1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-02 17:46:22 +03:00
occt/src/ShapeUpgrade/ShapeUpgrade_UnifySameDomain.cxx
jfa e375bd7c3e Modeling Algorithms - UnifySameDomain improvement #371
Extend ShapeUpgrade_UnifySameDomain algorithm working on cases,
  where SurfaceOfRevolution or SurfaceOfLinearExtrusion was made on basis of TrimmedCurve.
Original issue: 0033328
2025-02-17 14:12:49 +00:00

4265 lines
153 KiB
C++

// Created on: 2012-06-09
// Created by: jgv@ROLEX
// Copyright (c) 2012-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <ShapeUpgrade_UnifySameDomain.hxx>
#include <BRep_Builder.hxx>
#include <BRep_Tool.hxx>
#include <BRepLib.hxx>
#include <BRepTopAdaptor_TopolTool.hxx>
#include <GC_MakeCircle.hxx>
#include <Geom2d_Circle.hxx>
#include <GCE2d_MakeLine.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <Geom2dConvert.hxx>
#include <Geom2dConvert_CompCurveToBSplineCurve.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_Circle.hxx>
#include <Geom_Ellipse.hxx>
#include <Geom_CylindricalSurface.hxx>
#include <Geom_ElementarySurface.hxx>
#include <Geom_Line.hxx>
#include <Geom_Plane.hxx>
#include <Geom_RectangularTrimmedSurface.hxx>
#include <Geom_Surface.hxx>
#include <Geom_SurfaceOfLinearExtrusion.hxx>
#include <Geom_SurfaceOfRevolution.hxx>
#include <Geom_SweptSurface.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <GeomConvert.hxx>
#include <GeomConvert_ApproxSurface.hxx>
#include <GeomConvert_CompCurveToBSplineCurve.hxx>
#include <GeomLib_IsPlanarSurface.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Dir.hxx>
#include <gp_Lin.hxx>
#include <IntPatch_ImpImpIntersection.hxx>
#include <ShapeAnalysis_Edge.hxx>
#include <ShapeAnalysis_WireOrder.hxx>
#include <ShapeAnalysis_Surface.hxx>
#include <ShapeBuild_ReShape.hxx>
#include <ShapeConstruct_ProjectCurveOnSurface.hxx>
#include <ShapeFix_Face.hxx>
#include <ShapeFix_Shell.hxx>
#include <ShapeFix_Wire.hxx>
#include <Standard_Type.hxx>
#include <TColGeom2d_Array1OfBSplineCurve.hxx>
#include <TColGeom2d_HArray1OfBSplineCurve.hxx>
#include <TColGeom2d_SequenceOfBoundedCurve.hxx>
#include <TColGeom2d_SequenceOfCurve.hxx>
#include <TColGeom_Array1OfBSplineCurve.hxx>
#include <TColGeom_HArray1OfBSplineCurve.hxx>
#include <TColGeom_SequenceOfSurface.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_MapOfInteger.hxx>
#include <TColStd_SequenceOfBoolean.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Shape.hxx>
#include <TopTools_IndexedDataMapOfShapeListOfShape.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopTools_SequenceOfShape.hxx>
#include <gp_Circ.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <BRepAdaptor_Curve2d.hxx>
#include <BRepAdaptor_Surface.hxx>
#include <gp_Vec2d.hxx>
#include <Extrema_ExtPS.hxx>
#include <BRepTools.hxx>
#include <BRepTopAdaptor_FClass2d.hxx>
#include <ElCLib.hxx>
#include <BRepBuilderAPI_MakeEdge.hxx>
#include <ElSLib.hxx>
#include <GeomProjLib.hxx>
IMPLEMENT_STANDARD_RTTIEXT(ShapeUpgrade_UnifySameDomain, Standard_Transient)
static Standard_Boolean IsOnSingularity(const TopTools_ListOfShape& theEdgeList)
{
TopTools_ListIteratorOfListOfShape anItl(theEdgeList);
for (; anItl.More(); anItl.Next())
{
const TopoDS_Edge& anEdge = TopoDS::Edge(anItl.Value());
if (BRep_Tool::Degenerated(anEdge))
return Standard_True;
}
return Standard_False;
}
//=======================================================================
// function : IsUiso
// purpose : only for seam edges assumed to be U- or V- isolines
//=======================================================================
static Standard_Boolean IsUiso(const TopoDS_Edge& theEdge, const TopoDS_Face& theFace)
{
BRepAdaptor_Curve2d aBAcurve2d(theEdge, theFace);
gp_Pnt2d aP2d;
gp_Vec2d aVec;
aBAcurve2d.D1(aBAcurve2d.FirstParameter(), aP2d, aVec);
return (Abs(aVec.Y()) > Abs(aVec.X()));
}
static Standard_Boolean IsLinear(const BRepAdaptor_Curve& theBAcurve, gp_Dir& theDir)
{
GeomAbs_CurveType aType = theBAcurve.GetType();
if (aType == GeomAbs_Line)
{
theDir = theBAcurve.Line().Position().Direction();
return Standard_True;
}
if ((aType == GeomAbs_BezierCurve || aType == GeomAbs_BSplineCurve) && theBAcurve.NbPoles() == 2)
{
gp_Pnt aFirstPnt = theBAcurve.Value(theBAcurve.FirstParameter());
gp_Pnt aLastPnt = theBAcurve.Value(theBAcurve.LastParameter());
theDir = gp_Vec(aFirstPnt, aLastPnt);
return Standard_True;
}
return Standard_False;
}
static void SplitWire(const TopoDS_Wire& theWire,
const TopoDS_Face& theFace,
const TopTools_IndexedMapOfShape& theVmap,
TopTools_SequenceOfShape& theWireSeq);
static Standard_Real TrueValueOfOffset(const Standard_Real theValue, const Standard_Real thePeriod)
{
if (theValue > 0.)
return thePeriod;
return (-thePeriod);
}
//=======================================================================
// function : GetFaceFromSeq
// purpose : gets a face from the sequence that has a common boundary
// with already got <theUsedFaces>. If it is possible,
// gets a face that has a common boundary in 2D space too
// (excludes seam edges).
// <theIndFace> returns the Index of the face in the sequence.
//=======================================================================
static TopoDS_Face GetFaceFromSeq(const TopTools_SequenceOfShape& theFaces,
const TopoDS_Face& theRefFace,
const TopTools_IndexedDataMapOfShapeListOfShape& theMapEF,
TopTools_IndexedMapOfShape& theUsedFaces,
Standard_Integer& theIndFace)
{
if (theUsedFaces.IsEmpty())
{
theIndFace = 1;
theUsedFaces.Add(theFaces(1));
return TopoDS::Face(theFaces(1));
}
TopoDS_Edge aSeamEdge;
TopoDS_Face aTargetFace;
for (Standard_Integer ii = 1; ii <= theUsedFaces.Extent(); ii++)
{
const TopoDS_Face& aUsedFace = TopoDS::Face(theUsedFaces(ii));
TopExp_Explorer anExplo(aUsedFace, TopAbs_EDGE);
for (; anExplo.More(); anExplo.Next())
{
const TopoDS_Edge& anEdge = TopoDS::Edge(anExplo.Current());
const TopTools_ListOfShape& aFaceList = theMapEF.FindFromKey(anEdge);
if (aFaceList.Extent() < 2)
continue;
const TopoDS_Face& aFace = (aFaceList.First().IsSame(aUsedFace))
? TopoDS::Face(aFaceList.Last())
: TopoDS::Face(aFaceList.First());
if (theUsedFaces.Contains(aFace))
continue;
if (BRep_Tool::IsClosed(anEdge, theRefFace))
{
aSeamEdge = anEdge;
continue;
}
aTargetFace = aFace;
break;
}
if (aTargetFace.IsNull() && !aSeamEdge.IsNull())
{
const TopTools_ListOfShape& aFaceList = theMapEF.FindFromKey(aSeamEdge);
aTargetFace = (aFaceList.First().IsSame(aUsedFace)) ? TopoDS::Face(aFaceList.Last())
: TopoDS::Face(aFaceList.First());
}
if (!aTargetFace.IsNull())
break;
}
theUsedFaces.Add(aTargetFace);
for (Standard_Integer ii = 2; ii <= theFaces.Length(); ii++)
if (theFaces(ii).IsSame(aTargetFace))
{
theIndFace = ii;
break;
}
return aTargetFace;
}
//=================================================================================================
static void UpdateBoundaries(const Handle(Geom2d_Curve)& thePCurve,
const Standard_Real theFirst,
const Standard_Real theLast,
const Standard_Integer theIndCoord,
Standard_Real& theMinCoord,
Standard_Real& theMaxCoord)
{
const Standard_Integer NbSamples = 4;
Standard_Real Delta = (theLast - theFirst) / NbSamples;
for (Standard_Integer i = 0; i <= NbSamples; i++)
{
Standard_Real aParam = theFirst + i * Delta;
gp_Pnt2d aPoint = thePCurve->Value(aParam);
if (aPoint.Coord(theIndCoord) < theMinCoord)
theMinCoord = aPoint.Coord(theIndCoord);
if (aPoint.Coord(theIndCoord) > theMaxCoord)
theMaxCoord = aPoint.Coord(theIndCoord);
}
}
static Standard_Boolean TryMakeLine(const Handle(Geom2d_Curve)& thePCurve,
const Standard_Real theFirst,
const Standard_Real theLast,
Handle(Geom2d_Line)& theLine)
{
gp_Pnt2d aFirstPnt = thePCurve->Value(theFirst);
gp_Pnt2d aLastPnt = thePCurve->Value(theLast);
gp_Vec2d aVec(aFirstPnt, aLastPnt);
