1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-09 18:50:54 +03:00
occt/src/Extrema/Extrema_ExtElC.cxx
abv 42cf5bc1ca 0024002: Overall code and build procedure refactoring -- automatic
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl":
- WOK-generated header files from inc and sources from drv are moved to src
- CDL files removed
- All packages are converted to nocdlpack
2015-07-12 07:42:38 +03:00

1090 lines
32 KiB
C++

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <ElCLib.hxx>
#include <Extrema_ExtElC.hxx>
#include <Extrema_ExtPElC.hxx>
#include <Extrema_POnCurv.hxx>
#include <gp_Ax1.hxx>
#include <gp_Ax2.hxx>
#include <gp_Ax3.hxx>
#include <gp_Circ.hxx>
#include <gp_Dir.hxx>
#include <gp_Elips.hxx>
#include <gp_Hypr.hxx>
#include <gp_Lin.hxx>
#include <gp_Parab.hxx>
#include <gp_Pln.hxx>
#include <gp_Pnt.hxx>
#include <IntAna_QuadQuadGeo.hxx>
#include <math_DirectPolynomialRoots.hxx>
#include <math_TrigonometricFunctionRoots.hxx>
#include <Precision.hxx>
#include <Standard_NotImplemented.hxx>
#include <Standard_OutOfRange.hxx>
#include <StdFail_InfiniteSolutions.hxx>
#include <StdFail_NotDone.hxx>
#include <stdio.h>
static
void RefineDir(gp_Dir& aDir);
//=======================================================================
//class : ExtremaExtElC_TrigonometricRoots
//purpose :
//== Classe Interne (Donne des racines classees d un polynome trigo)
//== Code duplique avec IntAna_IntQuadQuad.cxx (lbr le 26 mars 98)
//== Solution fiable aux problemes de coefficients proches de 0
//== avec essai de rattrapage si coeff<1.e-10 (jct le 27 avril 98)
//=======================================================================
class ExtremaExtElC_TrigonometricRoots {
private:
Standard_Real Roots[4];
Standard_Boolean done;
Standard_Integer NbRoots;
Standard_Boolean infinite_roots;
public:
ExtremaExtElC_TrigonometricRoots(const Standard_Real CC,
const Standard_Real SC,
const Standard_Real C,
const Standard_Real S,
const Standard_Real Cte,
const Standard_Real Binf,
const Standard_Real Bsup);
//
Standard_Boolean IsDone() {
return done;
}
//
Standard_Boolean IsARoot(Standard_Real u) {
Standard_Real PIpPI, aEps;
//
aEps=RealEpsilon();
PIpPI = M_PI + M_PI;
for(Standard_Integer i=0 ; i<NbRoots; i++) {
if(Abs(u - Roots[i])<=aEps) {
return Standard_True ;
}
if(Abs(u - Roots[i]-PIpPI)<=aEps) {
return Standard_True;
}
}
return Standard_False;
}
//
Standard_Integer NbSolutions() {
if(!done) {
StdFail_NotDone::Raise();
}
return NbRoots;
}
//
Standard_Boolean InfiniteRoots() {
if(!done) {
StdFail_NotDone::Raise();
}
return infinite_roots;
}
//
Standard_Real Value(const Standard_Integer& n) {
if((!done)||(n>NbRoots)) {
StdFail_NotDone::Raise();
}
return Roots[n-1];
}
};
//=======================================================================
//function : ExtremaExtElC_TrigonometricRoots
//purpose :
//=======================================================================
ExtremaExtElC_TrigonometricRoots::
ExtremaExtElC_TrigonometricRoots(const Standard_Real CC,
const Standard_Real SC,
const Standard_Real C,
const Standard_Real S,
const Standard_Real Cte,
const Standard_Real Binf,
const Standard_Real Bsup)
{
Standard_Integer i, nbessai;
Standard_Real cc ,sc, c, s, cte;
//
nbessai = 1;
cc = CC;
sc = SC;
c = C;
s = S;
cte = Cte;
done=Standard_False;
while (nbessai<=2 && !done) {
//-- F= AA*CN*CN+2*BB*CN*SN+CC*CN+DD*SN+EE;
math_TrigonometricFunctionRoots MTFR(cc,sc,c,s,cte,Binf,Bsup);
//
if(MTFR.IsDone()) {
done=Standard_True;
if(MTFR.InfiniteRoots()) {
infinite_roots=Standard_True;
}
else { //else #1
Standard_Boolean Triee;
Standard_Integer j, SvNbRoots;
Standard_Real aTwoPI, aMaxCoef, aPrecision;
//
aTwoPI=M_PI+M_PI;
NbRoots=MTFR.NbSolutions();
for(i=0;i<NbRoots;++i) {
Roots[i]=MTFR.Value(i+1);
if(Roots[i]<0.) {
Roots[i]=Roots[i]+aTwoPI;
}
if(Roots[i]>aTwoPI) {
Roots[i]=Roots[i]-aTwoPI;
}
}
//
//-- La recherche directe donne n importe quoi.
