mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl": - WOK-generated header files from inc and sources from drv are moved to src - CDL files removed - All packages are converted to nocdlpack
138 lines
4.8 KiB
C++
138 lines
4.8 KiB
C++
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
//============================================ IntAna2d_AnaIntersection_8.cxx
|
|
//============================================================================
|
|
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Elips2d.hxx>
|
|
#include <gp_Hypr2d.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
#include <gp_Parab2d.hxx>
|
|
#include <IntAna2d_AnaIntersection.hxx>
|
|
#include <IntAna2d_Conic.hxx>
|
|
#include <IntAna2d_IntPoint.hxx>
|
|
#include <IntAna2d_Outils.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
|
|
// -----------------------------------------------------------------
|
|
// ------ Verification de la validite des points obtenus ----------
|
|
// --- Methode a implementer dans les autres routines si on constate
|
|
// --- des problemes d'instabilite numerique sur
|
|
// --- * la construction des polynomes en t (t:parametre)
|
|
// --- * la resolution du polynome
|
|
// --- * le retour : parametre t -> point d'intersection
|
|
// --- Probleme : A partir de quelle Tolerance un point n'est
|
|
// --- plus un point de la courbe. (f(x,y)=1e-10 ??)
|
|
// --- ne donne pas d'info. sur la dist. du pt a la courbe
|
|
// -----------------------------------------------------------------
|
|
// ------ Methode non implementee pour les autres Intersections
|
|
// --- Si un probleme est constate : Dupliquer le code entre les
|
|
// --- commentaires VERIF-VALID
|
|
// -----------------------------------------------------------------
|
|
void IntAna2d_AnaIntersection::Perform(const gp_Hypr2d& H,
|
|
const IntAna2d_Conic& Conic)
|
|
{
|
|
Standard_Boolean HIsDirect = H.IsDirect();
|
|
Standard_Real A,B,C,D,E,F;
|
|
Standard_Real px0,px1,px2,px3,px4;
|
|
Standard_Real minor_radius=H.MinorRadius();
|
|
Standard_Real major_radius=H.MajorRadius();
|
|
Standard_Integer i;
|
|
Standard_Real tx,ty,S;
|
|
|
|
done = Standard_False;
|
|
nbp = 0;
|
|
para = Standard_False;
|
|
iden = Standard_False;
|
|
empt = Standard_False;
|
|
|
|
gp_Ax2d Axe_rep(H.XAxis());
|
|
Conic.Coefficients(A,B,C,D,E,F);
|
|
Conic.NewCoefficients(A,B,C,D,E,F,Axe_rep);
|
|
|
|
Standard_Real A_major_radiusP2=A*major_radius*major_radius;
|
|
Standard_Real B_minor_radiusP2=B*minor_radius*minor_radius;
|
|
Standard_Real C_2_major_minor_radius=C*2.0*major_radius*minor_radius;
|
|
|
|
// Parametre : t avec x=MajorRadius*Ch(t) y=:minorRadius*Sh(t)
|
|
// Le polynome est reecrit en Exp(t)
|
|
// Suivent les Coeffs du polynome P multiplie par 4*Exp(t)^2
|
|
|
|
px0=A_major_radiusP2 - C_2_major_minor_radius + B_minor_radiusP2;
|
|
px1=4.0*(D*major_radius-E*minor_radius);
|
|
px2=2.0*(A_major_radiusP2 + 2.0*F - B_minor_radiusP2);
|
|
px3=4.0*(D*major_radius+E*minor_radius);
|
|
px4=A_major_radiusP2 + C_2_major_minor_radius + B_minor_radiusP2;
|
|
|
|
MyDirectPolynomialRoots Sol(px4,px3,px2,px1,px0);
|
|
|
|
if(!Sol.IsDone()) {
|
|
//-- cout<<" Done = False ds IntAna2d_AnaIntersection_8.cxx "<<endl;
|
|
done=Standard_False;
|
|
return;
|
|
}
|
|
else {
|
|
if(Sol.InfiniteRoots()) {
|
|
iden=Standard_True;
|
|
done=Standard_True;
|
|
return;
|
|
}
|
|
// On a X=(CosH(t)*major_radius)/2 , Y=(SinH(t)*minor_radius)/2
|
|
// la Resolution est en S=Exp(t)
|
|
nbp=Sol.NbSolutions();
|
|
Standard_Integer nb_sol_valides=0;
|
|
for(i=1;i<=nbp;i++) {
|
|
S=Sol.Value(i);
|
|
if(S>RealEpsilon()) {
|
|
tx=0.5*major_radius*(S+1/S);
|
|
ty=0.5*minor_radius*(S-1/S);
|
|
|
|
//--- Est-on sur la bonne branche de l'Hyperbole
|
|
//--------------- VERIF-VALIDITE-INTERSECTION ----------
|
|
//--- On Suppose que l'ecart sur la courbe1 est nul
|
|
//--- (le point a ete obtenu par parametrage)
|
|
//--- ??? la tolerance a ete fixee a 1e-10 ?????????????
|
|
|
|
#if 0
|
|
Standard_Real ecart_sur_courbe2;
|
|
ecart_sur_courbe2=Conic.Value(tx,ty);
|
|
if(ecart_sur_courbe2<=1e-10 && ecart_sur_courbe2>=-1e-10) {
|
|
nb_sol_valides++;
|
|
Coord_Ancien_Repere(tx,ty,Axe_rep);
|
|
lpnt[nb_sol_valides-1].SetValue(tx,ty,Log(S));
|
|
}
|
|
#else
|
|
|
|
nb_sol_valides++;
|
|
Coord_Ancien_Repere(tx,ty,Axe_rep);
|
|
S = Log(S);
|
|
if(!HIsDirect)
|
|
S = -S;
|
|
lpnt[nb_sol_valides-1].SetValue(tx,ty,S);
|
|
#endif
|
|
}
|
|
}
|
|
nbp=nb_sol_valides;
|
|
Traitement_Points_Confondus(nbp,lpnt);
|
|
}
|
|
done=Standard_True;
|
|
}
|
|
|
|
|
|
|
|
|
|
|