Standard_Real aSqLen = aVec.SquareMagnitude();
Standard_Real aSqParamLen = (theLast - theFirst) * (theLast - theFirst);
if (Abs(aSqLen - aSqParamLen) > Precision::Confusion())
return Standard_False;
gp_Dir2d aDir = aVec;
gp_Vec2d anOffset = -aDir;
anOffset *= theFirst;
gp_Pnt2d anOrigin = aFirstPnt.Translated(anOffset);
gp_Lin2d aLin(anOrigin, aDir);
const Standard_Integer NbSamples = 10;
Standard_Real aDelta = (theLast - theFirst) / NbSamples;
for (Standard_Integer i = 1; i < NbSamples; i++)
{
Standard_Real aParam = theFirst + i * aDelta;
gp_Pnt2d aPnt = thePCurve->Value(aParam);
Standard_Real aDist = aLin.Distance(aPnt);
if (aDist > Precision::Confusion())
return Standard_False;
}
theLine = new Geom2d_Line(aLin);
return Standard_True;
}
static void RemoveEdgeFromMap(const TopoDS_Edge& theEdge,
TopTools_IndexedDataMapOfShapeListOfShape& theVEmap)
{
TopoDS_Vertex VV[2];
TopExp::Vertices(theEdge, VV[0], VV[1]);
for (Standard_Integer i = 0; i < 2; i++)
{
if (!theVEmap.Contains(VV[i]))
continue;
TopTools_ListOfShape& Elist = theVEmap.ChangeFromKey(VV[i]);
TopTools_ListIteratorOfListOfShape itl(Elist);
while (itl.More())
{
const TopoDS_Shape& anEdge = itl.Value();
if (anEdge.IsSame(theEdge))
Elist.Remove(itl);
else
itl.Next();
}
}
}
static Standard_Real ComputeMinEdgeSize(const TopTools_SequenceOfShape& theEdges,
const TopoDS_Face& theRefFace,
TopTools_MapOfShape& theEdgesMap)
{
Standard_Real MinSize = RealLast();
for (Standard_Integer ind = 1; ind <= theEdges.Length(); ind++)
{
const TopoDS_Edge& anEdge = TopoDS::Edge(theEdges(ind));
theEdgesMap.Add(anEdge);
TopoDS_Vertex V1, V2;
TopExp::Vertices(anEdge, V1, V2);
BRepAdaptor_Curve2d BAcurve2d(anEdge, theRefFace);
gp_Pnt2d FirstP2d = BAcurve2d.Value(BAcurve2d.FirstParameter());
gp_Pnt2d LastP2d = BAcurve2d.Value(BAcurve2d.LastParameter());
Standard_Real aSqDist;
if (V1.IsSame(V2) && !BRep_Tool::Degenerated(anEdge))
{
gp_Pnt2d MidP2d =
BAcurve2d.Value((BAcurve2d.FirstParameter() + BAcurve2d.LastParameter()) / 2);
aSqDist = FirstP2d.SquareDistance(MidP2d);
}
else
aSqDist = FirstP2d.SquareDistance(LastP2d);
if (aSqDist < MinSize)
MinSize = aSqDist;
}
MinSize = Sqrt(MinSize);
return MinSize;
}
//=======================================================================
// function : FindCoordBounds
// purpose : Searching for origin of U in 2d space
// Returns Standard_False if could not find curve on surface
// Returns Standard_True if succeed
//=======================================================================
static Standard_Boolean FindCoordBounds(const TopTools_SequenceOfShape& theFaces,
const TopoDS_Face& theRefFace,
const TopTools_IndexedDataMapOfShapeListOfShape& theMapEF,
const TopTools_MapOfShape& theEdgesMap,
const Standard_Integer theIndCoord,
const Standard_Real thePeriod,
Standard_Real& theMinCoord,
Standard_Real& theMaxCoord,
Standard_Integer& theNumberOfIntervals,
Standard_Integer& theIndFaceMax)
{
NCollection_Sequence<std::pair<Standard_Real, Standard_Real>> aPairSeq;
Standard_Real aSimpleMax = RealFirst();
theIndFaceMax = 0;
TopTools_IndexedMapOfShape aUsedFaces;
TopoDS_Face aLastFace;
for (Standard_Integer ii = 1; ii <= theFaces.Length(); ii++)
{
Standard_Integer anIndFace = 0;
// Get a face bordering with previous ones
TopoDS_Face aFace = GetFaceFromSeq(theFaces, theRefFace, theMapEF, aUsedFaces, anIndFace);
Standard_Real aMinCoord = RealLast(), aMaxCoord = RealFirst();
TopExp_Explorer Explo(aFace, TopAbs_EDGE);
for (; Explo.More(); Explo.Next())
{
const TopoDS_Edge& anEdge = TopoDS::Edge(Explo.Current());
if (!theEdgesMap.Contains(anEdge))
continue;
Standard_Real fpar, lpar;
Handle(Geom2d_Curve) aPCurve = BRep_Tool::CurveOnSurface(anEdge, theRefFace, fpar, lpar);
if (aPCurve.IsNull())
{
return Standard_False;
}
UpdateBoundaries(aPCurve, fpar, lpar, theIndCoord, aMinCoord, aMaxCoord);
}
if (Precision::IsInfinite(aMinCoord) || Precision::IsInfinite(aMaxCoord))
continue;
if (aMaxCoord > aSimpleMax)
{
aSimpleMax = aMaxCoord;
theIndFaceMax = anIndFace;
}
// Insert new interval (aMinCoord, aMaxCoord) into sequence of intervals
Standard_Boolean anIsInInterval = Standard_False;
for (Standard_Integer jj = 1; jj <= aPairSeq.Length(); jj++)
{
Standard_Real aLocalMin = aPairSeq(jj).first;
Standard_Real aLocalMax = aPairSeq(jj).second;
if (aMinCoord >= aLocalMin && aMinCoord <= aLocalMax && aMaxCoord >= aLocalMin
&& aMaxCoord <= aLocalMax)
{
anIsInInterval = Standard_True;
break;
}
if (aMinCoord < aLocalMin && (aMaxCoord >= aLocalMin && aMaxCoord <= aLocalMax))
{
aPairSeq(jj).first = aMinCoord;
anIsInInterval = Standard_True;
break;
}
else if (aMinCoord < aLocalMin && aMaxCoord > aLocalMax)
{
aPairSeq(jj).first = aMinCoord;
aPairSeq(jj).second = aMaxCoord;
anIsInInterval = Standard_True;
break;
}
else if ((aMinCoord >= aLocalMin && aMinCoord <= aLocalMax) && aMaxCoord > aLocalMax)
{
aPairSeq(jj).second = aMaxCoord;
anIsInInterval = Standard_True;
break;
}
}
if (!anIsInInterval)
{
std::pair<Standard_Real, Standard_Real> anInterval(aMinCoord, aMaxCoord);
if (!aPairSeq.IsEmpty() && aMaxCoord < aPairSeq(1).first)
aPairSeq.Prepend(anInterval);
else
aPairSeq.Append(anInterval);
}
}
theNumberOfIntervals = aPairSeq.Length();
if (aPairSeq.Length() == 2)
{
theMinCoord = aPairSeq(2).first - thePeriod;
}
else if (aPairSeq.Length() > 0)
{
theMinCoord = aPairSeq(1).first;
}
else
{
return Standard_False;
}
theMaxCoord = aPairSeq(1).second;
return Standard_True;
}
static void RelocatePCurvesToNewUorigin(
const TopTools_SequenceOfShape& theEdges,
const TopoDS_Shape& theFirstFace,
const TopoDS_Face& theRefFace,
const Standard_Real theCoordTol,
const Standard_Integer theIndCoord,
const Standard_Real thePeriod,
TopTools_IndexedDataMapOfShapeListOfShape& theVEmap,
NCollection_DataMap<TopoDS_Shape, Handle(Geom2d_Curve)>& theEdgeNewPCurve,
TopTools_MapOfShape& theUsedEdges)
{
TopTools_MapOfShape EdgesOfFirstFace;
TopExp::MapShapes(theFirstFace, EdgesOfFirstFace);
for (;;) // walk by contours
{
// try to find the start edge that:
// 1. belongs to outer edges of first face;
// 2. has minimum U-coord of its start point
TopoDS_Edge StartEdge;
TopAbs_Orientation anOr = TopAbs_FORWARD;
Standard_Real aCoordMin = RealLast();
for (Standard_Integer ii = 1; ii <= theEdges.Length(); ii++)
{
const TopoDS_Edge& anEdge = TopoDS::Edge(theEdges(ii));
if (theUsedEdges.Contains(anEdge))
continue;
if (EdgesOfFirstFace.Contains(anEdge))
{
if (StartEdge.IsNull())
{
StartEdge = anEdge;
BRepAdaptor_Curve2d StartBAcurve(StartEdge, theRefFace);
Standard_Real aFirstParam, aLastParam;
if (StartEdge.Orientation() == TopAbs_FORWARD)
{
aFirstParam = StartBAcurve.FirstParameter();
aLastParam = StartBAcurve.LastParameter();
}
else
{
aFirstParam = StartBAcurve.LastParameter();
aLastParam = StartBAcurve.FirstParameter();
}
gp_Pnt2d aFirstPoint = StartBAcurve.Value(aFirstParam);
gp_Pnt2d aLastPoint = StartBAcurve.Value(aLastParam);
if (aFirstPoint.Coord(theIndCoord) < aLastPoint.Coord(theIndCoord))
{
aCoordMin = aFirstPoint.Coord(theIndCoord);
anOr = TopAbs_FORWARD;
}
else
{
aCoordMin = aLastPoint.Coord(theIndCoord);
anOr = TopAbs_REVERSED;
}
}
else
{
BRepAdaptor_Curve2d aBAcurve(anEdge, theRefFace);
Standard_Real aFirstParam, aLastParam;
if (anEdge.Orientation() == TopAbs_FORWARD)
{
aFirstParam = aBAcurve.FirstParameter();
aLastParam = aBAcurve.LastParameter();
}
else
{
aFirstParam = aBAcurve.LastParameter();
aLastParam = aBAcurve.FirstParameter();
}
gp_Pnt2d aFirstPoint = aBAcurve.Value(aFirstParam);
gp_Pnt2d aLastPoint = aBAcurve.Value(aLastParam);
if (aFirstPoint.Coord(theIndCoord) < aCoordMin)
{
StartEdge = anEdge;
aCoordMin = aFirstPoint.Coord(theIndCoord);
anOr = TopAbs_FORWARD;
}
if (aLastPoint.Coord(theIndCoord) < aCoordMin)
{
StartEdge = anEdge;
