mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-10 18:51:21 +03:00
Avoid exception in gp_Ax3::SetDirection(), SetAxis(): check if XDir of Ax3 is parallel to newly given direction.
507 lines
18 KiB
C++
507 lines
18 KiB
C++
// Created on: 1993-08-02
|
|
// Created by: Laurent BOURESCHE
|
|
// Copyright (c) 1993-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef _gp_Ax3_HeaderFile
|
|
#define _gp_Ax3_HeaderFile
|
|
|
|
#include <gp_Ax1.hxx>
|
|
#include <gp_Ax2.hxx>
|
|
#include <gp_Dir.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Vec.hxx>
|
|
|
|
class gp_Trsf;
|
|
|
|
//! Describes a coordinate system in 3D space. Unlike a
|
|
//! gp_Ax2 coordinate system, a gp_Ax3 can be
|
|
//! right-handed ("direct sense") or left-handed ("indirect sense").
|
|
//! A coordinate system is defined by:
|
|
//! - its origin (also referred to as its "Location point"), and
|
|
//! - three orthogonal unit vectors, termed the "X
|
|
//! Direction", the "Y Direction" and the "Direction" (also
|
|
//! referred to as the "main Direction").
|
|
//! The "Direction" of the coordinate system is called its
|
|
//! "main Direction" because whenever this unit vector is
|
|
//! modified, the "X Direction" and the "Y Direction" are
|
|
//! recomputed. However, when we modify either the "X
|
|
//! Direction" or the "Y Direction", "Direction" is not modified.
|
|
//! "Direction" is also the "Z Direction".
|
|
//! The "main Direction" is always parallel to the cross
|
|
//! product of its "X Direction" and "Y Direction".
|
|
//! If the coordinate system is right-handed, it satisfies the equation:
|
|
//! "main Direction" = "X Direction" ^ "Y Direction"
|
|
//! and if it is left-handed, it satisfies the equation:
|
|
//! "main Direction" = -"X Direction" ^ "Y Direction"
|
|
//! A coordinate system is used:
|
|
//! - to describe geometric entities, in particular to position
|
|
//! them. The local coordinate system of a geometric
|
|
//! entity serves the same purpose as the STEP function
|
|
//! "axis placement three axes", or
|
|
//! - to define geometric transformations.
|
|
//! Note:
|
|
//! - We refer to the "X Axis", "Y Axis" and "Z Axis",
|
|
//! respectively, as the axes having:
|
|
//! - the origin of the coordinate system as their origin, and
|
|
//! - the unit vectors "X Direction", "Y Direction" and
|
|
//! "main Direction", respectively, as their unit vectors.
|
|
//! - The "Z Axis" is also the "main Axis".
|
|
//! - gp_Ax2 is used to define a coordinate system that must be always right-handed.
|
|
class gp_Ax3
|
|
{
|
|
public:
|
|
|
|
DEFINE_STANDARD_ALLOC
|
|
|
|
//! Creates an object corresponding to the reference
|
|
//! coordinate system (OXYZ).
|
|
gp_Ax3() : vydir (0., 1., 0.)
|
|
// vxdir(1.,0.,0.) use default ctor of gp_Dir, as it creates the same dir(1,0,0)
|
|
{}
|
|
|
|
//! Creates a coordinate system from a right-handed
|
|
//! coordinate system.
|
|
gp_Ax3 (const gp_Ax2& theA);
|
|
|
|
//! Creates a right handed axis placement with the
|
|
//! "Location" point theP and two directions, theN gives the
|
|
//! "Direction" and theVx gives the "XDirection".
|
|
//! Raises ConstructionError if theN and theVx are parallel (same or opposite orientation).
|
|
gp_Ax3 (const gp_Pnt& theP, const gp_Dir& theN, const gp_Dir& theVx)
|
|
: axis (theP, theN),
|
|
vydir(theN),
|
|
vxdir(theN)
|
|
{
|
|
vxdir.CrossCross (theVx, theN);
|
|
vydir.Cross (vxdir);
|
|
}
|
|
|
|
//! Creates an axis placement with the "Location" point <theP>
|
|
//! and the normal direction <theV>.
|
|
Standard_EXPORT gp_Ax3 (const gp_Pnt& theP, const gp_Dir& theV);
|
|
|
|
//! Reverses the X direction of <me>.
|
|
void XReverse() { vxdir.Reverse(); }
|
|
|
|
//! Reverses the Y direction of <me>.
|
|
void YReverse() { vydir.Reverse(); }
|
|
|
|
//! Reverses the Z direction of <me>.
