1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-07 18:30:55 +03:00
occt/src/GeomFill/GeomFill_ConstantBiNormal.cxx
abv d5f74e42d6 0024624: Lost word in license statement in source files
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast
Wrong license statements corrected in several files.
Copyright and license statements added in XSD and GLSL files.
Copyright year updated in some files.
Obsolete documentation files removed from DrawResources.
2014-02-20 16:15:17 +04:00

257 lines
8.2 KiB
C++

// Created on: 1998-03-03
// Created by: Roman BORISOV
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <GeomFill_ConstantBiNormal.ixx>
#include <gp_Ax1.hxx>
#include <gp_Lin.hxx>
#include <Precision.hxx>
//=======================================================================
//function : FDeriv
//purpose : computes (F/|F|)'
//=======================================================================
static gp_Vec FDeriv(const gp_Vec& F, const gp_Vec& DF)
{
Standard_Real Norma = F.Magnitude();
gp_Vec Result = (DF - F*(F*DF)/(Norma*Norma))/Norma;
return Result;
}
//=======================================================================
//function : DDeriv
//purpose : computes (F/|F|)''
//=======================================================================
static gp_Vec DDeriv(const gp_Vec& F, const gp_Vec& DF, const gp_Vec& D2F)
{
Standard_Real Norma = F.Magnitude();
gp_Vec Result = (D2F - 2*DF*(F*DF)/(Norma*Norma))/Norma -
F*((DF.SquareMagnitude() + F*D2F
- 3*(F*DF)*(F*DF)/(Norma*Norma))/(Norma*Norma*Norma));
return Result;
}
GeomFill_ConstantBiNormal::GeomFill_ConstantBiNormal(const gp_Dir& BiNormal) : BN(BiNormal)
{
frenet = new GeomFill_Frenet();
}
Handle(GeomFill_TrihedronLaw) GeomFill_ConstantBiNormal::Copy() const
{
Handle(GeomFill_TrihedronLaw) copy = new GeomFill_ConstantBiNormal(gp_Dir(BN));
if (!myCurve.IsNull()) copy->SetCurve(myCurve);
return copy;
}
void GeomFill_ConstantBiNormal::SetCurve(const Handle(Adaptor3d_HCurve)& C)
{
GeomFill_TrihedronLaw::SetCurve(C);
if (! C.IsNull()) {
frenet->SetCurve(C);
}
}
Standard_Boolean GeomFill_ConstantBiNormal::D0(const Standard_Real Param,gp_Vec& Tangent,gp_Vec& Normal,gp_Vec& BiNormal)
{
// if BN^T != 0 then N = (BN^T).Normalized ; T = N^BN
// else T = (N^BN).Normalized ; N = BN^T
frenet->D0(Param, Tangent, Normal, BiNormal);
BiNormal = BN;
if(BiNormal.Crossed(Tangent).Magnitude() > Precision::Confusion()) {
Normal = BiNormal.Crossed(Tangent).Normalized();
Tangent = Normal.Crossed(BiNormal);
}
else {
Tangent = Normal.Crossed(BiNormal).Normalized();
Normal = BiNormal.Crossed(Tangent);
}
/*for Test
gp_Vec DTangent, D2Tangent, DNormal, D2Normal, DBiNormal, D2BiNormal;
D2(Param, Tangent, DTangent, D2Tangent,
Normal, DNormal, D2Normal, BiNormal, DBiNormal, D2BiNormal);
*/
return Standard_True;
}
Standard_Boolean GeomFill_ConstantBiNormal::D1(const Standard_Real Param,gp_Vec& Tangent,gp_Vec& DTangent,gp_Vec& Normal,gp_Vec& DNormal,gp_Vec& BiNormal,gp_Vec& DBiNormal)
{
gp_Vec F, DF;
frenet->D1(Param, Tangent, DTangent, Normal, DNormal, BiNormal, DBiNormal);
BiNormal = BN;
DBiNormal = gp_Vec(0, 0, 0);
if(BiNormal.Crossed(Tangent).Magnitude() > Precision::Confusion()) {
F = BiNormal.Crossed(Tangent);
DF = BiNormal.Crossed(DTangent);
Normal = F.Normalized();
DNormal = FDeriv(F, DF);
Tangent = Normal.Crossed(BiNormal);
DTangent = DNormal.Crossed(BiNormal);
}
else {
F = Normal.Crossed(BiNormal);
DF = DNormal.Crossed(BiNormal);
Tangent = F.Normalized();
DTangent = FDeriv(F, DF);
Normal = BiNormal.Crossed(Tangent);
DNormal = BiNormal.Crossed(DTangent);
}
/*test
Standard_Real h = 1.e-10;
gp_Vec cTangent, cNormal, cBiNormal, Tangent_, Normal_, BiNormal_;
D0(Param, cTangent, cNormal, cBiNormal);
D0(Param + h, Tangent_, Normal_, BiNormal_);
cTangent = (Tangent_ - cTangent)/h;
cNormal = (Normal_ - cNormal)/h;
cBiNormal = (BiNormal_ - cBiNormal)/h;