aCoordMin = aLastPoint.Coord(theIndCoord);
anOr = TopAbs_REVERSED;
}
}
} // if (EdgesOfFirstFace.Contains(anEdge))
} // for (Standard_Integer ii = 1; ii <= edges.Length(); ii++)
if (StartEdge.IsNull()) // all contours are passed
break;
TopoDS_Vertex StartVertex = (anOr == TopAbs_FORWARD)
? TopExp::FirstVertex(StartEdge, Standard_True)
: TopExp::LastVertex(StartEdge, Standard_True);
TopoDS_Edge CurEdge = StartEdge;
Standard_Real fpar, lpar;
Handle(Geom2d_Curve) CurPCurve = BRep_Tool::CurveOnSurface(CurEdge, theRefFace, fpar, lpar);
CurPCurve = new Geom2d_TrimmedCurve(CurPCurve, fpar, lpar);
theEdgeNewPCurve.Bind(CurEdge, CurPCurve);
if (CurEdge.Orientation() == TopAbs_REVERSED)
{
Standard_Real tmp = fpar;
fpar = lpar;
lpar = tmp;
}
Standard_Real CurParam = (anOr == TopAbs_FORWARD) ? lpar : fpar;
gp_Pnt2d CurPoint = CurPCurve->Value(CurParam);
for (;;) // collect pcurves of a contour
{
RemoveEdgeFromMap(CurEdge, theVEmap);
theUsedEdges.Add(CurEdge);
TopoDS_Vertex CurVertex = (anOr == TopAbs_FORWARD)
? TopExp::LastVertex(CurEdge, Standard_True)
: TopExp::FirstVertex(CurEdge, Standard_True);
const TopTools_ListOfShape& Elist = theVEmap.FindFromKey(CurVertex);
if (Elist.IsEmpty())
break; // end of contour in 3d
TopTools_ListIteratorOfListOfShape itl(Elist);
for (; itl.More(); itl.Next())
{
const TopoDS_Edge& anEdge = TopoDS::Edge(itl.Value());
if (anEdge.IsSame(CurEdge))
continue;
TopoDS_Vertex aFirstVertex = (anOr == TopAbs_FORWARD)
? TopExp::FirstVertex(anEdge, Standard_True)
: TopExp::LastVertex(anEdge, Standard_True);
if (!aFirstVertex.IsSame(CurVertex)) // may be if CurVertex is deg.vertex
continue;
Handle(Geom2d_Curve) aPCurve = BRep_Tool::CurveOnSurface(anEdge, theRefFace, fpar, lpar);
aPCurve = new Geom2d_TrimmedCurve(aPCurve, fpar, lpar);
if (anEdge.Orientation() == TopAbs_REVERSED)
{
Standard_Real tmp = fpar;
fpar = lpar;
lpar = tmp;
}
Standard_Real aParam = (anOr == TopAbs_FORWARD) ? fpar : lpar;
gp_Pnt2d aPoint = aPCurve->Value(aParam);
Standard_Real anOffset = CurPoint.Coord(theIndCoord) - aPoint.Coord(theIndCoord);
if (!(Abs(anOffset) < theCoordTol || Abs(Abs(anOffset) - thePeriod) < theCoordTol))
continue; // may be if CurVertex is deg.vertex
if (Abs(anOffset) > thePeriod / 2)
{
anOffset = TrueValueOfOffset(anOffset, thePeriod);
gp_Vec2d aVec;
if (theIndCoord == 1)
aVec.SetCoord(anOffset, 0.);
else
aVec.SetCoord(0., anOffset);
Handle(Geom2d_Curve) aNewPCurve = Handle(Geom2d_Curve)::DownCast(aPCurve->Copy());
aNewPCurve->Translate(aVec);
aPCurve = aNewPCurve;
}
theEdgeNewPCurve.Bind(anEdge, aPCurve);
CurEdge = anEdge;
TopAbs_Orientation CurOr = TopAbs::Compose(anOr, CurEdge.Orientation());
CurParam = (CurOr == TopAbs_FORWARD) ? aPCurve->LastParameter() : aPCurve->FirstParameter();
CurPoint = aPCurve->Value(CurParam);
break;
}
} // for (;;) (collect pcurves of a contour)
} // for (;;) (walk by contours)
}
static void InsertWiresIntoFaces(const TopTools_SequenceOfShape& theWires,
const TopTools_SequenceOfShape& theFaces,
const TopoDS_Face& theRefFace)
{
BRep_Builder BB;
for (Standard_Integer ii = 1; ii <= theWires.Length(); ii++)
{
const TopoDS_Wire& aWire = TopoDS::Wire(theWires(ii));
TopoDS_Iterator iter(aWire);
const TopoDS_Edge& anEdge = TopoDS::Edge(iter.Value());
BRepAdaptor_Curve2d BAcurve2d(anEdge, theRefFace);
gp_Pnt2d aPnt2d =
BAcurve2d.Value((BAcurve2d.FirstParameter() + BAcurve2d.LastParameter()) / 2.);
TopoDS_Shape RequiredFace;
for (Standard_Integer jj = 1; jj <= theFaces.Length(); jj++)
{
const TopoDS_Face& aFace = TopoDS::Face(theFaces(jj));
BRepTopAdaptor_FClass2d Classifier(aFace, Precision::Confusion());
TopAbs_State aStatus = Classifier.Perform(aPnt2d);
if (aStatus == TopAbs_IN)
{
RequiredFace = aFace.Oriented(TopAbs_FORWARD);
break;
}
}
if (!RequiredFace.IsNull())
{
BB.Add(RequiredFace, aWire);
}
else
{
Standard_ASSERT_INVOKE("ShapeUpgrade_UnifySameDomain: wire remains unclassified");
}
}
}
static TopoDS_Face FindCommonFace(const TopoDS_Edge& theEdge1,
const TopoDS_Edge& theEdge2,
const TopTools_IndexedDataMapOfShapeListOfShape& theVFmap,
TopAbs_Orientation& theOrOfE1OnFace,
TopAbs_Orientation& theOrOfE2OnFace)
{
TopoDS_Vertex aVertex;
TopExp::CommonVertex(theEdge1, theEdge2, aVertex);
const TopTools_ListOfShape& Flist = theVFmap.FindFromKey(aVertex);
TopTools_ListIteratorOfListOfShape itl(Flist);
for (; itl.More(); itl.Next())
{
TopoDS_Face aFace = TopoDS::Face(itl.Value());
aFace.Orientation(TopAbs_FORWARD);
Standard_Boolean e1found = Standard_False, e2found = Standard_False;
TopExp_Explorer Explo(aFace, TopAbs_EDGE);
for (; Explo.More(); Explo.Next())
{
const TopoDS_Shape& anEdge = Explo.Current();
if (anEdge.IsSame(theEdge1))
{
e1found = Standard_True;
theOrOfE1OnFace = anEdge.Orientation();
}
if (anEdge.IsSame(theEdge2))
{
e2found = Standard_True;
theOrOfE2OnFace = anEdge.Orientation();
}
if (e1found && e2found)
return aFace;
}
}
TopoDS_Face NullFace;
return NullFace;
}
static Standard_Boolean FindClosestPoints(const TopoDS_Edge& theEdge1,
const TopoDS_Edge& theEdge2,
const TopTools_IndexedDataMapOfShapeListOfShape& theVFmap,
TopoDS_Face& theCommonFace,
Standard_Real& theMinSqDist,
TopAbs_Orientation& OrOfE1OnFace,
TopAbs_Orientation& OrOfE2OnFace,
Standard_Integer& theIndOnE1,
Standard_Integer& theIndOnE2,
gp_Pnt2d* PointsOnEdge1,
gp_Pnt2d* PointsOnEdge2)
{
theCommonFace = FindCommonFace(theEdge1, theEdge2, theVFmap, OrOfE1OnFace, OrOfE2OnFace);
if (theCommonFace.IsNull())
return Standard_False;
Standard_Real fpar1, lpar1, fpar2, lpar2;
Handle(Geom2d_Curve) PCurve1 = BRep_Tool::CurveOnSurface(theEdge1, theCommonFace, fpar1, lpar1);
Handle(Geom2d_Curve) PCurve2 = BRep_Tool::CurveOnSurface(theEdge2, theCommonFace, fpar2, lpar2);
PointsOnEdge1[0] = PCurve1->Value(fpar1);
PointsOnEdge1[1] = PCurve1->Value(lpar1);
PointsOnEdge2[0] = PCurve2->Value(fpar2);
PointsOnEdge2[1] = PCurve2->Value(lpar2);
theMinSqDist = RealLast();
theIndOnE1 = -1;
theIndOnE2 = -1;
for (Standard_Integer ind1 = 0; ind1 < 2; ind1++)
for (Standard_Integer ind2 = 0; ind2 < 2; ind2++)
{
Standard_Real aSqDist = PointsOnEdge1[ind1].SquareDistance(PointsOnEdge2[ind2]);
if (aSqDist < theMinSqDist)
{
theMinSqDist = aSqDist;
theIndOnE1 = ind1;
theIndOnE2 = ind2;
}
}
return Standard_True;
}
//=================================================================================================
static void ReconstructMissedSeam(const TopTools_SequenceOfShape& theRemovedEdges,
const TopoDS_Face& theFrefFace,
const TopoDS_Edge& theCurEdge,
const TopoDS_Vertex& theCurVertex,
const gp_Pnt2d& theCurPoint,
const Standard_Real theUperiod,
const Standard_Real theVperiod,
TopoDS_Edge& theSeamEdge,
gp_Pnt2d& theNextPoint)
{
Handle(Geom_Surface) RefSurf = BRep_Tool::Surface(theFrefFace);
// Find seam edge between removed edges
theSeamEdge.Nullify();
for (Standard_Integer i = 1; i <= theRemovedEdges.Length(); i++)
{
TopoDS_Edge anEdge = TopoDS::Edge(theRemovedEdges(i));
if (anEdge.IsSame(theCurEdge))
continue;
Standard_Real Param1, Param2;
Handle(Geom2d_Curve) aPC = BRep_Tool::CurveOnSurface(anEdge, theFrefFace, Param1, Param2);
if (aPC.IsNull())
continue;
TopoDS_Vertex aFirstVertex, aLastVertex;
TopExp::Vertices(anEdge, aFirstVertex, aLastVertex, Standard_True);
if ((aFirstVertex.IsSame(theCurVertex) || aLastVertex.IsSame(theCurVertex))
&& BRep_Tool::IsClosed(anEdge, theFrefFace))
{
Standard_Real aParam = (anEdge.Orientation() == TopAbs_FORWARD) ? Param1 : Param2;
gp_Pnt2d aPoint = aPC->Value(aParam);
Standard_Real aUdiff = Abs(aPoint.X() - theCurPoint.X());
Standard_Real aVdiff = Abs(aPoint.Y() - theCurPoint.Y());
if ((theUperiod != 0. && aUdiff > theUperiod / 2)
|| (theVperiod != 0. && aVdiff > theVperiod / 2))
{
if (aLastVertex.IsSame(theCurVertex) || (theUperiod != 0. && theVperiod != 0.))