|
|
void ZReverse() { axis.Reverse(); }
|
|
|
|
//! Assigns the origin and "main Direction" of the axis theA1 to
|
|
//! this coordinate system, then recomputes its "X Direction" and "Y Direction".
|
|
//! Note:
|
|
//! - The new "X Direction" is computed as follows:
|
|
//! new "X Direction" = V1 ^(previous "X Direction" ^ V)
|
|
//! where V is the "Direction" of theA1.
|
|
//! - The orientation of this coordinate system
|
|
//! (right-handed or left-handed) is not modified.
|
|
//! Raises ConstructionError if the "Direction" of <theA1> and the "XDirection" of <me>
|
|
//! are parallel (same or opposite orientation) because it is
|
|
//! impossible to calculate the new "XDirection" and the new
|
|
//! "YDirection".
|
|
void SetAxis (const gp_Ax1& theA1);
|
|
|
|
//! Changes the main direction of this coordinate system,
|
|
//! then recomputes its "X Direction" and "Y Direction".
|
|
//! Note:
|
|
//! - The new "X Direction" is computed as follows:
|
|
//! new "X Direction" = theV ^ (previous "X Direction" ^ theV).
|
|
//! - The orientation of this coordinate system (left- or right-handed) is not modified.
|
|
//! Raises ConstructionError if <theV> and the previous "XDirection" are parallel
|
|
//! because it is impossible to calculate the new "XDirection"
|
|
//! and the new "YDirection".
|
|
void SetDirection (const gp_Dir& theV);
|
|
|
|
//! Changes the "Location" point (origin) of <me>.
|
|
void SetLocation (const gp_Pnt& theP) { axis.SetLocation (theP); }
|
|
|
|
//! Changes the "Xdirection" of <me>. The main direction
|
|
//! "Direction" is not modified, the "Ydirection" is modified.
|
|
//! If <theVx> is not normal to the main direction then <XDirection>
|
|
//! is computed as follows XDirection = Direction ^ (theVx ^ Direction).
|
|
//! Raises ConstructionError if <theVx> is parallel (same or opposite
|
|
//! orientation) to the main direction of <me>
|
|
void SetXDirection (const gp_Dir& theVx);
|
|
|
|
//! Changes the "Ydirection" of <me>. The main direction is not
|
|
//! modified but the "Xdirection" is changed.
|
|
//! If <theVy> is not normal to the main direction then "YDirection"
|
|
//! is computed as follows
|
|
//! YDirection = Direction ^ (<theVy> ^ Direction).
|
|
//! Raises ConstructionError if <theVy> is parallel to the main direction of <me>
|
|
void SetYDirection (const gp_Dir& theVy);
|
|
|
|
//! Computes the angular value between the main direction of
|
|
//! <me> and the main direction of <theOther>. Returns the angle
|
|
//! between 0 and PI in radians.
|
|
Standard_Real Angle (const gp_Ax3& theOther) const { return axis.Angle (theOther.axis); }
|
|
|
|
//! Returns the main axis of <me>. It is the "Location" point
|
|
//! and the main "Direction".
|
|
const gp_Ax1& Axis() const { return axis; }
|
|
|
|
//! Computes a right-handed coordinate system with the
|
|
//! same "X Direction" and "Y Direction" as those of this
|
|
//! coordinate system, then recomputes the "main Direction".
|
|
//! If this coordinate system is right-handed, the result
|
|
//! returned is the same coordinate system. If this
|
|
//! coordinate system is left-handed, the result is reversed.
|
|
gp_Ax2 Ax2() const;
|
|
|
|
//! Returns the main direction of <me>.
|
|
const gp_Dir& Direction() const { return axis.Direction(); }
|
|
|
|
//! Returns the "Location" point (origin) of <me>.
|
|
const gp_Pnt& Location() const { return axis.Location(); }
|
|
|
|
//! Returns the "XDirection" of <me>.
|
|
const gp_Dir& XDirection() const { return vxdir; }
|
|
|
|
//! Returns the "YDirection" of <me>.
|
|
const gp_Dir& YDirection() const { return vydir; }
|
|
|
|
//! Returns True if the coordinate system is right-handed. i.e.
