
BArr = new TColStd_HArray1OfReal(1, 2 * myNbCurves);
|
|
for (i = 1; i <= myNbCurves; i++)
|
|
{
|
|
Bounds(i, BArr->ChangeValue(2 * i - 1), BArr->ChangeValue(2 * i));
|
|
}
|
|
|
|
// processing curve discontinuities
|
|
if (NbIntCur > 1)
|
|
{
|
|
CArr = new TColStd_HArray1OfReal(1, NbIntCur - 1);
|
|
for (i = 1; i <= CArr->Length(); i++)
|
|
{
|
|
CArr->ChangeValue(i) = CutPntsT(i + 1);
|
|
}
|
|
}
|
|
|
|
// processing U-surface discontinuities
|
|
TColStd_SequenceOfReal TUdisc;
|
|
|
|
for (k = 2; k <= NbIntSurU; k++)
|
|
{
|
|
// std::cout<<"CutPntsU("<<k<<") = "<<CutPntsU(k)<<std::endl;
|
|
for (i = 1; i <= myNbCurves; i++)
|
|
{
|
|
for (j = 1; j < mySequence->Value(i)->Length(); j++)
|
|
{
|
|
Ul = mySequence->Value(i)->Value(j).Y();
|
|
Ur = mySequence->Value(i)->Value(j + 1).Y();
|
|
|
|
if (Abs(Ul - CutPntsU(k)) <= myTolU)
|
|
TUdisc.Append(mySequence->Value(i)->Value(j).X());
|
|
else if (Abs(Ur - CutPntsU(k)) <= myTolU)
|
|
TUdisc.Append(mySequence->Value(i)->Value(j + 1).X());
|
|
else if ((Ul < CutPntsU(k) && CutPntsU(k) < Ur) || (Ur < CutPntsU(k) && CutPntsU(k) < Ul))
|
|
{
|
|
Standard_Real V;
|
|
V = (mySequence->Value(i)->Value(j).Z() + mySequence->Value(i)->Value(j + 1).Z()) / 2;
|
|
ProjLib_PrjResolve Solver(*myCurve, *mySurface, 2);
|
|
|
|
gp_Vec2d D;
|
|
gp_Pnt Triple;
|
|
Triple = mySequence->Value(i)->Value(j);
|
|
d1(Triple.X(), Triple.Y(), Triple.Z(), D, myCurve, mySurface);
|
|
if (Abs(D.X()) < Precision::Confusion())
|
|
Tol = myTolU;
|
|
else
|
|
Tol = Min(myTolU, myTolU / Abs(D.X()));
|
|
|
|
Tl = mySequence->Value(i)->Value(j).X();
|
|
Tr = mySequence->Value(i)->Value(j + 1).X();
|
|
|
|
Solver.Perform((Tl + Tr) / 2,
|
|
CutPntsU(k),
|
|
V,
|
|
gp_Pnt2d(Tol, myTolV),
|
|
gp_Pnt2d(Tl, mySurface->FirstVParameter()),
|
|
gp_Pnt2d(Tr, mySurface->LastVParameter()),
|
|
FuncTol);
|
|
//
|
|
if (Solver.IsDone())
|
|
{
|
|
TUdisc.Append(Solver.Solution().X());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (i = 2; i <= TUdisc.Length(); i++)
|
|
{
|
|
if (TUdisc(i) - TUdisc(i - 1) < Precision::PConfusion())
|
|
{
|
|
TUdisc.Remove(i--);
|
|
}
|
|
}
|
|
|
|
if (TUdisc.Length())
|
|
{
|
|
UArr = new TColStd_HArray1OfReal(1, TUdisc.Length());
|
|
for (i = 1; i <= UArr->Length(); i++)
|
|
{
|
|
UArr->ChangeValue(i) = TUdisc(i);
|
|
}
|
|
}
|
|
// processing V-surface discontinuities
|
|
TColStd_SequenceOfReal TVdisc;
|
|
|
|
for (k = 2; k <= NbIntSurV; k++)
|
|
{
|
|
for (i = 1; i <= myNbCurves; i++)
|
|
{
|
|
// std::cout<<"CutPntsV("<<k<<") = "<<CutPntsV(k)<<std::endl;
|
|
for (j = 1; j < mySequence->Value(i)->Length(); j++)
|
|
{
|
|
|
|
Vl = mySequence->Value(i)->Value(j).Z();
|
|
Vr = mySequence->Value(i)->Value(j + 1).Z();
|
|
|
|
if (Abs(Vl - CutPntsV(k)) <= myTolV)
|
|
TVdisc.Append(mySequence->Value(i)->Value(j).X());
|
|
else if (Abs(Vr - CutPntsV(k)) <= myTolV)
|
|
TVdisc.Append(mySequence->Value(i)->Value(j + 1).X());
|
|
else if ((Vl < CutPntsV(k) && CutPntsV(k) < Vr) || (Vr < CutPntsV(k) && CutPntsV(k) < Vl))
|
|
{
|
|
Standard_Real U;
|
|
U = (mySequence->Value(i)->Value(j).Y() + mySequence->Value(i)->Value(j + 1).Y()) / 2;
|
|