{
anEdge.Reverse();
}
else
{
TopAbs_Orientation anOri = anEdge.Orientation();
anEdge.Orientation(TopAbs_FORWARD);
Handle(Geom2d_Curve) aPC1 =
BRep_Tool::CurveOnSurface(anEdge, theFrefFace, Param1, Param2);
anEdge.Reverse();
Handle(Geom2d_Curve) aPC2 =
BRep_Tool::CurveOnSurface(anEdge, theFrefFace, Param1, Param2);
anEdge.Reverse(); // again FORWARD
TopLoc_Location aLoc;
BRep_Builder aBB;
Standard_Real aTol = BRep_Tool::Tolerance(anEdge);
const Handle(Geom_Surface)& aSurf = BRep_Tool::Surface(theFrefFace, aLoc);
aBB.UpdateEdge(anEdge, aPC2, aPC1, aSurf, aLoc, aTol);
anEdge.Orientation(anOri);
}
aPC = BRep_Tool::CurveOnSurface(anEdge, theFrefFace, Param1, Param2);
aParam = (anEdge.Orientation() == TopAbs_FORWARD) ? Param1 : Param2;
aPoint = aPC->Value(aParam);
aUdiff = Abs(aPoint.X() - theCurPoint.X());
aVdiff = Abs(aPoint.Y() - theCurPoint.Y());
}
if ((theUperiod == 0. || aUdiff < theUperiod / 2)
&& (theVperiod == 0. || aVdiff < theVperiod / 2))
{
aFirstVertex = TopExp::FirstVertex(anEdge, Standard_True);
if (aFirstVertex.IsSame(theCurVertex))
{
theSeamEdge = anEdge;
break;
}
}
}
}
if (!theSeamEdge.IsNull())
{
Standard_Real Param1, Param2;
Handle(Geom2d_Curve) aPC = BRep_Tool::CurveOnSurface(theSeamEdge, theFrefFace, Param1, Param2);
Standard_Real aParam = (theSeamEdge.Orientation() == TopAbs_FORWARD) ? Param2 : Param1;
theNextPoint = aPC->Value(aParam);
}
}
//=================================================================================================
static Standard_Boolean SameSurf(const Handle(Geom_Surface)& theS1,
const Handle(Geom_Surface)& theS2)
{
static Standard_Real aCoefs[2] = {0.3399811, 0.7745966};
Standard_Real uf1, ul1, vf1, vl1, uf2, ul2, vf2, vl2;
theS1->Bounds(uf1, ul1, vf1, vl1);
theS2->Bounds(uf2, ul2, vf2, vl2);
constexpr Standard_Real aPTol = Precision::PConfusion();
if (Precision::IsNegativeInfinite(uf1))
{
if (!Precision::IsNegativeInfinite(uf2))
{
return Standard_False;
}
else
{
uf1 = Min(-1., (ul1 - 1.));
}
}
else
{
if (Precision::IsNegativeInfinite(uf2))
{
return Standard_False;
}
else
{
if (Abs(uf1 - uf2) > aPTol)
{
return Standard_False;
}
}
}
//
if (Precision::IsNegativeInfinite(vf1))
{
if (!Precision::IsNegativeInfinite(vf2))
{
return Standard_False;
}
else
{
vf1 = Min(-1., (vl1 - 1.));
}
}
else
{
if (Precision::IsNegativeInfinite(vf2))
{
return Standard_False;
}
else
{
if (Abs(vf1 - vf2) > aPTol)
{
return Standard_False;
}
}
}
//
if (Precision::IsPositiveInfinite(ul1))
{
if (!Precision::IsPositiveInfinite(ul2))
{
return Standard_False;
}
else
{
ul1 = Max(1., (uf1 + 1.));
}
}
else
{
if (Precision::IsPositiveInfinite(ul2))
{
return Standard_False;
}
else
{
if (Abs(ul1 - ul2) > aPTol)
{
return Standard_False;
}
}
}
//
if (Precision::IsPositiveInfinite(vl1))
{
if (!Precision::IsPositiveInfinite(vl2))
{
return Standard_False;
}
else
{
vl1 = Max(1., (vf1 + 1.));
}
}
else
{
if (Precision::IsPositiveInfinite(vl2))
{
return Standard_False;
}
else
{
if (Abs(vl1 - vl2) > aPTol)
{
return Standard_False;
}
}
}
//
Standard_Real u, v, du = (ul1 - uf1), dv = (vl1 - vf1);
Standard_Integer i, j;
for (i = 0; i < 2; ++i)
{
u = uf1 + aCoefs[i] * du;
for (j = 0; j < 2; ++j)
{
v = vf1 + aCoefs[j] * dv;
gp_Pnt aP1 = theS1->Value(u, v);
gp_Pnt aP2 = theS2->Value(u, v);
if (!aP1.IsEqual(aP2, aPTol))
{
return Standard_False;
}
}
}
return Standard_True;
}
//=================================================================================================
static void TransformPCurves(const TopoDS_Face& theRefFace,
const TopoDS_Face& theFace,
TopTools_MapOfShape& theMapEdgesWithTemporaryPCurves)
{
Handle(Geom_Surface) RefSurf = BRep_Tool::Surface(theRefFace);
if (RefSurf->IsKind(STANDARD_TYPE(Geom_RectangularTrimmedSurface)))
RefSurf = (Handle(Geom_RectangularTrimmedSurface)::DownCast(RefSurf))->BasisSurface();
Handle(Geom_Surface) SurfFace = BRep_Tool::Surface(theFace);
if (SurfFace->IsKind(STANDARD_TYPE(Geom_RectangularTrimmedSurface)))
SurfFace = (Handle(Geom_RectangularTrimmedSurface)::DownCast(SurfFace))->BasisSurface();
Standard_Boolean ToModify = Standard_False, ToTranslate = Standard_False,
ToRotate = Standard_False, X_Reverse = Standard_False,
Y_Reverse = Standard_False, ToProject = Standard_False;
Standard_Real aTranslation = 0., anAngle = 0.;
// Get axes of surface of face and of surface of RefFace
Handle(Geom_ElementarySurface) ElemSurfFace = Handle(Geom_ElementarySurface)::DownCast(SurfFace);
Handle(Geom_ElementarySurface) ElemRefSurf = Handle(Geom_ElementarySurface)::DownCast(RefSurf);
if (!ElemSurfFace.IsNull() && !ElemRefSurf.IsNull())
{
gp_Ax3 AxisOfSurfFace = ElemSurfFace->Position();
gp_Ax3 AxisOfRefSurf = ElemRefSurf->Position();
gp_Pnt OriginRefSurf = AxisOfRefSurf.Location();
Standard_Real aParam = ElCLib::LineParameter(AxisOfSurfFace.Axis(), OriginRefSurf);
if (Abs(aParam) > Precision::PConfusion())
aTranslation = -aParam;
gp_Dir VdirSurfFace = AxisOfSurfFace.Direction();
gp_Dir VdirRefSurf = AxisOfRefSurf.Direction();
gp_Dir XdirSurfFace = AxisOfSurfFace.XDirection();
gp_Dir XdirRefSurf = AxisOfRefSurf.XDirection();
gp_Dir CrossProd1 = AxisOfRefSurf.XDirection() ^ AxisOfRefSurf.YDirection();
gp_Dir CrossProd2 = AxisOfSurfFace.XDirection() ^ AxisOfSurfFace.YDirection();
if (CrossProd1 * CrossProd2 < 0.)
X_Reverse = Standard_True;
Standard_Real ScalProd = VdirSurfFace * VdirRefSurf;
if (ScalProd < 0.)
Y_Reverse = Standard_True;
if (!X_Reverse && !Y_Reverse)
{
gp_Dir DirRef = VdirRefSurf;
if (!AxisOfRefSurf.Direct())
DirRef.Reverse();
anAngle = XdirRefSurf.AngleWithRef(XdirSurfFace, DirRef);
}
else
anAngle = XdirRefSurf.Angle(XdirSurfFace);
ToRotate = (Abs(anAngle) > Precision::PConfusion());
ToTranslate = (Abs(aTranslation) > Precision::PConfusion());
ToModify = ToTranslate || ToRotate || X_Reverse || Y_Reverse;
}
else
{
if (!SameSurf(RefSurf, SurfFace))
{
ToProject = Standard_True;
}
}
BRep_Builder BB;
TopExp_Explorer Explo(theFace, TopAbs_EDGE);
TopTools_MapOfShape aEmap;
for (; Explo.More(); Explo.Next())
{
TopoDS_Edge anEdge = TopoDS::Edge(Explo.Current());
if (BRep_Tool::Degenerated(anEdge) && ToModify)
continue;
if (ToProject && BRep_Tool::IsClosed(anEdge, theFace))
continue;
if (!aEmap.Add(anEdge))
continue;
TopAbs_Orientation anOr = anEdge.Orientation();
Standard_Real fpar, lpar;
Handle(Geom2d_Curve) PCurveOnRef = BRep_Tool::CurveOnSurface(anEdge, theRefFace, fpar, lpar);
Handle(Geom2d_Curve) PCurve2;
if (!PCurveOnRef.IsNull() /* && !(ToModify || ToProject)*/)
{
anEdge.Reverse();
PCurve2 = BRep_Tool::CurveOnSurface(anEdge, theRefFace, fpar, lpar);
if (PCurve2 != PCurveOnRef) // two pcurves
continue;
}
Handle(Geom2d_Curve) PCurves[2], NewPCurves[2];
anEdge.Orientation(TopAbs_FORWARD);
PCurves[0] = BRep_Tool::CurveOnSurface(anEdge, theFace, fpar, lpar);
anEdge.Reverse();
PCurves[1] = BRep_Tool::CurveOnSurface(anEdge, theFace, fpar, lpar);
Standard_Integer NbPcurves = (PCurves[0] == PCurves[1]) ? 1 : 2;
for (Standard_Integer ii = 0; ii < NbPcurves; ii++)
{
if (ToProject)
{
Handle(Geom_Curve) aC3d = BRep_Tool::Curve(anEdge, fpar, lpar);
aC3d = new Geom_TrimmedCurve(aC3d, fpar, lpar);
Standard_Real tol = BRep_Tool::Tolerance(anEdge);
tol = Min(tol, Precision::Approximation());
NewPCurves[ii] = GeomProjLib::Curve2d(aC3d, RefSurf);
}
else
{
NewPCurves[ii] = Handle(Geom2d_Curve)::DownCast(PCurves[ii]->Copy());
}
if (ToTranslate)
NewPCurves[ii]->Translate(gp_Vec2d(0., aTranslation));
if (Y_Reverse)
NewPCurves[ii]->Mirror(gp::OX2d());
if (X_Reverse)
{
NewPCurves[ii]->Mirror(gp::OY2d());
NewPCurves[ii]->Translate(gp_Vec2d(2 * M_PI, 0.));
}
if (ToRotate)
NewPCurves[ii]->Translate(gp_Vec2d(anAngle, 0.));
}
anEdge.Orientation(TopAbs_FORWARD);
if (NbPcurves == 1)
{
if (PCurve2.IsNull() || (!RefSurf->IsUClosed() && !RefSurf->IsVClosed()))
{
BB.UpdateEdge(anEdge, NewPCurves[0], theRefFace, 0.);
theMapEdgesWithTemporaryPCurves.Add(anEdge);
}
else
{
// check: may be it is the same pcurve
Standard_Real aUmin, aUmax, aVmin, aVmax;
RefSurf->Bounds(aUmin, aUmax, aVmin, aVmax);