|
|
//! XDirection().Crossed(YDirection()).Dot(Direction()) > 0
|
|
Standard_Boolean Direct() const { return (vxdir.Crossed (vydir).Dot (axis.Direction()) > 0.); }
|
|
|
|
//! Returns True if
|
|
//! . the distance between the "Location" point of <me> and
|
|
//! <theOther> is lower or equal to theLinearTolerance and
|
|
//! . the distance between the "Location" point of <theOther> and
|
|
//! <me> is lower or equal to theLinearTolerance and
|
|
//! . the main direction of <me> and the main direction of
|
|
//! <theOther> are parallel (same or opposite orientation).
|
|
Standard_Boolean IsCoplanar (const gp_Ax3& theOther, const Standard_Real theLinearTolerance, const Standard_Real theAngularTolerance) const;
|
|
|
|
//! Returns True if
|
|
//! . the distance between <me> and the "Location" point of theA1
|
|
//! is lower of equal to theLinearTolerance and
|
|
//! . the distance between theA1 and the "Location" point of <me>
|
|
//! is lower or equal to theLinearTolerance and
|
|
//! . the main direction of <me> and the direction of theA1 are normal.
|
|
Standard_Boolean IsCoplanar (const gp_Ax1& theA1, const Standard_Real theLinearTolerance, const Standard_Real theAngularTolerance) const;
|
|
|
|
Standard_EXPORT void Mirror (const gp_Pnt& theP);
|
|
|
|
//! Performs the symmetrical transformation of an axis
|
|
//! placement with respect to the point theP which is the
|
|
//! center of the symmetry.
|
|
//! Warnings :
|
|
//! The main direction of the axis placement is not changed.
|
|
//! The "XDirection" and the "YDirection" are reversed.
|
|
//! So the axis placement stay right handed.
|
|
Standard_NODISCARD Standard_EXPORT gp_Ax3 Mirrored (const gp_Pnt& theP) const;
|
|
|
|
Standard_EXPORT void Mirror (const gp_Ax1& theA1);
|
|
|
|
//! Performs the symmetrical transformation of an axis
|
|
//! placement with respect to an axis placement which
|
|
//! is the axis of the symmetry.
|
|
//! The transformation is performed on the "Location"
|
|
//! point, on the "XDirection" and "YDirection".
|
|
//! The resulting main "Direction" is the cross product between
|
|
//! the "XDirection" and the "YDirection" after transformation.
|
|
Standard_NODISCARD Standard_EXPORT gp_Ax3 Mirrored (const gp_Ax1& theA1) const;
|
|
|
|
Standard_EXPORT void Mirror (const gp_Ax2& theA2);
|
|
|
|
//! Performs the symmetrical transformation of an axis
|
|
//! placement with respect to a plane.
|
|
//! The axis placement <theA2> locates the plane of the symmetry :
|
|
//! (Location, XDirection, YDirection).
|
|
//! The transformation is performed on the "Location"
|
|
//! point, on the "XDirection" and "YDirection".
|
|
//! The resulting main "Direction" is the cross product between
|
|
//! the "XDirection" and the "YDirection" after transformation.
|
|
Standard_NODISCARD Standard_EXPORT gp_Ax3 Mirrored (const gp_Ax2& theA2) const;
|
|
|
|
void Rotate (const gp_Ax1& theA1, const Standard_Real theAng)
|
|
{
|
|
axis.Rotate (theA1, theAng);
|
|
vxdir.Rotate (theA1, theAng);
|
|
vydir.Rotate (theA1, theAng);
|
|
}
|
|
|
|
//! Rotates an axis placement. <theA1> is the axis of the
|
|
//! rotation . theAng is the angular value of the rotation
|
|
//! in radians.
|
|
Standard_NODISCARD gp_Ax3 Rotated (const gp_Ax1& theA1, const Standard_Real theAng) const
|
|
{
|
|
gp_Ax3 aTemp = *this;
|
|
aTemp.Rotate (theA1, theAng);
|
|
return aTemp;
|
|
}
|
|
|
|
void Scale (const gp_Pnt& theP, const Standard_Real theS)
|
|
{
|
|
axis.Scale (theP, theS);
|
|
if (theS < 0.)
|
|
{
|
|
vxdir.Reverse();
|
|
vydir.Reverse();
|
|
}
|
|
}
|
|
|
|
//! Applies a scaling transformation on the axis placement.
|
|
//! The "Location" point of the axisplacement is modified.
|
|
//! Warnings :
|
|
//! If the scale <theS> is negative :
|
|
//! . the main direction of the axis placement is not changed.
|
|
//! . The "XDirection" and the "YDirection" are reversed.
|
|
//! So the axis placement stay right handed.