aMaxCoef = Max(CC,SC);
aMaxCoef = Max(aMaxCoef,C);
aMaxCoef = Max(aMaxCoef,S);
aMaxCoef = Max(aMaxCoef,Cte);
aPrecision = Max(1.e-8, 1.e-12*aMaxCoef);
SvNbRoots=NbRoots;
for(i=0; i<SvNbRoots; ++i) {
Standard_Real y;
Standard_Real co=cos(Roots[i]);
Standard_Real si=sin(Roots[i]);
y=co*(CC*co + (SC+SC)*si + C) + S*si + Cte;
// modified by OCC Tue Oct 3 18:43:00 2006
if(Abs(y)>aPrecision) {
NbRoots--;
Roots[i]=1000.0;
}
}
//
do {
Standard_Real t;
//
Triee=Standard_True;
for(i=1, j=0; i<SvNbRoots; ++i, ++j) {
if(Roots[i]<Roots[j]) {
Triee=Standard_False;
t=Roots[i];
Roots[i]=Roots[j];
Roots[j]=t;
}
}
}
while(!Triee);
//
infinite_roots=Standard_False;
if(NbRoots==0) { //--!!!!! Detect case Pol = Cte ( 1e-50 ) !!!!
if((Abs(CC) + Abs(SC) + Abs(C) + Abs(S)) < 1e-10) {
if(Abs(Cte) < 1e-10) {
infinite_roots=Standard_True;
}
}
}
} // else #1
} // if(MTFR.IsDone()) {
else {
// try to set very small coefficients to ZERO
if (Abs(CC)<1e-10) {
cc = 0.0;
}
if (Abs(SC)<1e-10) {
sc = 0.0;
}
if (Abs(C)<1e-10) {
c = 0.0;
}
if (Abs(S)<1e-10){
s = 0.0;
}
if (Abs(Cte)<1e-10){
cte = 0.0;
}
nbessai++;
}
} // while (nbessai<=2 && !done) {
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC ()
{
myDone = Standard_False;
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& C1,
const gp_Lin& C2,
const Standard_Real)
// Function:
// Find min distance between 2 straight lines.
// Method:
// Let D1 and D2, be 2 directions of straight lines C1 and C2.
// 2 cases are considered:
// 1- if Angle(D1,D2) < AngTol, straight lines are parallel.
// The distance is the distance between a point of C1 and the straight line C2.
// 2- if Angle(D1,D2) > AngTol:
// Let P1=C1(u1) and P2=C2(u2) be 2 solution points:
// Then, ( P1P2.D1 = 0. (1)
// ( P1P2.D2 = 0. (2)
// Let O1 and O2 be the origins of C1 and C2;
// THen, (1) <=> (O1P2-u1*D1).D1 = 0. as O1P1 = u1*D1
// <=> u1 = O1P2.D1 as D1.D1 = 1.
// (2) <=> (P1O2+u2*D2).D2 = 0. as O2P2 = u2*D2
// <=> u2 = O2P1.D2 as D2.D2 = 1.
// <=> u2 = (O2O1+O1P1).D2
// <=> u2 = O2O1.D2+((O1P2.T1)T1).T2) as O1P1 = u1*T1 = (O1P2.T1)T1
// <=> u2 = O2O1.D2+(((O1O2+O2P2).D1)D1).D2)
// <=> u2 = O2O1.D2+((O1O2.D1)D1).D2)+(O2P2.D1)(D1.D2)
// <=> u2 = ((O1O2.D1)D1-O1O2).D2 + u2*(D2.D1)(D1.D2)
// <=> u2 = (((O1O2.D1)D1-O1O2).D2) / 1.-(D1.D2)**2
{
myDone = Standard_False;
myNbExt = 0;
gp_Dir D1 = C1.Position().Direction();
gp_Dir D2 = C2.Position().Direction();
// MSV 16/01/2000: avoid "divide by zero"
Standard_Real D1DotD2 = D1.Dot(D2);
Standard_Real aSin = 1.-D1DotD2*D1DotD2;
if (aSin < gp::Resolution() ||
D1.IsParallel(D2, Precision::Angular())) {
myIsPar = Standard_True;
mySqDist[0] = C2.SquareDistance(C1.Location());
mySqDist[1] = mySqDist[0];
}
else {
myIsPar = Standard_False;
gp_Pnt O1 = C1.Location();
gp_Pnt O2 = C2.Location();
gp_Vec O1O2 (O1,O2);
Standard_Real U2 = (D1.XYZ()*(O1O2.Dot(D1))-(O1O2.XYZ())).Dot(D2.XYZ());
if( Precision::IsInfinite(U2) ) {
myIsPar = Standard_True;
mySqDist[0] = C2.SquareDistance(C1.Location());
mySqDist[1] = mySqDist[0];
}
else {
U2 /= aSin;
if( Precision::IsInfinite(U2) ) {
myIsPar = Standard_True;
mySqDist[0] = C2.SquareDistance(C1.Location());
mySqDist[1] = mySqDist[0];
}
else {
gp_Pnt P2(ElCLib::Value(U2,C2));
Standard_Real U1 = (gp_Vec(O1,P2)).Dot(D1);
if( Precision::IsInfinite(U1) ) {
myIsPar = Standard_True;
mySqDist[0] = C2.SquareDistance(C1.Location());
mySqDist[1] = mySqDist[0];
}
else {
gp_Pnt P1(ElCLib::Value(U1,C1));
mySqDist[myNbExt] = P1.SquareDistance(P2);
myPoint[myNbExt][0] = Extrema_POnCurv(U1,P1);
myPoint[myNbExt][1] = Extrema_POnCurv(U2,P2);
myNbExt = 1;
}
}
}
}
myDone = Standard_True;
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
// Find extreme distances between straight line C1 and circle C2.