ProjLib_PrjResolve Solver(*myCurve, *mySurface, 3);
|
|
|
|
gp_Vec2d D;
|
|
gp_Pnt Triple;
|
|
Triple = mySequence->Value(i)->Value(j);
|
|
d1(Triple.X(), Triple.Y(), Triple.Z(), D, myCurve, mySurface);
|
|
if (Abs(D.Y()) < Precision::Confusion())
|
|
Tol = myTolV;
|
|
else
|
|
Tol = Min(myTolV, myTolV / Abs(D.Y()));
|
|
|
|
Tl = mySequence->Value(i)->Value(j).X();
|
|
Tr = mySequence->Value(i)->Value(j + 1).X();
|
|
|
|
Solver.Perform((Tl + Tr) / 2,
|
|
U,
|
|
CutPntsV(k),
|
|
gp_Pnt2d(Tol, myTolV),
|
|
gp_Pnt2d(Tl, mySurface->FirstUParameter()),
|
|
gp_Pnt2d(Tr, mySurface->LastUParameter()),
|
|
FuncTol);
|
|
//
|
|
if (Solver.IsDone())
|
|
{
|
|
TVdisc.Append(Solver.Solution().X());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 2; i <= TVdisc.Length(); i++)
|
|
{
|
|
if (TVdisc(i) - TVdisc(i - 1) < Precision::PConfusion())
|
|
{
|
|
TVdisc.Remove(i--);
|
|
}
|
|
}
|
|
|
|
if (TVdisc.Length())
|
|
{
|
|
VArr = new TColStd_HArray1OfReal(1, TVdisc.Length());
|
|
for (i = 1; i <= VArr->Length(); i++)
|
|
{
|
|
VArr->ChangeValue(i) = TVdisc(i);
|
|
}
|
|
}
|
|
|
|
// fusion
|
|
TColStd_SequenceOfReal Fusion;
|
|
if (!CArr.IsNull())
|
|
{
|
|
GeomLib::FuseIntervals(BArr->ChangeArray1(),
|
|
CArr->ChangeArray1(),
|
|
Fusion,
|
|
Precision::PConfusion());
|
|
BArr = new TColStd_HArray1OfReal(1, Fusion.Length());
|
|
for (i = 1; i <= BArr->Length(); i++)
|
|
{
|
|
BArr->ChangeValue(i) = Fusion(i);
|
|
}
|
|
Fusion.Clear();
|
|
}
|
|
|
|
if (!UArr.IsNull())
|
|
{
|
|
GeomLib::FuseIntervals(BArr->ChangeArray1(),
|
|
UArr->ChangeArray1(),
|
|
Fusion,
|
|
Precision::PConfusion());
|
|
BArr = new TColStd_HArray1OfReal(1, Fusion.Length());
|
|
for (i = 1; i <= BArr->Length(); i++)
|
|
{
|
|
BArr->ChangeValue(i) = Fusion(i);
|
|
}
|
|
Fusion.Clear();
|
|
}
|
|
|
|
if (!VArr.IsNull())
|
|
{
|
|
GeomLib::FuseIntervals(BArr->ChangeArray1(),
|
|
VArr->ChangeArray1(),
|
|
Fusion,
|
|
Precision::PConfusion());
|
|
BArr = new TColStd_HArray1OfReal(1, Fusion.Length());
|
|
for (i = 1; i <= BArr->Length(); i++)
|
|
{
|
|
BArr->ChangeValue(i) = Fusion(i);
|
|
}
|
|
}
|
|
|
|
const_cast<ProjLib_CompProjectedCurve*>(this)->myTabInt =
|
|
new TColStd_HArray1OfReal(1, BArr->Length());
|
|
for (i = 1; i <= BArr->Length(); i++)
|
|
{
|
|
myTabInt->ChangeValue(i) = BArr->Value(i);
|
|
}
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Handle(Adaptor2d_Curve2d) ProjLib_CompProjectedCurve::Trim(const Standard_Real First,
|
|
const Standard_Real Last,
|
|
const Standard_Real Tol) const
|
|
{
|
|
Handle(ProjLib_HCompProjectedCurve) HCS = new ProjLib_HCompProjectedCurve(*this);
|
|
HCS->Load(mySurface);
|
|
HCS->Load(myCurve->Trim(First, Last, Tol));
|
|
return HCS;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
GeomAbs_CurveType ProjLib_CompProjectedCurve::GetType() const
|
|
{
|
|
return GeomAbs_OtherCurve;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Boolean ProjLib_CompProjectedCurve::ResultIsPoint(const Standard_Integer theIndex) const
|
|
{
|
|
return myResultIsPoint->Value(theIndex);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Real ProjLib_CompProjectedCurve::GetResult2dUApproxError(