|
|
Standard_NODISCARD gp_Ax3 Scaled (const gp_Pnt& theP, const Standard_Real theS) const
|
|
{
|
|
gp_Ax3 aTemp = *this;
|
|
aTemp.Scale (theP, theS);
|
|
return aTemp;
|
|
}
|
|
|
|
void Transform (const gp_Trsf& theT)
|
|
{
|
|
axis.Transform (theT);
|
|
vxdir.Transform (theT);
|
|
vydir.Transform (theT);
|
|
}
|
|
|
|
//! Transforms an axis placement with a Trsf.
|
|
//! The "Location" point, the "XDirection" and the
|
|
//! "YDirection" are transformed with theT. The resulting
|
|
//! main "Direction" of <me> is the cross product between
|
|
//! the "XDirection" and the "YDirection" after transformation.
|
|
Standard_NODISCARD gp_Ax3 Transformed (const gp_Trsf& theT) const
|
|
{
|
|
gp_Ax3 aTemp = *this;
|
|
aTemp.Transform (theT);
|
|
return aTemp;
|
|
}
|
|
|
|
void Translate (const gp_Vec& theV) { axis.Translate (theV); }
|
|
|
|
//! Translates an axis plaxement in the direction of the vector
|
|
//! <theV>. The magnitude of the translation is the vector's magnitude.
|
|
Standard_NODISCARD gp_Ax3 Translated (const gp_Vec& theV) const
|
|
{
|
|
gp_Ax3 aTemp = *this;
|
|
aTemp.Translate (theV);
|
|
return aTemp;
|
|
}
|
|
|
|
void Translate (const gp_Pnt& theP1, const gp_Pnt& theP2) { Translate (gp_Vec (theP1, theP2)); }
|
|
|
|
//! Translates an axis placement from the point <theP1> to the
|
|
//! point <theP2>.
|
|
Standard_NODISCARD gp_Ax3 Translated (const gp_Pnt& theP1, const gp_Pnt& theP2) const { return Translated (gp_Vec (theP1, theP2)); }
|
|
|
|
//! Dumps the content of me into the stream
|
|
Standard_EXPORT void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const;
|
|
|
|
//! Inits the content of me from the stream
|
|
Standard_EXPORT Standard_Boolean InitFromJson (const Standard_SStream& theSStream, Standard_Integer& theStreamPos);
|
|
|
|
private:
|
|
|
|
gp_Ax1 axis;
|
|
gp_Dir vydir;
|
|
gp_Dir vxdir;
|
|
|
|
};
|
|
|
|
// =======================================================================
|
|
// function : gp_Ax3
|
|
// purpose :
|
|
// =======================================================================
|
|
inline gp_Ax3::gp_Ax3 (const gp_Ax2& theA)
|
|
: axis (theA.Axis()),
|
|
vydir (theA.YDirection()),
|
|
vxdir (theA.XDirection())
|
|
{}
|
|
|
|
// =======================================================================
|
|
// function : Ax2
|
|
// purpose :
|
|
// =======================================================================
|
|
inline gp_Ax2 gp_Ax3::Ax2()const
|
|
{
|
|
gp_Dir aZz = axis.Direction();
|
|
if (!Direct())
|
|
{
|
|
aZz.Reverse();
|
|
}
|
|
return gp_Ax2 (axis.Location(), aZz, vxdir);
|
|
}
|
|
|
|
// =======================================================================
|
|
// function : SetAxis
|
|
// purpose :
|
|
// =======================================================================
|
|
inline void gp_Ax3::SetAxis(const gp_Ax1& theA1)
|
|
{
|
|
axis.SetLocation(theA1.Location());
|
|
SetDirection(theA1.Direction());
|
|
}
|
|
|
|
// =======================================================================
|
|
// function : SetDirection
|
|
// purpose :
|
|
// =======================================================================
|
|
inline void gp_Ax3::SetDirection(const gp_Dir& theV)
|
|
{
|
|
Standard_Real aDot = theV.Dot(vxdir);
|
|
if(1. - Abs(aDot) <= Precision::Angular())
|
|
{
|
|
if(aDot > 0)
|
|
{
|
|
vxdir = vydir;
|
|
vydir = axis.Direction();
|
|
}
|
|
else
|
|
{
|
|
vxdir = axis.Direction();
|
|
}
|
|
axis.SetDirection(theV);