//
//Method:
// Let P1=C1(u1) and P2=C2(u2) be two solution points
// D the direction of straight line C1
// T tangent at point P2;
// Then, ( P1P2.D = 0. (1)
// ( P1P2.T = 0. (2)
// Let O1 and O2 be the origins of C1 and C2;
// Then, (1) <=> (O1P2-u1*D).D = 0. as O1P1 = u1*D
// <=> u1 = O1P2.D as D.D = 1.
// (2) <=> P1O2.T = 0. as O2P2.T = 0.
// <=> ((P2O1.D)D+O1O2).T = 0. as P1O1 = -u1*D = (P2O1.D)D
// <=> (((P2O2+O2O1).D)D+O1O2).T = 0.
// <=> ((P2O2.D)(D.T)+((O2O1.D)D-O2O1).T = 0.
// We are in the reference of the circle; let:
// Cos = Cos(u2) and Sin = Sin(u2),
// P2 (R*Cos,R*Sin,0.),
// T (-R*Sin,R*Cos,0.),
// D (Dx,Dy,Dz),
// V (Vx,Vy,Vz) = (O2O1.D)D-O2O1;
// Then, the equation by Cos and Sin is as follows:
// -(2*R*R*Dx*Dy) * Cos**2 + A1
// R*R*(Dx**2-Dy**2) * Cos*Sin + 2* A2
// R*Vy * Cos + A3
// -R*Vx * Sin + A4
// R*R*Dx*Dy = 0. A5
//Use the algorithm math_TrigonometricFunctionRoots to solve this equation.
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& C1,
const gp_Circ& C2,
const Standard_Real)
{
Standard_Real Dx,Dy,Dz,aRO2O1, aTolRO2O1;
Standard_Real R, A1, A2, A3, A4, A5, aTol;
gp_Dir x2, y2, z2, D, D1;
//
myIsPar = Standard_False;
myDone = Standard_False;
myNbExt = 0;
// Calculate T1 in the reference of the circle ...
D = C1.Direction();
D1 = D;
x2 = C2.XAxis().Direction();
y2 = C2.YAxis().Direction();
z2 = C2.Axis().Direction();
Dx = D.Dot(x2);
Dy = D.Dot(y2);
Dz = D.Dot(z2);
//
D.SetCoord(Dx, Dy, Dz);
RefineDir(D);
D.Coord(Dx, Dy, Dz);
//
// Calcul de V dans le repere du cercle:
gp_Pnt O1 = C1.Location();
gp_Pnt O2 = C2.Location();
gp_Vec O2O1 (O2,O1);
//
aTolRO2O1=gp::Resolution();
aRO2O1=O2O1.Magnitude();
if (aRO2O1 > aTolRO2O1) {
gp_Dir aDO2O1;
//
O2O1.Multiply(1./aRO2O1);
aDO2O1.SetCoord(O2O1.Dot(x2), O2O1.Dot(y2), O2O1.Dot(z2));
RefineDir(aDO2O1);
O2O1.SetXYZ(aRO2O1*aDO2O1.XYZ());
}
else {
O2O1.SetCoord(O2O1.Dot(x2), O2O1.Dot(y2), O2O1.Dot(z2));
}
//
gp_XYZ Vxyz = (D.XYZ()*(O2O1.Dot(D)))-O2O1.XYZ();
//
//modified by NIZNHY-PKV Tue Mar 20 10:36:38 2012
/*
R = C2.Radius();
A5 = R*R*Dx*Dy;
A1 = -2.*A5;
A2 = R*R*(Dx*Dx-Dy*Dy)/2.;
A3 = R*Vxyz.Y();
A4 = -R*Vxyz.X();
//
aTol=1.e-12;
//
if(fabs(A5) <= aTol) {
A5 = 0.;
}
if(fabs(A1) <= aTol) {
A1 = 0.;
}
if(fabs(A2) <= aTol) {
A2 = 0.;
}
if(fabs(A3) <= aTol) {
A3 = 0.;
}
if(fabs(A4) <= aTol) {
A4 = 0.;
}
*/
//
aTol=1.e-12;
// Calculate the coefficients of the equation by Cos and Sin ...
