1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-05 18:16:23 +03:00
occt/src/BRepTest/BRepTest_GPropCommands.cxx
ifv fe3e01db81 0027273: The computation of linear properties on shared shapes is not correct
New flag is inserted in parameters of static methods LinearProperties(...), surfaceProperties(...), volumeProperties(...). This flag defines to skip or not to skip second and next appearance shared topology entities (edges, faces, shells) in properties calculation.
Corresponding Draw commands is modified to take in account new parameter.

Test case for issue CR27273

Add option -skip into checkprops command
2016-03-28 17:31:20 +03:00

344 lines
11 KiB
C++

// Created on: 1994-02-18
// Created by: Remi LEQUETTE
// Copyright (c) 1994-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Standard_Stream.hxx>
#include <BRepTest.hxx>
#include <Draw_Interpretor.hxx>
#include <Draw_Appli.hxx>
#include <DBRep.hxx>
#include <BRepGProp.hxx>
#include <TopoDS_Shape.hxx>
#include <GProp_PrincipalProps.hxx>
#include <gp_Ax2.hxx>
#include <gp_Ax3.hxx>
#include <Draw_Axis3D.hxx>
#include <Precision.hxx>
#include <OSD_Chronometer.hxx>
#include <Geom_Surface.hxx>
#include <DrawTrSurf.hxx>
#include <Geom_Plane.hxx>
#include <gp_Pln.hxx>
#ifdef _WIN32
Standard_IMPORT Draw_Viewer dout;
#endif
Standard_Integer props(Draw_Interpretor& di, Standard_Integer n, const char** a)
{
if (n < 2) {
di << "Use: " << a[0] << " shape [epsilon] [c[losed]] [x y z] [-skip] [-full]\n";
di << "Compute properties of the shape\n";
di << "The epsilon, if given, defines relative precision of computation\n";
di << "The \"closed\" flag, if present, do computation only closed shells of the shape\n";
di << "The centroid coordinates will be put to DRAW variables x y z (if given)\n";
di << "Shared entities will be take in account only one time in the skip mode\n";
di << "All values are outputted with the full precision in the full mode.\n\n";
return 1;
}
Standard_Boolean isFullMode = Standard_False;
if (n >= 2 && strcmp(a[n-1], "-full") == 0)
{
isFullMode = Standard_True;
--n;
}
Standard_Boolean SkipShared = Standard_False;
if (n >= 2 && strcmp(a[n-1], "-skip") == 0)
{
SkipShared = Standard_True;
--n;
}
TopoDS_Shape S = DBRep::Get(a[1]);
if (S.IsNull()) return 0;
GProp_GProps G;
Standard_Boolean onlyClosed = Standard_False;
Standard_Real eps = 1.0;
Standard_Boolean witheps = Standard_False;
if((n > 2 && *a[2]=='c') || (n > 3 && *a[3]=='c')) onlyClosed = Standard_True;
if(n > 2 && *a[2]!='c' && n != 5) {eps = Draw::Atof (a[2]); witheps = Standard_True;}
if (witheps){
if (Abs(eps) < Precision::Angular()) return 2;
if (*a[0] == 'l')
BRepGProp::LinearProperties(S,G,SkipShared);
else if (*a[0] == 's')
eps = BRepGProp::SurfaceProperties(S,G,eps,SkipShared);
else
eps = BRepGProp::VolumeProperties(S,G,eps,onlyClosed,SkipShared);
}
else {
if (*a[0] == 'l')
BRepGProp::LinearProperties(S,G,SkipShared);
else if (*a[0] == 's')
BRepGProp::SurfaceProperties(S,G,SkipShared);
else
BRepGProp::VolumeProperties(S,G,onlyClosed,SkipShared);
}
gp_Pnt P = G.CentreOfMass();
gp_Mat I = G.MatrixOfInertia();
if (n >= 5) {
Standard_Integer shift = n - 5;
Draw::Set(a[shift+2],P.X());
Draw::Set(a[shift+3],P.Y());
Draw::Set(a[shift+4],P.Z());
}
GProp_PrincipalProps Pr = G.PrincipalProperties();
Standard_Real Ix,Iy,Iz;