Standard_Real aUperiod = (RefSurf->IsUClosed()) ? (aUmax - aUmin) : 0.;
Standard_Real aVperiod = (RefSurf->IsVClosed()) ? (aVmax - aVmin) : 0.;
gp_Pnt2d aP2dOnPCurve1 = PCurveOnRef->Value(fpar);
gp_Pnt2d aP2dOnPCurve2 = NewPCurves[0]->Value(fpar);
if ((aUperiod != 0. && Abs(aP2dOnPCurve1.X() - aP2dOnPCurve2.X()) > aUperiod / 2)
|| (aVperiod != 0. && Abs(aP2dOnPCurve1.Y() - aP2dOnPCurve2.Y()) > aVperiod / 2))
{
Handle(Geom2d_Curve) NullPCurve;
BB.UpdateEdge(anEdge, NullPCurve, theRefFace, 0.);
if (anOr == TopAbs_FORWARD)
BB.UpdateEdge(anEdge, NewPCurves[0], PCurveOnRef, theRefFace, 0.);
else
BB.UpdateEdge(anEdge, PCurveOnRef, NewPCurves[0], theRefFace, 0.);
theMapEdgesWithTemporaryPCurves.Add(anEdge);
}
}
}
else
{
BB.UpdateEdge(anEdge, NewPCurves[0], NewPCurves[1], theRefFace, 0.);
theMapEdgesWithTemporaryPCurves.Add(anEdge);
}
BB.Range(anEdge, fpar, lpar);
}
}
//=================================================================================================
static void AddPCurves(const TopTools_SequenceOfShape& theFaces,
const TopoDS_Face& theRefFace,
TopTools_MapOfShape& theMapEdgesWithTemporaryPCurves)
{
BRepAdaptor_Surface RefBAsurf(theRefFace, Standard_False);
GeomAbs_SurfaceType aType = RefBAsurf.GetType();
if (aType == GeomAbs_Plane)
return;
for (Standard_Integer i = 1; i <= theFaces.Length(); i++)
{
TopoDS_Face aFace = TopoDS::Face(theFaces(i));
aFace.Orientation(TopAbs_FORWARD);
if (aFace.IsSame(theRefFace))
continue;
TransformPCurves(theRefFace, aFace, theMapEdgesWithTemporaryPCurves);
}
}
//=================================================================================================
// adds edges from the shape to the sequence
// seams and equal edges are dropped
// Returns true if one of original edges dropped
static Standard_Boolean AddOrdinaryEdges(TopTools_SequenceOfShape& edges,
const TopoDS_Shape& aShape,
Standard_Integer& anIndex,
TopTools_SequenceOfShape& theRemovedEdges)
{
// map of edges
TopTools_IndexedMapOfShape aNewEdges;
// add edges without seams
for (TopExp_Explorer exp(aShape, TopAbs_EDGE); exp.More(); exp.Next())
{
const TopoDS_Shape& edge = exp.Current();
if (aNewEdges.Contains(edge))
{
aNewEdges.RemoveKey(edge);
theRemovedEdges.Append(edge);
}
else
aNewEdges.Add(edge);
}
Standard_Boolean isDropped = Standard_False;
// merge edges and drop seams
Standard_Integer i;
for (i = 1; i <= edges.Length(); i++)
{
TopoDS_Shape current = edges(i);
if (aNewEdges.Contains(current))
{
aNewEdges.RemoveKey(current);
edges.Remove(i);
theRemovedEdges.Append(current);
i--;
if (!isDropped)
{
isDropped = Standard_True;
anIndex = i;
}
}
}
// add edges to the sequence
for (i = 1; i <= aNewEdges.Extent(); i++)
edges.Append(aNewEdges(i));
return isDropped;
}
//=================================================================================================
static Standard_Boolean getCylinder(Handle(Geom_Surface)& theInSurface, gp_Cylinder& theOutCylinder)
{
Standard_Boolean isCylinder = Standard_False;
if (theInSurface->IsKind(STANDARD_TYPE(Geom_CylindricalSurface)))
{
Handle(Geom_CylindricalSurface) aGC = Handle(Geom_CylindricalSurface)::DownCast(theInSurface);
theOutCylinder = aGC->Cylinder();
isCylinder = Standard_True;
}
else if (theInSurface->IsKind(STANDARD_TYPE(Geom_SurfaceOfRevolution)))
{
Handle(Geom_SurfaceOfRevolution) aRS = Handle(Geom_SurfaceOfRevolution)::DownCast(theInSurface);
Handle(Geom_Curve) aBasis = aRS->BasisCurve();
while (aBasis->IsKind(STANDARD_TYPE(Geom_TrimmedCurve)))
{
Handle(Geom_TrimmedCurve) aTc = Handle(Geom_TrimmedCurve)::DownCast(aBasis);
aBasis = aTc->BasisCurve();
}
if (aBasis->IsKind(STANDARD_TYPE(Geom_Line)))
{
Handle(Geom_Line) aBasisLine = Handle(Geom_Line)::DownCast(aBasis);
gp_Dir aDir = aRS->Direction();
gp_Dir aBasisDir = aBasisLine->Position().Direction();
if (aBasisDir.IsParallel(aDir, Precision::Angular()))
{
// basis line is parallel to the revolution axis: it is a cylinder
gp_Pnt aLoc = aRS->Location();
Standard_Real aR = aBasisLine->Lin().Distance(aLoc);
gp_Ax3 aCylAx(aLoc, aDir);
theOutCylinder = gp_Cylinder(aCylAx, aR);
isCylinder = Standard_True;
}
}
}
else if (theInSurface->IsKind(STANDARD_TYPE(Geom_SurfaceOfLinearExtrusion)))
{
Handle(Geom_SurfaceOfLinearExtrusion) aLES =
Handle(Geom_SurfaceOfLinearExtrusion)::DownCast(theInSurface);
Handle(Geom_Curve) aBasis = aLES->BasisCurve();
while (aBasis->IsKind(STANDARD_TYPE(Geom_TrimmedCurve)))
{
Handle(Geom_TrimmedCurve) aTc = Handle(Geom_TrimmedCurve)::DownCast(aBasis);
aBasis = aTc->BasisCurve();
}
if (aBasis->IsKind(STANDARD_TYPE(Geom_Circle)))
{
Handle(Geom_Circle) aBasisCircle = Handle(Geom_Circle)::DownCast(aBasis);
gp_Dir aDir = aLES->Direction();
gp_Dir aBasisDir = aBasisCircle->Position().Direction();
if (aBasisDir.IsParallel(aDir, Precision::Angular()))
{
// basis circle is normal to the extrusion axis: it is a cylinder
gp_Pnt aLoc = aBasisCircle->Location();
Standard_Real aR = aBasisCircle->Radius();
gp_Ax3 aCylAx(aLoc, aDir);
theOutCylinder = gp_Cylinder(aCylAx, aR);
isCylinder = Standard_True;
}
}
}
else
{
}
return isCylinder;
}
//=================================================================================================
static Handle(Geom_Surface) ClearRts(const Handle(Geom_Surface)& aSurface)
{
if (aSurface->IsKind(STANDARD_TYPE(Geom_RectangularTrimmedSurface)))
{
Handle(Geom_RectangularTrimmedSurface) rts =
Handle(Geom_RectangularTrimmedSurface)::DownCast(aSurface);
return rts->BasisSurface();
}
return aSurface;
}
//=======================================================================
// function : GetNormalToSurface
// purpose : Gets the normal to surface by the given parameter on edge.
// Returns True if normal was computed.
//=======================================================================
static Standard_Boolean GetNormalToSurface(const TopoDS_Face& theFace,
const TopoDS_Edge& theEdge,
const Standard_Real theP,
gp_Dir& theNormal)
{
Standard_Real f, l;
// get 2d curve to get point in 2d
Handle(Geom2d_Curve) aC2d;
if (BRep_Tool::IsClosed(theEdge, theFace))
{
// Find the edge in the face: it will have correct orientation
TopoDS_Edge anEdgeInFace;
TopoDS_Face aFace = theFace;
aFace.Orientation(TopAbs_FORWARD);
TopExp_Explorer anExplo(aFace, TopAbs_EDGE);
for (; anExplo.More(); anExplo.Next())
{
const TopoDS_Edge& anEdge = TopoDS::Edge(anExplo.Current());
if (anEdge.IsSame(theEdge))
{
anEdgeInFace = anEdge;
break;
}
}
if (anEdgeInFace.IsNull())
return Standard_False;
aC2d = BRep_Tool::CurveOnSurface(anEdgeInFace, aFace, f, l);
}
else
aC2d = BRep_Tool::CurveOnSurface(theEdge, theFace, f, l);
if (aC2d.IsNull())
{
return Standard_False;
}
//
// 2d point
gp_Pnt2d aP2d;
aC2d->D0(theP, aP2d);
//
// get D1
gp_Vec aDU, aDV;
gp_Pnt aP3d;
TopLoc_Location aLoc;
const Handle(Geom_Surface)& aS = BRep_Tool::Surface(theFace, aLoc);
aS->D1(aP2d.X(), aP2d.Y(), aP3d, aDU, aDV);
//
// compute normal
gp_Vec aVNormal = aDU.Crossed(aDV);
if (aVNormal.Magnitude() < Precision::Confusion())
{
return Standard_False;
}
//
if (theFace.Orientation() == TopAbs_REVERSED)
{
aVNormal.Reverse();
}
//
aVNormal.Transform(aLoc.Transformation());
theNormal = gp_Dir(aVNormal);
return Standard_True;
}
//=================================================================================================
static Standard_Boolean IsSameDomain(
const TopoDS_Face& aFace,
const TopoDS_Face& aCheckedFace,
const Standard_Real theLinTol,
const Standard_Real theAngTol,
ShapeUpgrade_UnifySameDomain::DataMapOfFacePlane& theFacePlaneMap)
{
// checking the same handles
TopLoc_Location L1, L2;
Handle(Geom_Surface) S1, S2;
S1 = BRep_Tool::Surface(aFace, L1);
S2 = BRep_Tool::Surface(aCheckedFace, L2);
if (S1 == S2 && L1 == L2)
return Standard_True;
S1 = BRep_Tool::Surface(aFace);
S2 = BRep_Tool::Surface(aCheckedFace);
S1 = ClearRts(S1);
S2 = ClearRts(S2);
// Handle(Geom_OffsetSurface) aGOFS1, aGOFS2;
// aGOFS1 = Handle(Geom_OffsetSurface)::DownCast(S1);
// aGOFS2 = Handle(Geom_OffsetSurface)::DownCast(S2);
// if (!aGOFS1.IsNull()) S1 = aGOFS1->BasisSurface();