// [divided by R]
R = C2.Radius();
A5 = R*Dx*Dy;
A1 = -2.*A5;
A2 = 0.5*R*(Dx*Dx-Dy*Dy);// /2.;
A3 = Vxyz.Y();
A4 = -Vxyz.X();
//
if (A1>=-aTol && A1<=aTol) {
A1 = 0.;
}
if (A2>=-aTol && A2<=aTol) {
A2 = 0.;
}
if (A3>=-aTol && A3<=aTol) {
A3 = 0.;
}
if (A4>=-aTol && A4<=aTol) {
A4 = 0.;
}
if (A5>=-aTol && A5<=aTol) {
A5 = 0.;
}
//modified by NIZNHY-PKV Tue Mar 20 10:36:40 2012t
//
ExtremaExtElC_TrigonometricRoots Sol(A1, A2, A3, A4, A5, 0., M_PI+M_PI);
if (!Sol.IsDone()) {
return;
}
if (Sol.InfiniteRoots()) {
myIsPar = Standard_True;
mySqDist[0] = R*R;
myDone = Standard_True;
return;
}
// Storage of solutions ...
Standard_Integer NoSol, NbSol;
Standard_Real U1,U2;
gp_Pnt P1,P2;
//
NbSol = Sol.NbSolutions();
for (NoSol=1; NoSol<=NbSol; ++NoSol) {
U2 = Sol.Value(NoSol);
P2 = ElCLib::Value(U2,C2);
U1 = (gp_Vec(O1,P2)).Dot(D1);
P1 = ElCLib::Value(U1,C1);
mySqDist[myNbExt] = P1.SquareDistance(P2);
//modified by NIZNHY-PKV Wed Mar 21 08:11:33 2012f
//myPoint[myNbExt][0] = Extrema_POnCurv(U1,P1);
//myPoint[myNbExt][1] = Extrema_POnCurv(U2,P2);
myPoint[myNbExt][0].SetValues(U1,P1);
myPoint[myNbExt][1].SetValues(U2,P2);
//modified by NIZNHY-PKV Wed Mar 21 08:11:36 2012t
myNbExt++;
}
myDone = Standard_True;
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& C1,
const gp_Elips& C2)
{
/*-----------------------------------------------------------------------------
Function:
Find extreme distances between straight line C1 and ellipse C2.
Method:
Let P1=C1(u1) and P2=C2(u2) two solution points
D the direction of straight line C1
T the tangent to point P2;
Then, ( P1P2.D = 0. (1)
( P1P2.T = 0. (2)
Let O1 and O2 be the origins of C1 and C2;
Then, (1) <=> (O1P2-u1*D).D = 0. as O1P1 = u1*D
<=> u1 = O1P2.D as D.D = 1.
(2) <=> P1O2.T = 0. as O2P2.T = 0.
<=> ((P2O1.D)D+O1O2).T = 0. as P1O1 = -u1*D = (P2O1.D)D
<=> (((P2O2+O2O1).D)D+O1O2).T = 0.
<=> ((P2O2.D)(D.T)+((O2O1.D)D-O2O1).T = 0.
We are in the reference of the ellipse; let:
Cos = Cos(u2) and Sin = Sin(u2),
P2 (MajR*Cos,MinR*Sin,0.),
T (-MajR*Sin,MinR*Cos,0.),
D (Dx,Dy,Dz),
V (Vx,Vy,Vz) = (O2O1.D)D-O2O1;
Then, get the following equation by Cos and Sin:
-(2*MajR*MinR*Dx*Dy) * Cos**2 +
(MajR*MajR*Dx**2-MinR*MinR*Dy**2) * Cos*Sin +
MinR*Vy * Cos +
- MajR*Vx * Sin +
MinR*MajR*Dx*Dy = 0.
Use algorithm math_TrigonometricFunctionRoots to solve this equation.
-----------------------------------------------------------------------------*/
myIsPar = Standard_False;
myDone = Standard_False;
myNbExt = 0;
// Calculate T1 the reference of the ellipse ...
gp_Dir D = C1.Direction();
gp_Dir D1 = D;
gp_Dir x2, y2, z2;
x2 = C2.XAxis().Direction();
y2 = C2.YAxis().Direction();
z2 = C2.Axis().Direction();
Standard_Real Dx = D.Dot(x2);
Standard_Real Dy = D.Dot(y2);
Standard_Real Dz = D.Dot(z2);
D.SetCoord(Dx,Dy,Dz);
// Calculate V ...
gp_Pnt O1 = C1.Location();
gp_Pnt O2 = C2.Location();
gp_Vec O2O1 (O2,O1);
O2O1.SetCoord(O2O1.Dot(x2), O2O1.Dot(y2), O2O1.Dot(z2));
gp_XYZ Vxyz = (D.XYZ()*(O2O1.Dot(D)))-O2O1.XYZ();
// Calculate the coefficients of the equation by Cos and Sin ...
