1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-21 10:13:43 +03:00
occt/src/Convert/Convert_PolynomialCosAndSin.cxx
abv d5f74e42d6 0024624: Lost word in license statement in source files
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast
Wrong license statements corrected in several files.
Copyright and license statements added in XSD and GLSL files.
Copyright year updated in some files.
Obsolete documentation files removed from DrawResources.
2014-02-20 16:15:17 +04:00

299 lines
7.3 KiB
C++

// Created on: 1995-10-10
// Created by: Jacques GOUSSARD
// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Convert_PolynomialCosAndSin.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <gp_Trsf2d.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec2d.hxx>
#include <gp_XY.hxx>
#include <gp.hxx>
#include <Precision.hxx>
#include <PLib.hxx>
#include <BSplCLib.hxx>
#include <Standard_ConstructionError.hxx>
static Standard_Real Locate(const Standard_Real Angfin,
const TColgp_Array1OfPnt2d& TPoles,
const Standard_Real Umin,
const Standard_Real Umax)
{
Standard_Real umin = Umin;
Standard_Real umax = Umax;
Standard_Real Ptol = Precision::Angular();
Standard_Real Utol = Precision::PConfusion();
while (Abs(umax-umin)>= Utol) {
Standard_Real ptest = (umax+umin)/2.;
gp_Pnt2d valP;
BSplCLib::D0(ptest,TPoles,BSplCLib::NoWeights(),valP);
Standard_Real theta = ATan2(valP.Y(),valP.X());
if (theta < 0.) {
theta +=2.*M_PI;
}
if (Abs(theta - Angfin) < Ptol) {
return ptest;
}
if (theta < Angfin) {
umin = ptest;
}
else if (theta > Angfin) {
umax = ptest;
}
}
return (umin+umax)/2.;
}
void BuildPolynomialCosAndSin
(const Standard_Real UFirst,
const Standard_Real ULast,
const Standard_Integer num_poles,
Handle(TColStd_HArray1OfReal)& CosNumeratorPtr,
Handle(TColStd_HArray1OfReal)& SinNumeratorPtr,
Handle(TColStd_HArray1OfReal)& DenominatorPtr)
{
Standard_Real Delta,
locUFirst,
// locULast,
// temp_value,
t_min,
t_max,
trim_min,
trim_max,
middle,
Angle,
PI2 = 2*M_PI ;
Standard_Integer ii, degree = num_poles -1 ;
locUFirst = UFirst ;
// Return UFirst in [-2PI; 2PI]
// to make rotations without risk
while (locUFirst > PI2) {
locUFirst -= PI2;
}
while (locUFirst < - PI2) {
locUFirst += PI2;
}
// Return to the arc [0, Delta]
Delta = ULast - UFirst;
middle = 0.5e0 * Delta ;
// coincide the required bisector of the angular sector with
// axis -Ox definition of the circle in Bezier of degree 7 so that
// parametre 1/2 of Bezier was exactly a point of the bissectrice
// of the required angular sector.
//
Angle = middle - M_PI ;
//
// Circle of radius 1. See Euclid
//
TColgp_Array1OfPnt2d TPoles(1,8),
NewTPoles(1,8) ;
TPoles(1).SetCoord(1.,0.);
TPoles(2).SetCoord(1.,1.013854);
TPoles(3).SetCoord(-0.199043,1.871905);
TPoles(4).SetCoord(-1.937729,1.057323);
TPoles(5).SetCoord(-1.937729,-1.057323);
TPoles(6).SetCoord(-0.199043,-1.871905);
TPoles(7).SetCoord(1.,-1.013854);
TPoles(8).SetCoord(1.,0.);
gp_Trsf2d T;
T.SetRotation(gp::Origin2d(),Angle);
for (ii=1; ii<=num_poles; ii++) {
TPoles(ii).Transform(T);
}
t_min = 1.0e0 - (Delta * 1.3e0 / M_PI) ;
t_min *= 0.5e0 ;
t_min = Max(t_min,0.0e0) ;
t_max = 1.0e0 + (Delta * 1.3e0 / M_PI) ;
t_max *= 0.5e0 ;
t_max = Min(t_max,1.0e0) ;
trim_max = Locate(Delta,
TPoles,
t_min,
t_max);
//
// as Bezier is symmetric correspondingly to the bissector
// of the angular sector ...