Pr.Moments(Ix,Iy,Iz);
if (!isFullMode)
{
Standard_SStream aSStream1;
aSStream1 << "\n\n";
aSStream1 << "Mass : " << setw(15) << G.Mass() << "\n\n";
if(witheps && *a[0] != 'l') aSStream1 << "Relative error of mass computation : " << setw(15) << eps << "\n\n";
aSStream1 << "Center of gravity : \n";
aSStream1 << "X = " << setw(15) << P.X() << "\n";
aSStream1 << "Y = " << setw(15) << P.Y() << "\n";
aSStream1 << "Z = " << setw(15) << P.Z() << "\n";
aSStream1 << "\n";
aSStream1 << "Matrix of Inertia : \n";
aSStream1 << setw(15) << I(1,1);
aSStream1 << " " << setw(15) << I(1,2);
aSStream1 << " " << setw(15) << I(1,3) << "\n";
aSStream1 << setw(15) << I(2,1);
aSStream1 << " " << setw(15) << I(2,2);
aSStream1 << " " << setw(15) << I(2,3) << "\n";
aSStream1 << setw(15) << I(3,1);
aSStream1 << " " << setw(15) << I(3,2);
aSStream1 << " " << setw(15) << I(3,3) << "\n";
aSStream1 << "\n";
aSStream1 << ends;
di << aSStream1;
Standard_SStream aSStream2;
aSStream2 << "Moments : \n";
aSStream2 << "IX = " << setw(15) << Ix << "\n";
aSStream2 << "IY = " << setw(15) << Iy << "\n";
aSStream2 << "IZ = " << setw(15) << Iz << "\n";
aSStream2 << "\n";
aSStream2 << ends;
di << aSStream2;
}
else
{
di << "\n\nMass : " << G.Mass() << "\n\n";
if (witheps && *a[0] != 'l')
{
di << "Relative error of mass computation : " << eps << "\n\n";
}
di << "Center of gravity : \n";
di << "X = " << P.X() << "\n";
di << "Y = " << P.Y() << "\n";
di << "Z = " << P.Z() << "\n\n";
di << "Matrix of Inertia :\n";
di << I(1,1) << " " << I(1,2) << " " << I(1,3) << "\n";
di << I(2,1) << " " << I(2,2) << " " << I(2,3) << "\n";
di << I(3,1) << " " << I(3,2) << " " << I(3,3) << "\n\n";
di << "Moments :\n";
di << "IX = " << Ix << "\n";
di << "IY = " << Iy << "\n";
di << "IZ = " << Iz << "\n\n";
}
//if (n == 2) {
gp_Ax2 axes(P,Pr.ThirdAxisOfInertia(),Pr.FirstAxisOfInertia());
Handle(Draw_Axis3D) Dax = new Draw_Axis3D(axes,Draw_orange,30);
dout << Dax;
//}
return 0;
}
Standard_Integer vpropsgk(Draw_Interpretor& di, Standard_Integer n, const char** a)
{
if (n < 2) {
di << "Use: " << a[0] << " shape epsilon closed span mode [x y z] [-skip]\n";
di << "Compute properties of the shape\n";
di << "The epsilon defines relative precision of computation\n";
di << "The \"closed\" flag, if equal 1, causes computation only closed shells of the shape\n";
di << "The \"span\" flag, if equal 1, says that computation is performed on spans\n";
di << " This option makes effect only for BSpline surfaces.\n";
di << "mode can be 0 - only volume calculations\n";
di << " 1 - volume and gravity center\n";
di << " 2 - volume, gravity center and matrix of inertia\n";
di << "The centroid coordinates will be put to DRAW variables x y z (if given)\n\n";
return 1;
}
if ( n > 2 && n < 6) {
di << "Wrong arguments\n";
return 1;
}
TopoDS_Shape S = DBRep::Get(a[1]);
if (S.IsNull()) return 0;
GProp_GProps G;
Standard_Boolean SkipShared = Standard_False;
if (n >= 2 && strcmp(a[n-1], "-skip") == 0)
{
SkipShared = Standard_True;
--n;
}
Standard_Boolean onlyClosed = Standard_False;
Standard_Boolean isUseSpan = Standard_False;
Standard_Boolean CGFlag = Standard_False;
Standard_Boolean IFlag = Standard_False;
Standard_Real eps = 1.e-3;
//Standard_Real aDefaultTol = 1.e-3;
Standard_Integer mode = 0;
eps = Draw::Atof(a[2]);
mode = Draw::Atoi(a[3]);