cout<<"DTangent = ("<<DTangent.X()<<", "<<DTangent.Y()<<", "<<DTangent.Z()<<")"<<endl;
cout<<"CTangent = ("<<cTangent.X()<<", "<<cTangent.Y()<<", "<<cTangent.Z()<<")"<<endl;
cout<<"DNormal = ("<<DNormal.X()<<", "<<DNormal.Y()<<", "<<DNormal.Z()<<")"<<endl;
cout<<"CNormal = ("<<cNormal.X()<<", "<<cNormal.Y()<<", "<<cNormal.Z()<<")"<<endl;
cout<<"DBiNormal = ("<<DBiNormal.X()<<", "<<DBiNormal.Y()<<", "<<DBiNormal.Z()<<")"<<endl;
cout<<"CBiNormal = ("<<cBiNormal.X()<<", "<<cBiNormal.Y()<<", "<<cBiNormal.Z()<<")"<<endl;
*/
return Standard_True;
}
Standard_Boolean GeomFill_ConstantBiNormal::D2(const Standard_Real Param,
gp_Vec& Tangent,
gp_Vec& DTangent,
gp_Vec& D2Tangent,
gp_Vec& Normal,
gp_Vec& DNormal,
gp_Vec& D2Normal,
gp_Vec& BiNormal,
gp_Vec& DBiNormal,
gp_Vec& D2BiNormal)
{
gp_Vec F, DF, D2F;
frenet->D2(Param, Tangent, DTangent, D2Tangent,
Normal, DNormal, D2Normal,
BiNormal, DBiNormal, D2BiNormal);
BiNormal = BN;
DBiNormal = gp_Vec(0, 0, 0);
D2BiNormal = gp_Vec(0, 0, 0);
if(BiNormal.Crossed(Tangent).Magnitude() > Precision::Confusion()) {
F = BiNormal.Crossed(Tangent);
DF = BiNormal.Crossed(DTangent);
D2F = BiNormal.Crossed(D2Tangent);
Normal = F.Normalized();
DNormal = FDeriv(F, DF);
D2Normal = DDeriv(F, DF, D2F);
Tangent = Normal.Crossed(BiNormal);
DTangent = DNormal.Crossed(BiNormal);
D2Tangent = D2Normal.Crossed(BiNormal);
}
else {
F = Normal.Crossed(BiNormal);
DF = DNormal.Crossed(BiNormal);
D2F = D2Normal.Crossed(BiNormal);
Tangent = F.Normalized();
DTangent = FDeriv(F, DF);
D2Tangent = DDeriv(F, DF, D2F);
Normal = BiNormal.Crossed(Tangent);
DNormal = BiNormal.Crossed(DTangent);
D2Normal = BiNormal.Crossed(D2Tangent);
}
/* cout<<"Param = "<<Param<<endl;
cout<<"Tangent = ("<<Tangent.X()<<", "<<Tangent.Y()<<", "<<Tangent.Z()<<")"<<endl;
cout<<"DTangent = ("<<DTangent.X()<<", "<<DTangent.Y()<<", "<<DTangent.Z()<<")"<<endl;
cout<<"D2Tangent = ("<<D2Tangent.X()<<", "<<D2Tangent.Y()<<", "<<D2Tangent.Z()<<")"<<endl;
cout<<"BiNormal = ("<<BiNormal.X()<<", "<<BiNormal.Y()<<", "<<BiNormal.Z()<<")"<<endl;
cout<<"DBiNormal = ("<<DBiNormal.X()<<", "<<DBiNormal.Y()<<", "<<DBiNormal.Z()<<")"<<endl;
cout<<"D2BiNormal = ("<<D2BiNormal.X()<<", "<<D2BiNormal.Y()<<", "<<D2BiNormal.Z()<<")"<<endl;
*/
return Standard_True;
}
Standard_Integer GeomFill_ConstantBiNormal::NbIntervals(const GeomAbs_Shape S) const
{
return frenet->NbIntervals(S);
}
void GeomFill_ConstantBiNormal::Intervals(TColStd_Array1OfReal& T,const GeomAbs_Shape S) const
{
frenet->Intervals(T, S);
}
void GeomFill_ConstantBiNormal::GetAverageLaw(gp_Vec& ATangent,gp_Vec& ANormal,gp_Vec& ABiNormal)
{
frenet->GetAverageLaw(ATangent, ANormal, ABiNormal);
ABiNormal = BN;
if(ABiNormal.Crossed(ATangent).Magnitude() > Precision::Confusion()) {
ANormal = ABiNormal.Crossed(ATangent).Normalized();
ATangent = ANormal.Crossed(ABiNormal);
}
else {
ATangent = ANormal.Crossed(ABiNormal).Normalized();
ANormal = ABiNormal.Crossed(ATangent);
}
}
Standard_Boolean GeomFill_ConstantBiNormal::IsConstant() const
{
return frenet->IsConstant();
}
Standard_Boolean GeomFill_ConstantBiNormal::IsOnlyBy3dCurve() const
{
GeomAbs_CurveType TheType = myCurve->GetType();
gp_Ax1 TheAxe;
switch (TheType) {
case GeomAbs_Circle:
{
TheAxe = myCurve->Circle().Axis();
break;
}
case GeomAbs_Ellipse:
{
TheAxe = myCurve->Ellipse().Axis();
break;
}
case GeomAbs_Hyperbola:
{
TheAxe = myCurve->Hyperbola().Axis();
break;
}
case GeomAbs_Parabola:
{
TheAxe = myCurve->Parabola().Axis();
break;
}
case GeomAbs_Line:
{ //La normale du plan de la courbe est il perpendiculaire a la BiNormale ?
gp_Vec V;
V.SetXYZ(myCurve->Line().Direction().XYZ());
return V.IsNormal(BN, Precision::Angular());
}
default:
return Standard_False; // pas de risques
}
// La normale du plan de la courbe est il // a la BiNormale ?
gp_Vec V;
V.SetXYZ(TheAxe.Direction().XYZ());
return V.IsParallel(BN, Precision::Angular());
}