trim_min = 1.0e0 - trim_max ;
//
Standard_Real knot_array[2] ;
Standard_Integer mults_array[2] ;
knot_array[0] = 0.0e0 ;
knot_array[1] = 1.0e0 ;
mults_array[0] = degree + 1 ;
mults_array[1] = degree + 1 ;
TColStd_Array1OfReal the_knots(knot_array[0],1,2),
the_new_knots(knot_array[0],1,2);
TColStd_Array1OfInteger the_mults(mults_array[0],1,2),
the_new_mults(mults_array[0],1,2) ;
BSplCLib::Trimming(degree,
Standard_False,
the_knots,
the_mults,
TPoles,
BSplCLib::NoWeights(),
trim_min,
trim_max,
the_new_knots,
the_new_mults,
NewTPoles,
BSplCLib::NoWeights());
// readjustment is obviously redundant
Standard_Real SinD = Sin(Delta), CosD = Cos(Delta);
gp_Pnt2d Pdeb(1., 0.);
gp_Pnt2d Pfin(CosD, SinD);
Standard_Real dtg = NewTPoles(1).Distance(NewTPoles(2));
NewTPoles(1) = Pdeb;
gp_XY theXY(0.,dtg);
Pdeb.ChangeCoord() += theXY;
NewTPoles(2) = Pdeb;
// readjustment to Euclid
dtg = NewTPoles(num_poles).Distance(NewTPoles(num_poles-1));
NewTPoles(num_poles) = Pfin;
theXY.SetCoord(dtg*SinD,-dtg*CosD);
Pfin.ChangeCoord() += theXY;
NewTPoles(num_poles-1) = Pfin;
// Rotation to return to the arc [LocUFirst, LocUFirst+Delta]
T.SetRotation(gp::Origin2d(), locUFirst);
for (ii=1; ii<=num_poles; ii++) {
NewTPoles(ii).Transform(T);
}
for (ii=1; ii<=num_poles; ii++) {
CosNumeratorPtr->SetValue(ii,NewTPoles(ii).X());
SinNumeratorPtr->SetValue(ii,NewTPoles(ii).Y());
DenominatorPtr->SetValue(ii,1.);
}
}
/*
void BuildHermitePolynomialCosAndSin
(const Standard_Real UFirst,
const Standard_Real ULast,
const Standard_Integer num_poles,
Handle(TColStd_HArray1OfReal)& CosNumeratorPtr,
Handle(TColStd_HArray1OfReal)& SinNumeratorPtr,
Handle(TColStd_HArray1OfReal)& DenominatorPtr)
{
if (num_poles%2 != 0) {
Standard_ConstructionError::Raise();
}
Standard_Integer ii;
Standard_Integer ordre_deriv = num_poles/2;
Standard_Real ang = ULast - UFirst;
Standard_Real Cd = Cos(UFirst);
Standard_Real Sd = Sin(UFirst);
Standard_Real Cf = Cos(ULast);
Standard_Real Sf = Sin(ULast);
Standard_Integer Degree = num_poles-1;
TColStd_Array1OfReal FlatKnots(1,2*num_poles);
TColStd_Array1OfReal Parameters(1,num_poles);
TColStd_Array1OfInteger ContactOrderArray(1,num_poles);
TColgp_Array1OfPnt2d Poles(1,num_poles);
TColgp_Array1OfPnt2d TPoles(1,num_poles);
for (ii=1; ii<=num_poles; ii++) {
FlatKnots(ii) = 0.;
FlatKnots(ii+num_poles) = 1.;
}
Standard_Real coef = 1.;
Standard_Real xd,yd,xf,yf;
for (ii=1; ii<=ordre_deriv; ii++) {
Parameters(ii) = 0.;
Parameters(ii+ordre_deriv) = 1.;
ContactOrderArray(ii) = ContactOrderArray(num_poles-ii+1) = ii-1;
switch ((ii-1)%4) {
case 0:
{
xd = Cd*coef;
yd = Sd*coef;
xf = Cf*coef;
yf = Sf*coef;
}
break;
case 1:
{
xd = -Sd*coef;
yd = Cd*coef;
xf = -Sf*coef;
yf = Cf*coef;
}
break;
case 2:
{
xd = -Cd*coef;
yd = -Sd*coef;
xf = -Cf*coef;
yf = -Sf*coef;
}
break;
case 3:
{
xd = Sd*coef;
yd = -Cd*coef;
xf = Sf*coef;
yf = -Cf*coef;
}
break;
}
Poles(ii).SetX(xd);
Poles(ii).SetY(yd);
Poles(num_poles-ii+1).SetX(xf);
Poles(num_poles-ii+1).SetY(yf);
coef *= ang;
}
Standard_Integer InversionPb;
BSplCLib::Interpolate(Degree,FlatKnots,Parameters,
ContactOrderArray,Poles,InversionPb);
if (InversionPb !=0) {
Standard_ConstructionError::Raise();
}
for (ii=1; ii<=num_poles; ii++) {
CosNumeratorPtr->SetValue(ii,Poles(ii).X());
SinNumeratorPtr->SetValue(ii,Poles(ii).Y());
DenominatorPtr->SetValue(ii,1.);
}
}
*/