|
|
}
|
|
else
|
|
{
|
|
Standard_Boolean direct = Direct();
|
|
axis.SetDirection (theV);
|
|
vxdir = theV.CrossCrossed (vxdir, theV);
|
|
if (direct)
|
|
{
|
|
vydir = theV.Crossed (vxdir);
|
|
}
|
|
else
|
|
{
|
|
vydir = vxdir.Crossed (theV);
|
|
}
|
|
}
|
|
}
|
|
|
|
// =======================================================================
|
|
// function : SetXDirection
|
|
// purpose :
|
|
// =======================================================================
|
|
inline void gp_Ax3::SetXDirection (const gp_Dir& theVx)
|
|
{
|
|
Standard_Real aDot = theVx.Dot(axis.Direction());
|
|
if (1. - Abs(aDot) <= Precision::Angular())
|
|
{
|
|
if (aDot > 0)
|
|
{
|
|
axis.SetDirection(vxdir);
|
|
vydir = -vydir;
|
|
}
|
|
else
|
|
{
|
|
axis.SetDirection(vxdir);
|
|
}
|
|
vxdir = theVx;
|
|
}
|
|
else
|
|
{
|
|
Standard_Boolean direct = Direct();
|
|
vxdir = axis.Direction().CrossCrossed(theVx, axis.Direction());
|
|
if (direct)
|
|
{
|
|
vydir = axis.Direction().Crossed(vxdir);
|
|
}
|
|
else
|
|
{
|
|
vydir = vxdir.Crossed(axis.Direction());
|
|
}
|
|
}
|
|
}
|
|
|
|
// =======================================================================
|
|
// function : SetYDirection
|
|
// purpose :
|
|
// =======================================================================
|
|
inline void gp_Ax3::SetYDirection (const gp_Dir& theVy)
|
|
{
|
|
Standard_Real aDot = theVy.Dot(axis.Direction());
|
|
if (1. - Abs(aDot) <= Precision::Angular())
|
|
{
|
|
if (aDot > 0)
|
|
{
|
|
axis.SetDirection(vydir);
|
|
vxdir = -vxdir;
|
|
}
|
|
else
|
|
{
|
|
axis.SetDirection(vydir);
|
|
}
|
|
vydir = theVy;
|
|
}
|
|
else
|
|
{
|
|
Standard_Boolean isDirect = Direct();
|
|
vxdir = theVy.Crossed(axis.Direction());
|
|
vydir = (axis.Direction()).Crossed(vxdir);
|
|
if (!isDirect)
|
|
{
|
|
vxdir.Reverse();
|
|
}
|
|
}
|
|
}
|
|
|
|
// =======================================================================
|
|
// function : IsCoplanar
|
|
// purpose :
|
|
// =======================================================================
|
|
inline Standard_Boolean gp_Ax3::IsCoplanar (const gp_Ax3& theOther,
|
|
const Standard_Real theLinearTolerance,
|
|
const Standard_Real theAngularTolerance)const
|
|
{
|
|
gp_Vec aVec (axis.Location(), theOther.axis.Location());
|
|
Standard_Real aD1 = gp_Vec (axis.Direction()).Dot(aVec);
|
|
if (aD1 < 0)
|
|
{
|
|
aD1 = -aD1;
|
|
}
|
|
Standard_Real aD2 = gp_Vec (theOther.axis.Direction()).Dot(aVec);
|
|
if (aD2 < 0)
|
|
{
|
|
aD2 = -aD2;
|
|
}
|
|
return (aD1 <= theLinearTolerance && aD2 <= theLinearTolerance &&
|
|
axis.IsParallel (theOther.axis, theAngularTolerance));
|
|
}
|
|
|
|
// =======================================================================
|
|
// function : IsCoplanar
|
|
// purpose :
|
|
// =======================================================================
|
|
inline Standard_Boolean gp_Ax3::IsCoplanar (const gp_Ax1& theA1,
|
|
const Standard_Real theLinearTolerance,
|
|
const Standard_Real theAngularTolerance)const
|
|
{
|
|
gp_Vec aVec (axis.Location(), theA1.Location());
|
|
Standard_Real aD1 = gp_Vec (axis.Direction()).Dot (aVec);
|
|
if (aD1 < 0)
|
|
{
|
|
aD1 = -aD1;
|
|
}
|
|
Standard_Real aD2 = (gp_Vec (theA1.Direction()).Crossed (aVec)).Magnitude();
|
|
if (aD2 < 0)
|
|
{
|
|
aD2 = -aD2;
|
|
}
|
|
return (aD1 <= theLinearTolerance && aD2 <= theLinearTolerance &&
|
|
axis.IsNormal (theA1, theAngularTolerance));
|
|
}
|
|
|
|
#endif // _gp_Ax3_HeaderFile
|