|
|
const Standard_Integer theIndex) const
|
|
{
|
|
return myResult2dUApproxError->Value(theIndex);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Real ProjLib_CompProjectedCurve::GetResult2dVApproxError(
|
|
const Standard_Integer theIndex) const
|
|
{
|
|
return myResult2dVApproxError->Value(theIndex);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Real ProjLib_CompProjectedCurve::GetResult3dApproxError(
|
|
const Standard_Integer theIndex) const
|
|
{
|
|
return myResult3dApproxError->Value(theIndex);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Handle(Geom2d_Curve) ProjLib_CompProjectedCurve::GetResult2dC(const Standard_Integer theIndex) const
|
|
{
|
|
return myResult2dCurve->Value(theIndex);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Handle(Geom_Curve) ProjLib_CompProjectedCurve::GetResult3dC(const Standard_Integer theIndex) const
|
|
{
|
|
return myResult3dCurve->Value(theIndex);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
gp_Pnt2d ProjLib_CompProjectedCurve::GetResult2dP(const Standard_Integer theIndex) const
|
|
{
|
|
Standard_TypeMismatch_Raise_if(!myResultIsPoint->Value(theIndex),
|
|
"ProjLib_CompProjectedCurve : result is not a point 2d");
|
|
return myResult2dPoint->Value(theIndex);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
gp_Pnt ProjLib_CompProjectedCurve::GetResult3dP(const Standard_Integer theIndex) const
|
|
{
|
|
Standard_TypeMismatch_Raise_if(!myResultIsPoint->Value(theIndex),
|
|
"ProjLib_CompProjectedCurve : result is not a point 3d");
|
|
return myResult3dPoint->Value(theIndex);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::UpdateTripleByTrapCriteria(gp_Pnt& thePoint) const
|
|
{
|
|
Standard_Boolean isProblemsPossible = Standard_False;
|
|
// Check possible traps cases:
|
|
|
|
// 25892 bug.
|
|
if (mySurface->GetType() == GeomAbs_SurfaceOfRevolution)
|
|
{
|
|
// Compute maximal deviation from 3D and choose the biggest one.
|
|
Standard_Real aVRes = mySurface->VResolution(Precision::Confusion());
|
|
Standard_Real aMaxTol = Max(Precision::PConfusion(), aVRes);
|
|
|
|
if (Abs(thePoint.Z() - mySurface->FirstVParameter()) < aMaxTol
|
|
|| Abs(thePoint.Z() - mySurface->LastVParameter()) < aMaxTol)
|
|
{
|
|
isProblemsPossible = Standard_True;
|
|
}
|
|
}
|
|
|
|
// 27135 bug. Trap on degenerated edge.
|
|
if (mySurface->GetType() == GeomAbs_Sphere
|
|
&& (Abs(thePoint.Z() - mySurface->FirstVParameter()) < Precision::PConfusion()
|
|
|| Abs(thePoint.Z() - mySurface->LastVParameter()) < Precision::PConfusion()
|
|
|| Abs(thePoint.Y() - mySurface->FirstUParameter()) < Precision::PConfusion()
|
|
|| Abs(thePoint.Y() - mySurface->LastUParameter()) < Precision::PConfusion()))
|
|
{
|
|
isProblemsPossible = Standard_True;
|
|
}
|
|
|
|
if (!isProblemsPossible)
|
|
return;
|
|
|
|
Standard_Real U, V;
|
|
Standard_Boolean isDone = InitialPoint(myCurve->Value(thePoint.X()),
|
|
thePoint.X(),
|
|
myCurve,
|
|
mySurface,
|
|
Precision::PConfusion(),
|
|
Precision::PConfusion(),
|
|
U,
|
|
V,
|
|
myMaxDist);
|
|
|
|
if (!isDone)
|
|
return;
|
|
|
|
// Restore original position in case of period jump.