// if (!aGOFS2.IsNull()) S2 = aGOFS2->BasisSurface();
// case of two planar surfaces:
// all kinds of surfaces checked, including b-spline and bezier
GeomLib_IsPlanarSurface aPlanarityChecker1(S1, theLinTol);
if (aPlanarityChecker1.IsPlanar())
{
GeomLib_IsPlanarSurface aPlanarityChecker2(S2, theLinTol);
if (aPlanarityChecker2.IsPlanar())
{
gp_Pln aPln1 = aPlanarityChecker1.Plan();
gp_Pln aPln2 = aPlanarityChecker2.Plan();
if (aPln1.Position().Direction().IsParallel(aPln2.Position().Direction(), theAngTol)
&& aPln1.Distance(aPln2) < theLinTol)
{
Handle(Geom_Plane) aPlaneOfFaces;
if (theFacePlaneMap.IsBound(aFace))
aPlaneOfFaces = theFacePlaneMap(aFace);
else if (theFacePlaneMap.IsBound(aCheckedFace))
aPlaneOfFaces = theFacePlaneMap(aCheckedFace);
else
aPlaneOfFaces = new Geom_Plane(aPln1);
theFacePlaneMap.Bind(aFace, aPlaneOfFaces);
theFacePlaneMap.Bind(aCheckedFace, aPlaneOfFaces);
return Standard_True;
}
}
}
// case of two elementary surfaces: use OCCT tool
// elementary surfaces: ConicalSurface, CylindricalSurface,
// Plane, SphericalSurface and ToroidalSurface
if (S1->IsKind(STANDARD_TYPE(Geom_ElementarySurface))
&& S2->IsKind(STANDARD_TYPE(Geom_ElementarySurface)))
{
Handle(GeomAdaptor_Surface) aGA1 = new GeomAdaptor_Surface(S1);
Handle(GeomAdaptor_Surface) aGA2 = new GeomAdaptor_Surface(S2);
Handle(BRepTopAdaptor_TopolTool) aTT1 = new BRepTopAdaptor_TopolTool();
Handle(BRepTopAdaptor_TopolTool) aTT2 = new BRepTopAdaptor_TopolTool();
try
{
IntPatch_ImpImpIntersection anIIInt(aGA1, aTT1, aGA2, aTT2, theLinTol, theLinTol);
if (!anIIInt.IsDone() || anIIInt.IsEmpty())
return Standard_False;
return anIIInt.TangentFaces();
}
catch (Standard_Failure const&)
{
return Standard_False;
}
}
// case of two cylindrical surfaces, at least one of which is a swept surface
// swept surfaces: SurfaceOfLinearExtrusion, SurfaceOfRevolution
if ((S1->IsKind(STANDARD_TYPE(Geom_CylindricalSurface))
|| S1->IsKind(STANDARD_TYPE(Geom_SweptSurface)))
&& (S2->IsKind(STANDARD_TYPE(Geom_CylindricalSurface))
|| S2->IsKind(STANDARD_TYPE(Geom_SweptSurface))))
{
gp_Cylinder aCyl1, aCyl2;
if (getCylinder(S1, aCyl1) && getCylinder(S2, aCyl2))
{
if (fabs(aCyl1.Radius() - aCyl2.Radius()) < theLinTol)
{
gp_Dir aDir1 = aCyl1.Position().Direction();
gp_Dir aDir2 = aCyl2.Position().Direction();
if (aDir1.IsParallel(aDir2, Precision::Angular()))
{
gp_Pnt aLoc1 = aCyl1.Location();
gp_Pnt aLoc2 = aCyl2.Location();
gp_Vec aVec12(aLoc1, aLoc2);
if (aVec12.SquareMagnitude() < theLinTol * theLinTol
|| aVec12.IsParallel(aDir1, Precision::Angular()))
{
return Standard_True;
}
}
}
}
}
return Standard_False;
}
//=================================================================================================
static void UpdateMapOfShapes(TopTools_MapOfShape& theMapOfShapes,
Handle(ShapeBuild_ReShape)& theContext)
{
for (TopTools_MapIteratorOfMapOfShape it(theMapOfShapes); it.More(); it.Next())
{
const TopoDS_Shape& aShape = it.Value();
TopoDS_Shape aContextShape = theContext->Apply(aShape);
if (!aContextShape.IsSame(aShape))
theMapOfShapes.Add(aContextShape);
}
}
//=======================================================================
// function : GlueEdgesWithPCurves
// purpose : Glues the pcurves of the sequence of edges
// and glues their 3d curves
//=======================================================================
static TopoDS_Edge GlueEdgesWithPCurves(const TopTools_SequenceOfShape& aChain,
const TopoDS_Vertex& FirstVertex,
const TopoDS_Vertex& LastVertex)
{
Standard_Integer i, j;
TopoDS_Edge FirstEdge = TopoDS::Edge(aChain(1));
TColGeom_SequenceOfSurface SurfSeq;
NCollection_Sequence<TopLoc_Location> LocSeq;
for (int aCurveIndex = 0;; aCurveIndex++)
{
Handle(Geom2d_Curve) aCurve;
Handle(Geom_Surface) aSurface;
TopLoc_Location aLocation;
Standard_Real aFirst, aLast;
BRep_Tool::CurveOnSurface(FirstEdge, aCurve, aSurface, aLocation, aFirst, aLast, aCurveIndex);
if (aCurve.IsNull())
break;
SurfSeq.Append(aSurface);
LocSeq.Append(aLocation);
}
Standard_Real fpar, lpar;
BRep_Tool::Range(FirstEdge, fpar, lpar);
TopoDS_Edge PrevEdge = FirstEdge;
TopoDS_Vertex CV;
Standard_Real MaxTol = 0.;
TopoDS_Edge ResEdge;
BRep_Builder BB;
Standard_Integer nb_curve = aChain.Length(); // number of curves
TColGeom_Array1OfBSplineCurve tab_c3d(0, nb_curve - 1); // array of the curves
TColStd_Array1OfReal tabtolvertex(0, nb_curve - 1); //(0,nb_curve-2); //array of the tolerances
TopoDS_Vertex PrevVertex = FirstVertex;
for (i = 1; i <= nb_curve; i++)
{
TopoDS_Edge anEdge = TopoDS::Edge(aChain(i));
TopoDS_Vertex VF, VL;
TopExp::Vertices(anEdge, VF, VL);
Standard_Boolean ToReverse = (!VF.IsSame(PrevVertex));
Standard_Real Tol1 = BRep_Tool::Tolerance(VF);
Standard_Real Tol2 = BRep_Tool::Tolerance(VL);
if (Tol1 > MaxTol)
MaxTol = Tol1;
if (Tol2 > MaxTol)
MaxTol = Tol2;
if (i > 1)
{
TopExp::CommonVertex(PrevEdge, anEdge, CV);
Standard_Real Tol = BRep_Tool::Tolerance(CV);
tabtolvertex(i - 2) = Tol;
}
Handle(Geom_Curve) aCurve = BRep_Tool::Curve(anEdge, fpar, lpar);
Handle(Geom_TrimmedCurve) aTrCurve = new Geom_TrimmedCurve(aCurve, fpar, lpar);
tab_c3d(i - 1) = GeomConvert::CurveToBSplineCurve(aTrCurve);
GeomConvert::C0BSplineToC1BSplineCurve(tab_c3d(i - 1), Precision::Confusion());
if (ToReverse)
tab_c3d(i - 1)->Reverse();
PrevVertex = (ToReverse) ? VF : VL;
PrevEdge = anEdge;
}
Handle(TColGeom_HArray1OfBSplineCurve) concatcurve; // array of the concatenated curves
Handle(TColStd_HArray1OfInteger) ArrayOfIndices; // array of the remaining Vertex
Standard_Boolean closed_flag = Standard_False;
GeomConvert::ConcatC1(tab_c3d,
tabtolvertex,
ArrayOfIndices,
concatcurve,
closed_flag,
Precision::Confusion()); // C1 concatenation
if (concatcurve->Length() > 1)
{
GeomConvert_CompCurveToBSplineCurve Concat(concatcurve->Value(concatcurve->Lower()));
for (i = concatcurve->Lower() + 1; i <= concatcurve->Upper(); i++)
Concat.Add(concatcurve->Value(i), MaxTol, Standard_True);
concatcurve->SetValue(concatcurve->Lower(), Concat.BSplineCurve());
}
Handle(Geom_BSplineCurve) ResCurve = concatcurve->Value(concatcurve->Lower());
TColGeom2d_SequenceOfBoundedCurve ResPCurves;
for (j = 1; j <= SurfSeq.Length(); j++)
{
TColGeom2d_Array1OfBSplineCurve tab_c2d(0, nb_curve - 1); // array of the pcurves
PrevVertex = FirstVertex;
PrevEdge = FirstEdge;
for (i = 1; i <= nb_curve; i++)
{
TopoDS_Edge anEdge = TopoDS::Edge(aChain(i));
TopoDS_Vertex VF, VL;
TopExp::Vertices(anEdge, VF, VL);
Standard_Boolean ToReverse = (!VF.IsSame(PrevVertex));
Handle(Geom2d_Curve) aPCurve =
BRep_Tool::CurveOnSurface(anEdge, SurfSeq(j), LocSeq(j), fpar, lpar);
if (aPCurve.IsNull())
continue;
Handle(Geom2d_TrimmedCurve) aTrPCurve = new Geom2d_TrimmedCurve(aPCurve, fpar, lpar);
tab_c2d(i - 1) = Geom2dConvert::CurveToBSplineCurve(aTrPCurve);
Geom2dConvert::C0BSplineToC1BSplineCurve(tab_c2d(i - 1), Precision::Confusion());
if (ToReverse)
tab_c2d(i - 1)->Reverse();
PrevVertex = (ToReverse) ? VF : VL;
PrevEdge = anEdge;
}
Handle(TColGeom2d_HArray1OfBSplineCurve) concatc2d; // array of the concatenated curves
Handle(TColStd_HArray1OfInteger) ArrayOfInd2d; // array of the remaining Vertex
closed_flag = Standard_False;
Geom2dConvert::ConcatC1(tab_c2d,
tabtolvertex,
ArrayOfInd2d,
concatc2d,
closed_flag,
Precision::Confusion()); // C1 concatenation
if (concatc2d->Length() > 1)
{
Geom2dConvert_CompCurveToBSplineCurve Concat2d(concatc2d->Value(concatc2d->Lower()));
for (i = concatc2d->Lower() + 1; i <= concatc2d->Upper(); i++)
Concat2d.Add(concatc2d->Value(i), MaxTol, Standard_True);
concatc2d->SetValue(concatc2d->Lower(), Concat2d.BSplineCurve());
}
Handle(Geom2d_BSplineCurve) aResPCurve = concatc2d->Value(concatc2d->Lower());
ResPCurves.Append(aResPCurve);
}
ResEdge = BRepLib_MakeEdge(ResCurve,
FirstVertex,
LastVertex,
ResCurve->FirstParameter(),
ResCurve->LastParameter());
BB.SameRange(ResEdge, Standard_False);
BB.SameParameter(ResEdge, Standard_False);
for (j = 1; j <= ResPCurves.Length(); j++)
{
BB.UpdateEdge(ResEdge, ResPCurves(j), SurfSeq(j), LocSeq(j), MaxTol);