if(mode > 0) onlyClosed = Standard_True;
mode = Draw::Atoi(a[4]);
if(mode > 0) isUseSpan = Standard_True;
mode = Draw::Atoi(a[5]);
if(mode == 1 || mode == 3) CGFlag = Standard_True;
if(mode == 2 || mode == 3) IFlag = Standard_True;
//OSD_Chronometer aChrono;
//aChrono.Reset();
//aChrono.Start();
eps = BRepGProp::VolumePropertiesGK(S, G, eps, onlyClosed, isUseSpan, CGFlag, IFlag, SkipShared);
//aChrono.Stop();
Standard_SStream aSStream0;
Standard_Integer anOutWidth = 24;
aSStream0.precision(15);
aSStream0 << "\n\n";
aSStream0 << "Mass : " << setw(anOutWidth) << G.Mass() << "\n\n";
aSStream0 << "Relative error of mass computation : " << setw(anOutWidth) << eps << "\n\n";
aSStream0 << ends;
di << aSStream0;
if(CGFlag || IFlag) {
Standard_SStream aSStream1;
gp_Pnt P = G.CentreOfMass();
if (n > 6) {
Draw::Set(a[6],P.X());
}
if (n > 7) {
Draw::Set(a[7],P.Y());
}
if (n > 8) {
Draw::Set(a[8],P.Z());
}
aSStream1.precision(15);
aSStream1 << "Center of gravity : \n";
aSStream1 << "X = " << setw(anOutWidth) << P.X() << "\n";
aSStream1 << "Y = " << setw(anOutWidth) << P.Y() << "\n";
aSStream1 << "Z = " << setw(anOutWidth) << P.Z() << "\n";
aSStream1 << "\n";
if(IFlag) {
gp_Mat I = G.MatrixOfInertia();
aSStream1 << "Matrix of Inertia : \n";
aSStream1 << setw(anOutWidth) << I(1,1);
aSStream1 << " " << setw(anOutWidth) << I(1,2);
aSStream1 << " " << setw(anOutWidth) << I(1,3) << "\n";
aSStream1 << setw(anOutWidth) << I(2,1);
aSStream1 << " " << setw(anOutWidth) << I(2,2);
aSStream1 << " " << setw(anOutWidth) << I(2,3) << "\n";
aSStream1 << setw(anOutWidth) << I(3,1);
aSStream1 << " " << setw(anOutWidth) << I(3,2);
aSStream1 << " " << setw(anOutWidth) << I(3,3) << "\n";
aSStream1 << "\n";
}
aSStream1 << ends;
di << aSStream1;
}
if(IFlag) {
GProp_PrincipalProps Pr = G.PrincipalProperties();
Standard_Real Ix,Iy,Iz;
Pr.Moments(Ix,Iy,Iz);
gp_Pnt P = G.CentreOfMass();
Standard_SStream aSStream2;
aSStream2.precision(15);
aSStream2 << "Moments : \n";
aSStream2 << "IX = " << setw(anOutWidth) << Ix << "\n";
aSStream2 << "IY = " << setw(anOutWidth) << Iy << "\n";
aSStream2 << "IZ = " << setw(anOutWidth) << Iz << "\n";
aSStream2 << "\n";
aSStream2 << "\n";
aSStream2 << ends;
di << aSStream2;
gp_Ax2 axes(P,Pr.ThirdAxisOfInertia(),Pr.FirstAxisOfInertia());
Handle(Draw_Axis3D) Dax = new Draw_Axis3D(axes,Draw_orange,30);
dout << Dax;
}
return 0;
}
//=======================================================================
//function : GPropCommands
//purpose :
//=======================================================================
void BRepTest::GPropCommands(Draw_Interpretor& theCommands)
{
static Standard_Boolean done = Standard_False;
if (done) return;
done = Standard_True;
DBRep::BasicCommands(theCommands);
const char* g = "Global properties";
theCommands.Add("lprops",
"lprops name [x y z] [-skip] [-full] : compute linear properties",
__FILE__, props, g);
theCommands.Add("sprops", "sprops name [epsilon] [x y z] [-skip] [-full] :\n"
" compute surfacic properties", __FILE__, props, g);
theCommands.Add("vprops", "vprops name [epsilon] [c[losed]] [x y z] [-skip] [-full] :\n"
" compute volumic properties", __FILE__, props, g);
theCommands.Add("vpropsgk",
"vpropsgk name epsilon closed span mode [x y z] [-skip] : compute volumic properties",
__FILE__,
vpropsgk,
g);
}