|
|
if (mySurface->IsUPeriodic()
|
|
&& Abs(Abs(U - thePoint.Y()) - mySurface->UPeriod()) < Precision::PConfusion())
|
|
{
|
|
U = thePoint.Y();
|
|
}
|
|
if (mySurface->IsVPeriodic()
|
|
&& Abs(Abs(V - thePoint.Z()) - mySurface->VPeriod()) < Precision::PConfusion())
|
|
{
|
|
V = thePoint.Z();
|
|
}
|
|
thePoint.SetY(U);
|
|
thePoint.SetZ(V);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void BuildCurveSplits(const Handle(Adaptor3d_Curve)& theCurve,
|
|
const Handle(Adaptor3d_Surface)& theSurface,
|
|
const Standard_Real theTolU,
|
|
const Standard_Real theTolV,
|
|
NCollection_Vector<Standard_Real>& theSplits)
|
|
{
|
|
SplitDS aDS(theCurve, theSurface, theSplits);
|
|
|
|
Extrema_ExtPS anExtPS;
|
|
anExtPS.Initialize(*theSurface,
|
|
theSurface->FirstUParameter(),
|
|
theSurface->LastUParameter(),
|
|
theSurface->FirstVParameter(),
|
|
theSurface->LastVParameter(),
|
|
theTolU,
|
|
theTolV);
|
|
aDS.myExtPS = &anExtPS;
|
|
|
|
if (theSurface->IsUPeriodic())
|
|
{
|
|
aDS.myPeriodicDir = 0;
|
|
SplitOnDirection(aDS);
|
|
}
|
|
if (theSurface->IsVPeriodic())
|
|
{
|
|
aDS.myPeriodicDir = 1;
|
|
SplitOnDirection(aDS);
|
|
}
|
|
|
|
std::sort(aDS.mySplits.begin(), aDS.mySplits.end(), Comparator);
|
|
}
|
|
|
|
//=======================================================================
|
|
// function : SplitOnDirection
|
|
// purpose : This method compute points in the parameter space of the curve
|
|
// on which curve should be split since period jump is happen.
|
|
//=======================================================================
|
|
void SplitOnDirection(SplitDS& theSplitDS)
|
|
{
|
|
// Algorithm:
|
|
// Create 3D curve which is correspond to the periodic bound in 2d space.
|
|
// Run curve / curve extrema and run extrema point / surface to check that
|
|
// the point will be projected to the periodic bound.
|
|
// In this method assumed that the points cannot be closer to each other that 1% of the parameter
|
|
// space.
|
|
|
|
gp_Pnt2d aStartPnt(theSplitDS.mySurface->FirstUParameter(),
|
|
theSplitDS.mySurface->FirstVParameter());
|
|
gp_Dir2d aDir(theSplitDS.myPeriodicDir, (Standard_Integer)!theSplitDS.myPeriodicDir);
|
|
|
|
theSplitDS.myPerMinParam = !theSplitDS.myPeriodicDir ? theSplitDS.mySurface->FirstUParameter()
|
|
: theSplitDS.mySurface->FirstVParameter();
|
|
theSplitDS.myPerMaxParam = !theSplitDS.myPeriodicDir ? theSplitDS.mySurface->LastUParameter()
|
|
: theSplitDS.mySurface->LastVParameter();
|
|
Standard_Real aLast2DParam =
|
|
theSplitDS.myPeriodicDir
|
|
? theSplitDS.mySurface->LastUParameter() - theSplitDS.mySurface->FirstUParameter()
|
|
: theSplitDS.mySurface->LastVParameter() - theSplitDS.mySurface->FirstVParameter();
|
|
|
|
// Create line which is represent periodic border.
|
|
Handle(Geom2d_Curve) aC2GC = new Geom2d_Line(aStartPnt, aDir);
|
|
Handle(Geom2dAdaptor_Curve) aC = new Geom2dAdaptor_Curve(aC2GC, 0, aLast2DParam);
|
|
Adaptor3d_CurveOnSurface aCOnS(aC, theSplitDS.mySurface);
|
|
theSplitDS.myExtCCCurve1 = &aCOnS;
|
|
theSplitDS.myExtCCLast2DParam = aLast2DParam;
|
|
|
|
FindSplitPoint(theSplitDS,
|
|
theSplitDS.myCurve->FirstParameter(), // Initial curve range.
