mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-05-01 10:26:12 +03:00
112 lines
3.2 KiB
GLSL
112 lines
3.2 KiB
GLSL
out vec4 OutColor;
|
|
|
|
// Seed for random number generator (generated on CPU).
|
|
uniform int uFrameRndSeed;
|
|
|
|
//! Enables/disables using of single RNG seed for 16x16 image
|
|
//! blocks. Increases performance up to 4x, but the noise has
|
|
//! become structured. Can be used fo final rendering.
|
|
uniform int uBlockedRngEnabled;
|
|
|
|
#ifndef ADAPTIVE_SAMPLING
|
|
//! Input image with previously accumulated samples.
|
|
uniform sampler2D uAccumTexture;
|
|
#endif
|
|
|
|
//! Maximum radiance that can be added to the pixel. Decreases noise
|
|
//! level, but introduces some bias.
|
|
#define MAX_RADIANCE vec3 (50.f)
|
|
|
|
// =======================================================================
|
|
// function : main
|
|
// purpose :
|
|
// =======================================================================
|
|
void main (void)
|
|
{
|
|
SeedRand (uFrameRndSeed, uWinSizeX, uBlockedRngEnabled == 0 ? 1 : 16);
|
|
|
|
#ifndef PATH_TRACING
|
|
|
|
SRay aRay = GenerateRay (vPixel);
|
|
|
|
#else
|
|
|
|
ivec2 aFragCoord = ivec2 (gl_FragCoord.xy);
|
|
|
|
#ifdef ADAPTIVE_SAMPLING
|
|
|
|
ivec2 aTileXY = imageLoad (uOffsetImage, ivec2 (aFragCoord.x / BLOCK_SIZE,
|
|
aFragCoord.y / BLOCK_SIZE)).xy;
|
|
|
|
ivec2 aRealBlockSize = ivec2 (min (uWinSizeX - aTileXY.x, BLOCK_SIZE),
|
|
min (uWinSizeY - aTileXY.y, BLOCK_SIZE));
|
|
|
|
aFragCoord.x = aTileXY.x + (aFragCoord.x % aRealBlockSize.x);
|
|
aFragCoord.y = aTileXY.y + (aFragCoord.y % aRealBlockSize.y);
|
|
|
|
#endif // ADAPTIVE_SAMPLING
|
|
|
|
vec2 aPnt = vec2 (aFragCoord.x + RandFloat(),
|
|
aFragCoord.y + RandFloat());
|
|
|
|
SRay aRay = GenerateRay (aPnt / vec2 (uWinSizeX, uWinSizeY));
|
|
|
|
#endif // PATH_TRACING
|
|
|
|
vec3 aInvDirect = InverseDirection (aRay.Direct);
|
|
|
|
#ifdef PATH_TRACING
|
|
|
|
vec4 aColor = PathTrace (aRay, aInvDirect);
|
|
|
|
if (any (isnan (aColor.rgb)))
|
|
{
|
|
aColor.rgb = ZERO;
|
|
}
|
|
|
|
aColor.rgb = min (aColor.rgb, MAX_RADIANCE);
|
|
|
|
#ifdef ADAPTIVE_SAMPLING
|
|
|
|
// accumulate RGB color and depth
|
|
imageAtomicAdd (uRenderImage, ivec2 (3 * aFragCoord.x + 0,
|
|
2 * aFragCoord.y + 0), aColor.r);
|
|
imageAtomicAdd (uRenderImage, ivec2 (3 * aFragCoord.x + 1,
|
|
2 * aFragCoord.y + 0), aColor.g);
|
|
imageAtomicAdd (uRenderImage, ivec2 (3 * aFragCoord.x + 1,
|
|
2 * aFragCoord.y + 1), aColor.b);
|
|
imageAtomicAdd (uRenderImage, ivec2 (3 * aFragCoord.x + 2,
|
|
2 * aFragCoord.y + 1), aColor.w);
|
|
|
|
// accumulate number of samples
|
|
float aNbSamples = imageAtomicAdd (uRenderImage, ivec2 (3 * aFragCoord.x + 0,
|
|
2 * aFragCoord.y + 1), 1.0);
|
|
|
|
if (int (aNbSamples) % 2 == 0) // accumulate luminance for even samples only
|
|
{
|
|
imageAtomicAdd (uRenderImage, ivec2 (3 * aFragCoord.x + 2,
|
|
2 * aFragCoord.y + 0), dot (LUMA, aColor.rgb));
|
|
}
|
|
|
|
discard; // fragment should not be written to frame buffer
|
|
|
|
#else
|
|
|
|
if (uAccumSamples == 0)
|
|
{
|
|
OutColor = aColor;
|
|
}
|
|
else
|
|
{
|
|
OutColor = mix (texture2D (uAccumTexture, vPixel), aColor, 1.f / (uAccumSamples + 1));
|
|
}
|
|
|
|
#endif // ADAPTIVE_SAMPLING
|
|
|
|
#else
|
|
|
|
OutColor = clamp (Radiance (aRay, aInvDirect), 0.f, 1.f);
|
|
|
|
#endif // PATH_TRACING
|
|
}
|