Standard_Real MajR = C2.MajorRadius();
Standard_Real MinR = C2.MinorRadius();
Standard_Real A5 = MajR*MinR*Dx*Dy;
Standard_Real A1 = -2.*A5;
Standard_Real R2 = MajR*MajR;
Standard_Real r2 = MinR*MinR;
Standard_Real A2 =(R2*Dx*Dx -r2*Dy*Dy -R2 +r2)/2.0;
Standard_Real A3 = MinR*Vxyz.Y();
Standard_Real A4 = -MajR*Vxyz.X();
//
Standard_Real aEps=1.e-12;
//
if(fabs(A5) <= aEps) A5 = 0.;
if(fabs(A1) <= aEps) A1 = 0.;
if(fabs(A2) <= aEps) A2 = 0.;
if(fabs(A3) <= aEps) A3 = 0.;
if(fabs(A4) <= aEps) A4 = 0.;
//
ExtremaExtElC_TrigonometricRoots Sol(A1,A2,A3,A4,A5,0.,M_PI+M_PI);
if (!Sol.IsDone()) { return; }
// Storage of solutions ...
gp_Pnt P1,P2;
Standard_Real U1,U2;
Standard_Integer NbSol = Sol.NbSolutions();
for (Standard_Integer NoSol = 1; NoSol <= NbSol; NoSol++) {
U2 = Sol.Value(NoSol);
P2 = ElCLib::Value(U2,C2);
U1 = (gp_Vec(O1,P2)).Dot(D1);
P1 = ElCLib::Value(U1,C1);
mySqDist[myNbExt] = P1.SquareDistance(P2);
myPoint[myNbExt][0] = Extrema_POnCurv(U1,P1);
myPoint[myNbExt][1] = Extrema_POnCurv(U2,P2);
myNbExt++;
}
myDone = Standard_True;
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& C1,
const gp_Hypr& C2)
{
/*-----------------------------------------------------------------------------
Function:
Find extrema between straight line C1 and hyperbola C2.
Method:
Let P1=C1(u1) and P2=C2(u2) be two solution points
D the direction of straight line C1
T the tangent at point P2;
Then, ( P1P2.D = 0. (1)
( P1P2.T = 0. (2)
Let O1 and O2 be the origins of C1 and C2;
Then, (1) <=> (O1P2-u1*D).D = 0. as O1P1 = u1*D
<=> u1 = O1P2.D as D.D = 1.
(2) <=> (P1O2 + O2P2).T= 0.
<=> ((P2O1.D)D+O1O2 + O2P2).T = 0. as P1O1 = -u1*D = (P2O1.D)D
<=> (((P2O2+O2O1).D)D+O1O2 + O2P2).T = 0.
<=> (P2O2.D)(D.T)+((O2O1.D)D-O2O1).T + O2P2.T= 0.
We are in the reference of the hyperbola; let:
by writing P (R* Chu, r* Shu, 0.0)
and Chu = (v**2 + 1)/(2*v) ,
Shu = (V**2 - 1)/(2*v)
T(R*Shu, r*Chu)
D (Dx,Dy,Dz),
V (Vx,Vy,Vz) = (O2O1.D)D-O2O1;
Then we obtain the following equation by v:
(-2*R*r*Dx*Dy - R*R*Dx*Dx-r*r*Dy*Dy + R*R + r*r) * v**4 +
(2*R*Vx + 2*r*Vy) * v**3 +
(-2*R*Vx + 2*r*Vy) * v +
(-2*R*r*Dx*Dy - (R*R*Dx*Dx-r*r*Dy*Dy + R*R + r*r)) = 0
Use the algorithm math_DirectPolynomialRoots to solve this equation.
-----------------------------------------------------------------------------*/
myIsPar = Standard_False;
myDone = Standard_False;
myNbExt = 0;
// Calculate T1 in the reference of the hyperbola...
gp_Dir D = C1.Direction();
gp_Dir D1 = D;
gp_Dir x2, y2, z2;
x2 = C2.XAxis().Direction();
y2 = C2.YAxis().Direction();
z2 = C2.Axis().Direction();
Standard_Real Dx = D.Dot(x2);
Standard_Real Dy = D.Dot(y2);
Standard_Real Dz = D.Dot(z2);
D.SetCoord(Dx,Dy,Dz);
// Calculate V ...