BB.Range(ResEdge,
SurfSeq(j),
LocSeq(j),
ResPCurves(j)->FirstParameter(),
ResPCurves(j)->LastParameter());
}
BRepLib::SameParameter(ResEdge, MaxTol, Standard_True);
return ResEdge;
}
//=================================================================================================
void ShapeUpgrade_UnifySameDomain::UnionPCurves(const TopTools_SequenceOfShape& theChain,
TopoDS_Edge& theEdge)
{
Standard_Real aFirst3d, aLast3d;
Handle(Geom_Curve) aCurve = BRep_Tool::Curve(theEdge, aFirst3d, aLast3d);
Standard_Real aTolEdge = BRep_Tool::Tolerance(theEdge);
Standard_Real aMaxTol = aTolEdge;
TopTools_SequenceOfShape aFaceSeq;
const TopoDS_Edge& aFirstEdge = TopoDS::Edge(theChain.Value(1));
const TopTools_ListOfShape& aFaceList = myEFmap.FindFromKey(aFirstEdge);
TopTools_ListIteratorOfListOfShape anItl(aFaceList);
for (; anItl.More(); anItl.Next())
{
TopoDS_Face aFace = TopoDS::Face(anItl.Value());
if (myFacePlaneMap.IsBound(aFace))
continue;
if (myFaceNewFace.IsBound(aFace))
aFace = TopoDS::Face(myFaceNewFace(aFace));
aFace.Orientation(TopAbs_FORWARD); // to get proper pcurves of seam edges
BRepAdaptor_Surface aBAsurf(aFace, Standard_False);
if (aBAsurf.GetType() == GeomAbs_Plane)
continue;
TopLoc_Location aLoc;
Handle(Geom_Surface) aSurf = BRep_Tool::Surface(aFace, aLoc);
Standard_Boolean isFound = Standard_False;
for (Standard_Integer ii = 1; ii <= aFaceSeq.Length(); ii++)
{
TopLoc_Location aPrevLoc;
Handle(Geom_Surface) aPrevSurf = BRep_Tool::Surface(TopoDS::Face(aFaceSeq(ii)), aPrevLoc);
if (aPrevSurf == aSurf && aPrevLoc == aLoc)
{
isFound = Standard_True;
break;
}
}
if (isFound)
continue;
aFaceSeq.Append(aFace);
}
TColGeom2d_SequenceOfCurve ResPCurves;
TColStd_SequenceOfReal ResFirsts;
TColStd_SequenceOfReal ResLasts;
TColStd_SequenceOfReal aTolVerSeq;
TopoDS_Edge aPrevEdge;
Standard_Boolean anIsSeam = Standard_False;
for (Standard_Integer j = 1; j <= aFaceSeq.Length(); j++)
{
TColGeom2d_SequenceOfCurve aPCurveSeq;
TColStd_SequenceOfReal aFirstsSeq;
TColStd_SequenceOfReal aLastsSeq;
TColStd_SequenceOfBoolean aForwardsSeq;
GeomAbs_CurveType aCurrentType = GeomAbs_OtherCurve;
Standard_Real aFirst, aLast;
for (Standard_Integer i = 1; i <= theChain.Length(); i++)
{
TopoDS_Edge anEdge = TopoDS::Edge(theChain.Value(i));
Standard_Boolean isForward = (anEdge.Orientation() != TopAbs_REVERSED);
if (anIsSeam && j == 2) // second pass
anEdge.Reverse();
Handle(Geom2d_Curve) aPCurve =
BRep_Tool::CurveOnSurface(anEdge, TopoDS::Face(aFaceSeq(j)), aFirst, aLast);
if (aPCurve.IsNull())
continue;
if (aFaceSeq.Length() == 1)
{
TopoDS_Edge aReversedEdge = anEdge;
aReversedEdge.Reverse();
Handle(Geom2d_Curve) aPCurve2 =
BRep_Tool::CurveOnSurface(aReversedEdge, TopoDS::Face(aFaceSeq(j)), aFirst, aLast);
if (aPCurve != aPCurve2)
{
anIsSeam = Standard_True;
aFaceSeq.Append(aFaceSeq(j));
}
}
Geom2dAdaptor_Curve anAdaptor(aPCurve);
GeomAbs_CurveType aType = anAdaptor.GetType();
Handle(Geom2d_Line) aLine;
if (aType == GeomAbs_BSplineCurve || aType == GeomAbs_BezierCurve)
TryMakeLine(aPCurve, aFirst, aLast, aLine);
if (!aLine.IsNull())
{
aPCurve = aLine;
anAdaptor.Load(aPCurve);
aType = GeomAbs_Line;
}
if (aPCurveSeq.IsEmpty())
{
Handle(Geom2d_Curve) aCopyPCurve = Handle(Geom2d_Curve)::DownCast(aPCurve->Copy());
if (aCopyPCurve->IsKind(STANDARD_TYPE(Geom2d_TrimmedCurve)))
aCopyPCurve = (Handle(Geom2d_TrimmedCurve)::DownCast(aCopyPCurve))->BasisCurve();
aPCurveSeq.Append(aCopyPCurve);
aFirstsSeq.Append(aFirst);
aLastsSeq.Append(aLast);
aForwardsSeq.Append(isForward);
aCurrentType = aType;
aPrevEdge = anEdge;
continue;
}
Standard_Boolean isSameCurve = Standard_False;
Standard_Real aNewF = aFirst;
Standard_Real aNewL = aLast;
if (aPCurve == aPCurveSeq.Last())
{
isSameCurve = Standard_True;
}
else if (aType == aCurrentType)
{
Geom2dAdaptor_Curve aPrevAdaptor(aPCurveSeq.Last());
switch (aType)
{
case GeomAbs_Line: {
gp_Lin2d aPrevLin = aPrevAdaptor.Line();
gp_Pnt2d aFirstP2d = aPCurve->Value(aFirst);
gp_Pnt2d aLastP2d = aPCurve->Value(aLast);
if (aPrevLin.Contains(aFirstP2d, Precision::Confusion())
&& aPrevLin.Contains(aLastP2d, Precision::Confusion()))
{
isSameCurve = Standard_True;
gp_Pnt2d p1 = anAdaptor.Value(aFirst);
gp_Pnt2d p2 = anAdaptor.Value(aLast);
aNewF = ElCLib::Parameter(aPrevLin, p1);
aNewL = ElCLib::Parameter(aPrevLin, p2);
if (aNewF > aNewL)
{
Standard_Real aTmp = aNewF;
aNewF = aNewL;
aNewL = aTmp;
}
}
break;
}
case GeomAbs_Circle: {
gp_Circ2d aCirc = anAdaptor.Circle();
gp_Circ2d aPrevCirc = aPrevAdaptor.Circle();
if (aCirc.Location().Distance(aPrevCirc.Location()) <= Precision::Confusion()
&& Abs(aCirc.Radius() - aPrevCirc.Radius()) <= Precision::Confusion())
{
isSameCurve = Standard_True;
gp_Pnt2d p1 = anAdaptor.Value(aFirst);
gp_Pnt2d p2 = anAdaptor.Value(aLast);
aNewF = ElCLib::Parameter(aPrevCirc, p1);
aNewL = ElCLib::Parameter(aPrevCirc, p2);
if (aNewF > aNewL)
{
Standard_Real aTmp = aNewF;
aNewF = aNewL;
aNewL = aTmp;
}
}
break;
}
default:
break;
}
}
if (isSameCurve)
{
if (aForwardsSeq.Last() == Standard_True)
aLastsSeq.ChangeLast() = aNewL;
else
aFirstsSeq.ChangeLast() = aNewF;
}
else
{
Handle(Geom2d_Curve) aCopyPCurve = Handle(Geom2d_Curve)::DownCast(aPCurve->Copy());
if (aCopyPCurve->IsKind(STANDARD_TYPE(Geom2d_TrimmedCurve)))
aCopyPCurve = (Handle(Geom2d_TrimmedCurve)::DownCast(aCopyPCurve))->BasisCurve();
aPCurveSeq.Append(aCopyPCurve);
aFirstsSeq.Append(aFirst);
aLastsSeq.Append(aLast);
aForwardsSeq.Append(isForward);
aCurrentType = aType;
TopoDS_Vertex aV;
TopExp::CommonVertex(aPrevEdge, anEdge, aV);
Standard_Real aTol = BRep_Tool::Tolerance(aV);
aTolVerSeq.Append(aTol);
}
aPrevEdge = anEdge;
}
Handle(Geom2d_Curve) aResPCurve;
Standard_Real aResFirst, aResLast;
if (aPCurveSeq.Length() == 1)
{
aResPCurve = aPCurveSeq.Last();
aResFirst = aFirstsSeq.Last();
aResLast = aLastsSeq.Last();
if (aForwardsSeq.Last() == Standard_False)
{
Standard_Real aNewLast = aResPCurve->ReversedParameter(aResFirst);
Standard_Real aNewFirst = aResPCurve->ReversedParameter(aResLast);
aResPCurve->Reverse();
aResFirst = aNewFirst;
aResLast = aNewLast;
}
}
else
{
// C1 concatenation for PCurveSeq
TColGeom2d_Array1OfBSplineCurve tab_c2d(0, aPCurveSeq.Length() - 1);
for (Standard_Integer i = 1; i <= aPCurveSeq.Length(); i++)
{
Handle(Geom2d_TrimmedCurve) aTrPCurve =
new Geom2d_TrimmedCurve(aPCurveSeq(i), aFirstsSeq(i), aLastsSeq(i));
if (aForwardsSeq(i) == Standard_False)
{
aTrPCurve->Reverse();
}
tab_c2d(i - 1) = Geom2dConvert::CurveToBSplineCurve(aTrPCurve);
Geom2dConvert::C0BSplineToC1BSplineCurve(tab_c2d(i - 1), Precision::Confusion());
}
TColStd_Array1OfReal tabtolvertex(0, aTolVerSeq.Length() - 1);
for (Standard_Integer i = 1; i <= aTolVerSeq.Length(); i++)
{
Standard_Real aTol = aTolVerSeq(i);
tabtolvertex(i - 1) = aTol;
if (aTol > aMaxTol)
aMaxTol = aTol;
}
Handle(TColGeom2d_HArray1OfBSplineCurve) concatc2d; // array of the concatenated curves
Handle(TColStd_HArray1OfInteger) ArrayOfInd2d; // array of the remaining Vertex
Standard_Boolean aClosedFlag = Standard_False;
Geom2dConvert::ConcatC1(tab_c2d,
tabtolvertex,
ArrayOfInd2d,
concatc2d,
aClosedFlag,
Precision::Confusion()); // C1 concatenation
if (concatc2d->Length() > 1)
{
Geom2dConvert_CompCurveToBSplineCurve Concat2d(concatc2d->Value(concatc2d->Lower()));
for (Standard_Integer i = concatc2d->Lower() + 1; i <= concatc2d->Upper(); i++)
Concat2d.Add(concatc2d->Value(i), aMaxTol, Standard_True);
concatc2d->SetValue(concatc2d->Lower(), Concat2d.BSplineCurve());
}
Handle(Geom2d_BSplineCurve) aBSplineCurve = concatc2d->Value(concatc2d->Lower());
aResPCurve = aBSplineCurve;
aResFirst = aBSplineCurve->FirstParameter();
aResLast = aBSplineCurve->LastParameter();
}
ResPCurves.Append(aResPCurve);
ResFirsts.Append(aResFirst);
ResLasts.Append(aResLast);
}
BRep_Builder aBuilder;
// Check the results for consistency
Standard_Boolean IsBadRange = Standard_False;
Standard_Real aRange3d = aLast3d - aFirst3d;
for (Standard_Integer ii = 1; ii <= ResPCurves.Length(); ii++)
