1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-09 13:22:24 +03:00
Files
occt/src/IntImp/IntImp_ZerCSParFunc.gxx
bugmster 973c2be1e1 0024428: Implementation of LGPL license
The copying permission statements at the beginning of source files updated to refer to LGPL.
Copyright dates extended till 2014 in advance.
2013-12-17 12:42:41 +04:00

103 lines
2.9 KiB
Plaintext

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and / or modify it
// under the terms of the GNU Lesser General Public version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#ifndef DEB
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#endif
IntImp_ZerCSParFunc::IntImp_ZerCSParFunc(const ThePSurface& S,
const TheCurve& C) {
surface = S;
curve = C;
p = gp_Pnt(0.0,0.0,0.0);
f = 0.0;
}
Standard_Integer IntImp_ZerCSParFunc::NbVariables()const { return 3;}
Standard_Integer IntImp_ZerCSParFunc::NbEquations()const { return 3;}
Standard_Boolean IntImp_ZerCSParFunc::Value(const math_Vector& X,
math_Vector& F){
gp_Pnt Psurf = ThePSurfaceTool::Value(surface,X(1),X(2));
gp_Pnt Pcurv = TheCurveTool::Value(curve,X(3));
Standard_Real f1,f2,f3;
F(1) = f1 = Psurf.X()-Pcurv.X();
F(2) = f2 = Psurf.Y()-Pcurv.Y();
F(3) = f3 = Psurf.Z()-Pcurv.Z();
f = f1*f1 + f2*f2 + f3*f3;
p = gp_Pnt((Psurf.XYZ()+Pcurv.XYZ())*0.5);
return Standard_True;
}
Standard_Boolean IntImp_ZerCSParFunc::Derivatives ( const math_Vector& X,
math_Matrix& D) {
gp_Pnt Psurf,Pcurv;
gp_Vec D1u,D1v,D1w;
ThePSurfaceTool::D1(surface,X(1),X(2),Psurf,D1u,D1v);
TheCurveTool::D1(curve,X(3),Pcurv,D1w);
D(1,1) = D1u.X();
D(1,2) = D1v.X();
D(1,3) = -D1w.X();
D(2,1) = D1u.Y();
D(2,2) = D1v.Y();
D(2,3) = -D1w.Y();
D(3,1) = D1u.Z();
D(3,2) = D1v.Z();
D(3,3) = -D1w.Z();
return Standard_True;
}
Standard_Boolean IntImp_ZerCSParFunc::Values( const math_Vector& X,
math_Vector& F,
math_Matrix& D) {
gp_Pnt Psurf,Pcurv;
gp_Vec D1u,D1v,D1w;
ThePSurfaceTool::D1(surface,X(1),X(2),Psurf,D1u,D1v);
TheCurveTool::D1(curve,X(3),Pcurv,D1w);
D(1,1) = D1u.X();
D(1,2) = D1v.X();
D(1,3) = -D1w.X();
D(2,1) = D1u.Y();
D(2,2) = D1v.Y();
D(2,3) = -D1w.Y();
D(3,1) = D1u.Z();
D(3,2) = D1v.Z();
D(3,3) = -D1w.Z();
Standard_Real f1,f2,f3;
F(1) = f1 = Psurf.X()-Pcurv.X();
F(2) = f2 = Psurf.Y()-Pcurv.Y();
F(3) = f3 = Psurf.Z()-Pcurv.Z();
f = f1*f1 + f2*f2 + f3*f3;
p = gp_Pnt((Psurf.XYZ()+Pcurv.XYZ())*0.5);
return Standard_True;
}
const gp_Pnt& IntImp_ZerCSParFunc::Point() const { return p;}
Standard_Real IntImp_ZerCSParFunc::Root() const { return f;}
const ThePSurface& IntImp_ZerCSParFunc::AuxillarSurface() const {
return surface;}
const TheCurve& IntImp_ZerCSParFunc::AuxillarCurve() const {
return curve;}