gp_Pnt O1 = C1.Location();
gp_Pnt O2 = C2.Location();
gp_Vec O2O1 (O2,O1);
O2O1.SetCoord(O2O1.Dot(x2), O2O1.Dot(y2), O2O1.Dot(z2));
gp_XYZ Vxyz = (D.XYZ()*(O2O1.Dot(D)))-O2O1.XYZ();
Standard_Real Vx = Vxyz.X();
Standard_Real Vy = Vxyz.Y();
// Calculate coefficients of the equation by v
Standard_Real R = C2.MajorRadius();
Standard_Real r = C2.MinorRadius();
Standard_Real a = -2*R*r*Dx*Dy;
Standard_Real b = -R*R*Dx*Dx - r*r*Dy*Dy + R*R + r*r;
Standard_Real A1 = a + b;
Standard_Real A2 = 2*R*Vx + 2*r*Vy;
Standard_Real A4 = -2*R*Vx + 2*r*Vy;
Standard_Real A5 = a - b;
math_DirectPolynomialRoots Sol(A1,A2,0.0,A4, A5);
if (!Sol.IsDone()) { return; }
// Store solutions ...
gp_Pnt P1,P2;
Standard_Real U1,U2, v;
Standard_Integer NbSol = Sol.NbSolutions();
for (Standard_Integer NoSol = 1; NoSol <= NbSol; NoSol++) {
v = Sol.Value(NoSol);
if (v > 0.0) {
U2 = Log(v);
P2 = ElCLib::Value(U2,C2);
U1 = (gp_Vec(O1,P2)).Dot(D1);
P1 = ElCLib::Value(U1,C1);
mySqDist[myNbExt] = P1.SquareDistance(P2);
myPoint[myNbExt][0] = Extrema_POnCurv(U1,P1);
myPoint[myNbExt][1] = Extrema_POnCurv(U2,P2);
myNbExt++;
}
}
myDone = Standard_True;
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& C1,
const gp_Parab& C2)
{
/*-----------------------------------------------------------------------------
Function:
Find extreme distances between straight line C1 and parabole C2.
Method:
Let P1=C1(u1) and P2=C2(u2) be two solution points
D the direction of straight line C1
T the tangent to point P2;
Then, ( P1P2.D = 0. (1)
( P1P2.T = 0. (2)
Let O1 and O2 be the origins of C1 and C2;
Then, (1) <=> (O1P2-u1*D).D = 0. as O1P1 = u1*D
<=> u1 = O1P2.D as D.D = 1.
(2) <=> (P1O2 + O2P2).T= 0.
<=> ((P2O1.D)D+O1O2 + O2P2).T = 0. as P1O1 = -u1*D = (P2O1.D)D
<=> (((P2O2+O2O1).D)D+O1O2 + O2P2).T = 0.
<=> (P2O2.D)(D.T)+((O2O1.D)D-O2O1).T + O2P2.T = 0.
We are in the reference of the parabola; let:
P2 (y*y/(2*p), y, 0)
T (y/p, 1, 0)
D (Dx,Dy,Dz),
V (Vx,Vy,Vz) = (O2O1.D)D-O2O1;
Then, get the following equation by y:
((1-Dx*Dx)/(2*p*p)) * y*y*y + A1
(-3*Dx*Dy/(2*p)) * y*y + A2
(1-Dy*Dy + Vx/p) * y + A3
Vy = 0. A4
Use the algorithm math_DirectPolynomialRoots to solve this equation.
-----------------------------------------------------------------------------*/
myIsPar = Standard_False;
myDone = Standard_False;
myNbExt = 0;
// Calculate T1 in the reference of the parabola...
gp_Dir D = C1.Direction();
gp_Dir D1 = D;
gp_Dir x2, y2, z2;
x2 = C2.XAxis().Direction();
y2 = C2.YAxis().Direction();
z2 = C2.Axis().Direction();
Standard_Real Dx = D.Dot(x2);
Standard_Real Dy = D.Dot(y2);
Standard_Real Dz = D.Dot(z2);
D.SetCoord(Dx,Dy,Dz);
// Calculate V ...
gp_Pnt O1 = C1.Location();
gp_Pnt O2 = C2.Location();
gp_Vec O2O1 (O2,O1);
O2O1.SetCoord(O2O1.Dot(x2), O2O1.Dot(y2), O2O1.Dot(z2));
gp_XYZ Vxyz = (D.XYZ()*(O2O1.Dot(D)))-O2O1.XYZ();
// Calculate coefficients of the equation by y
Standard_Real P = C2.Parameter();
Standard_Real A1 = (1-Dx*Dx)/(2.0*P*P);
Standard_Real A2 = (-3.0*Dx*Dy/(2.0*P));
Standard_Real A3 = (1 - Dy*Dy + Vxyz.X()/P);
Standard_Real A4 = Vxyz.Y();
math_DirectPolynomialRoots Sol(A1,A2,A3,A4);
if (!Sol.IsDone()) { return; }
// Storage of solutions ...