|
|
theSplitDS.myCurve->LastParameter());
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void FindSplitPoint(SplitDS& theSplitDS,
|
|
const Standard_Real theMinParam,
|
|
const Standard_Real theMaxParam)
|
|
{
|
|
// Make extrema copy to avoid dependencies between different levels of the recursion.
|
|
Extrema_ExtCC anExtCC;
|
|
anExtCC.SetCurve(1, *theSplitDS.myExtCCCurve1);
|
|
anExtCC.SetCurve(2, *theSplitDS.myCurve);
|
|
// clang-format off
|
|
anExtCC.SetSingleSolutionFlag (Standard_True); // Search only one solution since multiple invocations are needed.
|
|
// clang-format on
|
|
anExtCC.SetRange(1, 0, theSplitDS.myExtCCLast2DParam);
|
|
anExtCC.SetRange(2, theMinParam, theMaxParam);
|
|
anExtCC.Perform();
|
|
|
|
if (anExtCC.IsDone() && !anExtCC.IsParallel())
|
|
{
|
|
const Standard_Integer aNbExt = anExtCC.NbExt();
|
|
for (Standard_Integer anIdx = 1; anIdx <= aNbExt; ++anIdx)
|
|
{
|
|
Extrema_POnCurv aPOnC1, aPOnC2;
|
|
anExtCC.Points(anIdx, aPOnC1, aPOnC2);
|
|
|
|
theSplitDS.myExtPS->Perform(aPOnC2.Value());
|
|
if (!theSplitDS.myExtPS->IsDone())
|
|
return;
|
|
|
|
// Find point with the minimal Euclidean distance to avoid
|
|
// false positive points detection.
|
|
Standard_Integer aMinIdx = -1;
|
|
Standard_Real aMinSqDist = RealLast();
|
|
const Standard_Integer aNbPext = theSplitDS.myExtPS->NbExt();
|
|
for (Standard_Integer aPIdx = 1; aPIdx <= aNbPext; ++aPIdx)
|
|
{
|
|
const Standard_Real aCurrSqDist = theSplitDS.myExtPS->SquareDistance(aPIdx);
|
|
|
|
if (aCurrSqDist < aMinSqDist)
|
|
{
|
|
aMinSqDist = aCurrSqDist;
|
|
aMinIdx = aPIdx;
|
|
}
|
|
}
|
|
|
|
// Check that is point will be projected to the periodic border.
|
|
const Extrema_POnSurf& aPOnS = theSplitDS.myExtPS->Point(aMinIdx);
|
|
Standard_Real U, V, aProjParam;
|
|
aPOnS.Parameter(U, V);
|
|
aProjParam = theSplitDS.myPeriodicDir ? V : U;
|
|
|
|
if (Abs(aProjParam - theSplitDS.myPerMinParam) < Precision::PConfusion()
|
|
|| Abs(aProjParam - theSplitDS.myPerMaxParam) < Precision::PConfusion())
|
|
{
|
|
const Standard_Real aParam = aPOnC2.Parameter();
|
|
const Standard_Real aCFParam = theSplitDS.myCurve->FirstParameter();
|
|
const Standard_Real aCLParam = theSplitDS.myCurve->LastParameter();
|
|
|
|
if (aParam > aCFParam + Precision::PConfusion()
|
|
&& aParam < aCLParam - Precision::PConfusion())
|
|
{
|
|
// Add only inner points.
|
|
theSplitDS.mySplits.Append(aParam);
|
|
}
|
|
|
|
const Standard_Real aDeltaCoeff = 0.01;
|
|
const Standard_Real aDelta =
|
|
(theMaxParam - theMinParam + aCLParam - aCFParam) * aDeltaCoeff;
|
|
|
|
if (aParam - aDelta > theMinParam + Precision::PConfusion())
|
|
{
|
|
FindSplitPoint(theSplitDS, theMinParam, aParam - aDelta); // Curve parameters.
|
|
}
|
|
|
|
if (aParam + aDelta < theMaxParam - Precision::PConfusion())
|
|
{
|
|
FindSplitPoint(theSplitDS, aParam + aDelta, theMaxParam); // Curve parameters.
|
|
}
|
|
}
|
|
} // for (Standard_Integer anIdx = 1; anIdx <= aNbExt; ++anIdx)
|
|
}
|
|
}
|