gp_Pnt P1,P2;
Standard_Real U1,U2;
Standard_Integer NbSol = Sol.NbSolutions();
for (Standard_Integer NoSol = 1; NoSol <= NbSol; NoSol++) {
U2 = Sol.Value(NoSol);
P2 = ElCLib::Value(U2,C2);
U1 = (gp_Vec(O1,P2)).Dot(D1);
P1 = ElCLib::Value(U1,C1);
mySqDist[myNbExt] = P1.SquareDistance(P2);
myPoint[myNbExt][0] = Extrema_POnCurv(U1,P1);
myPoint[myNbExt][1] = Extrema_POnCurv(U2,P2);
myNbExt++;
}
myDone = Standard_True;
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC (const gp_Circ& C1,
const gp_Circ& C2)
{
Standard_Boolean bIsSamePlane, bIsSameAxe;
Standard_Real aTolD, aTolD2, aTolA, aD2, aDC2;
gp_Pnt aPc1, aPc2;
gp_Dir aDc1, aDc2;
//
myIsPar = Standard_False;
myDone = Standard_False;
myNbExt = 0;
//
aTolA=Precision::Angular();
aTolD=Precision::Confusion();
aTolD2=aTolD*aTolD;
//
aPc1=C1.Location();
aDc1=C1.Axis().Direction();
aPc2=C2.Location();
aDc2=C2.Axis().Direction();
gp_Pln aPlc1(aPc1, aDc1);
//
aD2=aPlc1.SquareDistance(aPc2);
bIsSamePlane=aDc1.IsParallel(aDc2, aTolA) && aD2<aTolD2;
if (!bIsSamePlane) {
return;
}
//
aDC2=aPc1.SquareDistance(aPc2);
bIsSameAxe=aDC2<aTolD2;
//
if(bIsSameAxe) {
myIsPar = Standard_True;
Standard_Real dR = C1.Radius() - C2.Radius();
Standard_Real dC = C1.Location().Distance(C2.Location());
mySqDist[0] = dR*dR + dC*dC;
dR = C1.Radius() + C2.Radius();
mySqDist[1] = dR*dR + dC*dC;
myDone = Standard_True;
}
else {
Standard_Boolean bIn, bOut;
Standard_Integer j1, j2;
Standard_Real aR1, aR2, aD12, aT11, aT12, aT21, aT22;
gp_Circ aC1, aC2;
gp_Pnt aP11, aP12, aP21, aP22;
//
myDone = Standard_True;
//
aR1=C1.Radius();
aR2=C2.Radius();
//
j1=0;
j2=1;
aC1=C1;
aC2=C2;
if (aR2>aR1) {
j1=1;
j2=0;
aC1=C2;
aC2=C1;
}
//
aR1=aC1.Radius(); // max radius
aR2=aC2.Radius(); // min radius
//
aPc1=aC1.Location();
aPc2=aC2.Location();
//
aD12=aPc1.Distance(aPc2);
gp_Vec aVec12(aPc1, aPc2);
gp_Dir aDir12(aVec12);
//
// 1. Four common solutions
myNbExt=4;
//
aP11.SetXYZ(aPc1.XYZ()-aR1*aDir12.XYZ());
aP12.SetXYZ(aPc1.XYZ()+aR1*aDir12.XYZ());
aP21.SetXYZ(aPc2.XYZ()-aR2*aDir12.XYZ());
aP22.SetXYZ(aPc2.XYZ()+aR2*aDir12.XYZ());
//
aT11=ElCLib::Parameter(aC1, aP11);
aT12=ElCLib::Parameter(aC1, aP12);
aT21=ElCLib::Parameter(aC2, aP21);
aT22=ElCLib::Parameter(aC2, aP22);
//
// P11, P21
myPoint[0][j1].SetValues(aT11, aP11);
myPoint[0][j2].SetValues(aT21, aP21);
mySqDist[0]=aP11.SquareDistance(aP21);
// P11, P22
myPoint[1][j1].SetValues(aT11, aP11);
myPoint[1][j2].SetValues(aT22, aP22);
mySqDist[1]=aP11.SquareDistance(aP22);
//
// P12, P21
myPoint[2][j1].SetValues(aT12, aP12);
myPoint[2][j2].SetValues(aT21, aP21);
mySqDist[2]=aP12.SquareDistance(aP21);
//
// P12, P22
myPoint[3][j1].SetValues(aT12, aP12);
myPoint[3][j2].SetValues(aT22, aP22);
mySqDist[3]=aP12.SquareDistance(aP22);
//
// 2. Check for intersections
bOut=aD12>(aR1+aR2+aTolD);
bIn =aD12<(aR1-aR2-aTolD);
if (!bOut && !bIn) {
Standard_Boolean bNbExt6;
Standard_Real aAlpha, aBeta, aT[2], aVal, aDist2;
gp_Pnt aPt, aPL1, aPL2;
gp_Dir aDLt;
//
aAlpha=0.5*(aR1*aR1-aR2*aR2+aD12*aD12)/aD12;
aVal=aR1*aR1-aAlpha*aAlpha;
if (aVal<0.) {// see pkv/900/L4 for details
aVal=-aVal;
}
aBeta=Sqrt(aVal);
//aBeta=Sqrt(aR1*aR1-aAlpha*aAlpha);
//--
aPt.SetXYZ(aPc1.XYZ()+aAlpha*aDir12.XYZ());
//
aDLt=aDc1^aDir12;
aPL1.SetXYZ(aPt.XYZ()+aBeta*aDLt.XYZ());
aPL2.SetXYZ(aPt.XYZ()-aBeta*aDLt.XYZ());
//
aDist2=aPL1.SquareDistance(aPL2);
bNbExt6=aDist2>aTolD2;
//
myNbExt=5;// just in case. see pkv/900/L4 for details
aT[j1]=ElCLib::Parameter(aC1, aPL1);
aT[j2]=ElCLib::Parameter(aC2, aPL1);
myPoint[4][j1].SetValues(aT[j1], aPL1);
myPoint[4][j2].SetValues(aT[j2], aPL1);
mySqDist[4]=0.;
//
if (bNbExt6) {
myNbExt=6;
aT[j1]=ElCLib::Parameter(aC1, aPL2);
aT[j2]=ElCLib::Parameter(aC2, aPL2);
myPoint[5][j1].SetValues(aT[j1], aPL2);
myPoint[5][j2].SetValues(aT[j2], aPL2);
mySqDist[5]=0.;
}
//
}// if (!bOut || !bIn) {
}// else
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC (const gp_Circ&, const gp_Elips&)
{
Standard_NotImplemented::Raise();
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC (const gp_Circ&, const gp_Hypr&)
{
Standard_NotImplemented::Raise();
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC (const gp_Circ&, const gp_Parab&)
{
Standard_NotImplemented::Raise();
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC (const gp_Elips&, const gp_Elips&)
{
Standard_NotImplemented::Raise();
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC (const gp_Elips&, const gp_Hypr&)
{
Standard_NotImplemented::Raise();
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC (const gp_Elips&, const gp_Parab&)
{
Standard_NotImplemented::Raise();
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC (const gp_Hypr&, const gp_Hypr&)
{
Standard_NotImplemented::Raise();
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC (const gp_Hypr&, const gp_Parab&)
{
Standard_NotImplemented::Raise();
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC (const gp_Parab&, const gp_Parab&)
{
Standard_NotImplemented::Raise();
}
//=======================================================================
//function : IsDone
//purpose :
//=======================================================================
Standard_Boolean Extrema_ExtElC::IsDone () const {
return myDone;
}
//=======================================================================
//function : IsParallel
//purpose :
//=======================================================================
Standard_Boolean Extrema_ExtElC::IsParallel () const
{
if (!IsDone()) {
StdFail_NotDone::Raise();
}
return myIsPar;
}
//=======================================================================
//function : NbExt
//purpose :
//=======================================================================
Standard_Integer Extrema_ExtElC::NbExt () const
{
if (IsParallel()) {
StdFail_InfiniteSolutions::Raise();
}
return myNbExt;
}
//=======================================================================
//function : SquareDistance
//purpose :
//=======================================================================
Standard_Real Extrema_ExtElC::SquareDistance (const Standard_Integer N) const
{
if (!myDone) {
StdFail_NotDone::Raise();
}
if (myIsPar) {
if (N < 1 || N > 2) {
Standard_OutOfRange::Raise();
}
}
else {
if (N < 1 || N > NbExt()) {
Standard_OutOfRange::Raise();
}
}
return mySqDist[N-1];
}
//=======================================================================
//function : Points
//purpose :
//=======================================================================
void Extrema_ExtElC::Points (const Standard_Integer N,
Extrema_POnCurv& P1,
Extrema_POnCurv& P2) const
{
if (N < 1 || N > NbExt()) {
Standard_OutOfRange::Raise();
}
P1 = myPoint[N-1][0];
P2 = myPoint[N-1][1];
}
//=======================================================================
//function : RefineDir
//purpose :
//=======================================================================
void RefineDir(gp_Dir& aDir)
{
Standard_Integer i, j, k, iK;
Standard_Real aCx[3], aEps, aX1, aX2, aOne;
//
iK=3;
aEps=RealEpsilon();
aDir.Coord(aCx[0], aCx[1], aCx[2]);
//
for (i=0; i<iK; ++i) {
aOne=(aCx[i]>0.) ? 1. : -1.;
aX1=aOne-aEps;
aX2=aOne+aEps;
//
if (aCx[i]>aX1 && aCx[i]<aX2) {
j=(i+1)%iK;
k=(i+2)%iK;
aCx[i]=aOne;
aCx[j]=0.;
aCx[k]=0.;
aDir.SetCoord(aCx[0], aCx[1], aCx[2]);
return;
}
}
}