{
Standard_Real aRange = ResLasts(ii) - ResFirsts(ii);
if (Abs(aRange3d - aRange) > aMaxTol)
IsBadRange = Standard_True;
}
if (IsBadRange)
{
for (Standard_Integer ii = 1; ii <= ResPCurves.Length(); ii++)
{
const TopoDS_Face& aFace = TopoDS::Face(aFaceSeq(ii));
Handle(Geom_Surface) aSurf = BRep_Tool::Surface(aFace);
Handle(ShapeAnalysis_Surface) aSAS = new ShapeAnalysis_Surface(aSurf);
ShapeConstruct_ProjectCurveOnSurface aToolProj;
aToolProj.Init(aSAS, Precision::Confusion());
Handle(Geom2d_Curve) aNewPCurve;
if (aToolProj.Perform(aCurve, aFirst3d, aLast3d, aNewPCurve))
ResPCurves(ii) = aNewPCurve;
else
{
// Reparametrize pcurve
Handle(Geom2d_TrimmedCurve) aTrPCurve =
new Geom2d_TrimmedCurve(ResPCurves(ii), ResFirsts(ii), ResLasts(ii));
Handle(Geom2d_BSplineCurve) aBSplinePCurve = Geom2dConvert::CurveToBSplineCurve(aTrPCurve);
TColStd_Array1OfReal aKnots(1, aBSplinePCurve->NbKnots());
aBSplinePCurve->Knots(aKnots);
BSplCLib::Reparametrize(aFirst3d, aLast3d, aKnots);
aBSplinePCurve->SetKnots(aKnots);
ResPCurves(ii) = aBSplinePCurve;
}
ResFirsts(ii) = aFirst3d;
ResLasts(ii) = aLast3d;
}
}
// Reparametrize pcurves if needed
if (!ResPCurves.IsEmpty())
{
for (Standard_Integer ii = 1; ii <= ResPCurves.Length(); ii++)
{
if (Abs(aFirst3d - ResFirsts(ii)) > aMaxTol || Abs(aLast3d - ResLasts(ii)) > aMaxTol)
{
Geom2dAdaptor_Curve aGAcurve(ResPCurves(ii));
GeomAbs_CurveType aType = aGAcurve.GetType();
if (aType == GeomAbs_Line)
{
gp_Lin2d aLin2d = aGAcurve.Line();
gp_Dir2d aDir2d = aLin2d.Direction();
gp_Pnt2d aPnt2d = aGAcurve.Value(ResFirsts(ii));
gp_Vec2d anOffset = -aDir2d;
anOffset *= aFirst3d;
aPnt2d.Translate(anOffset);
Handle(Geom2d_Line) aNewLine2d = new Geom2d_Line(aPnt2d, aDir2d);
ResPCurves(ii) = aNewLine2d;
}
else if (aType == GeomAbs_Circle)
{
gp_Circ2d aCirc2d = aGAcurve.Circle();
Standard_Real aRadius = aCirc2d.Radius();
gp_Ax22d aPosition = aCirc2d.Position();
gp_Pnt2d aLocation = aCirc2d.Location();
Standard_Real anOffset = ResFirsts(ii) - aFirst3d;
aPosition.Rotate(aLocation, anOffset);
Handle(Geom2d_Circle) aNewCircle2d = new Geom2d_Circle(aPosition, aRadius);
ResPCurves(ii) = aNewCircle2d;
}
else // general case
{
Handle(Geom2d_TrimmedCurve) aTrPCurve =
new Geom2d_TrimmedCurve(ResPCurves(ii), ResFirsts(ii), ResLasts(ii));
Handle(Geom2d_BSplineCurve) aBSplinePCurve =
Geom2dConvert::CurveToBSplineCurve(aTrPCurve);
TColStd_Array1OfReal aKnots(1, aBSplinePCurve->NbKnots());
aBSplinePCurve->Knots(aKnots);
BSplCLib::Reparametrize(aFirst3d, aLast3d, aKnots);
aBSplinePCurve->SetKnots(aKnots);
ResPCurves(ii) = aBSplinePCurve;
}
ResFirsts(ii) = aFirst3d;
ResLasts(ii) = aLast3d;
} // if ranges > aMaxTol
} // for (Standard_Integer ii = 1; ii <= ResPCurves.Length(); ii++)
}
if (anIsSeam)
{
aBuilder.UpdateEdge(theEdge, ResPCurves(1), ResPCurves(2), TopoDS::Face(aFaceSeq(1)), aTolEdge);
}
else
for (Standard_Integer j = 1; j <= ResPCurves.Length(); j++)
{
aBuilder.UpdateEdge(theEdge, ResPCurves(j), TopoDS::Face(aFaceSeq(j)), aTolEdge);
}
}
//=======================================================================
// function : MergeSubSeq
// purpose : Merges a sequence of edges into one edge if possible
//=======================================================================
Standard_Boolean ShapeUpgrade_UnifySameDomain::MergeSubSeq(
const TopTools_SequenceOfShape& theChain,
const TopTools_IndexedDataMapOfShapeListOfShape& theVFmap,
TopoDS_Edge& OutEdge)
{
ShapeAnalysis_Edge sae;
BRep_Builder B;
// union edges in chain
int j;
Standard_Real fp1, lp1, fp2, lp2;
Standard_Boolean IsUnionOfLinesPossible = Standard_True;
Standard_Boolean IsUnionOfCirclesPossible = Standard_True;
Handle(Geom_Curve) c3d1, c3d2;
for (j = 1; j < theChain.Length(); j++)
{
TopoDS_Edge edge1 = TopoDS::Edge(theChain.Value(j));
TopoDS_Edge edge2 = TopoDS::Edge(theChain.Value(j + 1));
if (BRep_Tool::Degenerated(edge1) && BRep_Tool::Degenerated(edge2))
{
// Find the closest points in 2d
TopoDS_Edge edgeFirst = TopoDS::Edge(theChain.First());
TopoDS_Edge edgeLast = TopoDS::Edge(theChain.Last());
TopoDS_Face CommonFace;
Standard_Real MinSqDist;
TopAbs_Orientation OrOfE1OnFace, OrOfE2OnFace;
Standard_Integer IndOnE1, IndOnE2;
gp_Pnt2d PointsOnEdge1[2], PointsOnEdge2[2];
if (!FindClosestPoints(edgeFirst,
edgeLast,
theVFmap,
CommonFace,
MinSqDist,
OrOfE1OnFace,
OrOfE2OnFace,
IndOnE1,
IndOnE2,
PointsOnEdge1,
PointsOnEdge2))
return Standard_False;
// Define indices corresponding to extremities of future edge
IndOnE1 = 1 - IndOnE1;
IndOnE2 = 1 - IndOnE2;
// Construct new degenerated edge
gp_Pnt2d StartPoint = PointsOnEdge1[IndOnE1];
gp_Pnt2d EndPoint = PointsOnEdge2[IndOnE2];
if ((OrOfE1OnFace == TopAbs_FORWARD && IndOnE1 == 1)
|| (OrOfE1OnFace == TopAbs_REVERSED && IndOnE1 == 0))
{
gp_Pnt2d Tmp = StartPoint;
StartPoint = EndPoint;
EndPoint = Tmp;
}
Handle(Geom2d_Line) aLine = GCE2d_MakeLine(StartPoint, EndPoint);
TopoDS_Vertex aVertex = TopExp::FirstVertex(edgeFirst);
TopoDS_Vertex StartVertex = aVertex, EndVertex = aVertex;
StartVertex.Orientation(TopAbs_FORWARD);
EndVertex.Orientation(TopAbs_REVERSED);
TopoDS_Edge NewEdge;
B.MakeEdge(NewEdge);
B.UpdateEdge(NewEdge, aLine, CommonFace, Precision::Confusion());
B.Range(NewEdge, 0., StartPoint.Distance(EndPoint));
B.Add(NewEdge, StartVertex);
B.Add(NewEdge, EndVertex);
B.Degenerated(NewEdge, Standard_True);
OutEdge = NewEdge;
return Standard_True;
}
c3d1 = BRep_Tool::Curve(edge1, fp1, lp1);
c3d2 = BRep_Tool::Curve(edge2, fp2, lp2);
BRepAdaptor_Curve aBAcurve1(edge1);
BRepAdaptor_Curve aBAcurve2(edge2);
gp_Dir aDir1, aDir2;
if (c3d1.IsNull() || c3d2.IsNull())
return Standard_False;
if (c3d1->IsKind(STANDARD_TYPE(Geom_TrimmedCurve)))
{
Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(c3d1);
c3d1 = tc->BasisCurve();
}
if (c3d2->IsKind(STANDARD_TYPE(Geom_TrimmedCurve)))
{
Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(c3d2);
c3d2 = tc->BasisCurve();
}
if (IsLinear(aBAcurve1, aDir1) && IsLinear(aBAcurve2, aDir2))
{
Handle(Geom_Line) L1 = Handle(Geom_Line)::DownCast(c3d1);
Handle(Geom_Line) L2 = Handle(Geom_Line)::DownCast(c3d2);
if (!aDir1.IsParallel(aDir2, myAngTol))
IsUnionOfLinesPossible = Standard_False;
}
else
IsUnionOfLinesPossible = Standard_False;
if (c3d1->IsKind(STANDARD_TYPE(Geom_Circle)) && c3d2->IsKind(STANDARD_TYPE(Geom_Circle)))
{
Handle(Geom_Circle) C1 = Handle(Geom_Circle)::DownCast(c3d1);
Handle(Geom_Circle) C2 = Handle(Geom_Circle)::DownCast(c3d2);
gp_Pnt P01 = C1->Location();
gp_Pnt P02 = C2->Location();
if (P01.Distance(P02) > Precision::Confusion())
IsUnionOfCirclesPossible = Standard_False;
}
else
IsUnionOfCirclesPossible = Standard_False;
}
if (IsUnionOfLinesPossible && IsUnionOfCirclesPossible)
return Standard_False;
// union of lines is possible
if (IsUnionOfLinesPossible)
{
TopoDS_Vertex V[2];
V[0] = sae.FirstVertex(TopoDS::Edge(theChain.First()));
gp_Pnt PV1 = BRep_Tool::Pnt(V[0]);
V[1] = sae.LastVertex(TopoDS::Edge(theChain.Last()));
gp_Pnt PV2 = BRep_Tool::Pnt(V[1]);
gp_Vec Vec(PV1, PV2);
if (mySafeInputMode)
{
for (int k = 0; k < 2; k++)
{
if (!myContext->IsRecorded(V[k]))
{
TopoDS_Vertex Vcopy = TopoDS::Vertex(V[k].EmptyCopied());
myContext->Replace(V[k], Vcopy);
V[k] = Vcopy;
}
else
V[k] = TopoDS::Vertex(myContext->Apply(V[k]));
}
}
Handle(Geom_Line) L = new Geom_Line(gp_Ax1(PV1, Vec));
Standard_Real dist = PV1.Distance(PV2);
Handle(Geom_TrimmedCurve) tc = new Geom_TrimmedCurve(L, 0.0, dist);
TopoDS_Edge E;
B.MakeEdge(E, tc, Precision::Confusion());
B.Add(E, V[0]);
B.Add(E, V[1]);
B.UpdateVertex(V[0], 0., E, 0.);
B.UpdateVertex(V[1], dist, E, 0.);
UnionPCurves(theChain, E);
OutEdge = E;
return Standard_True;
}
if (IsUnionOfCirclesPossible)
{
double f, l;
TopoDS_Edge FE = TopoDS::Edge(theChain.First());
Handle(Geom_Curve) c3d = BRep_Tool::Curve(FE, f, l);
if (c3d->IsKind(STANDARD_TYPE(Geom_TrimmedCurve)))
{
Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(c3d);
c3d = tc->BasisCurve();
}
Handle(Geom_Circle) Cir = Handle(Geom_Circle)::DownCast(c3d);
TopoDS_Vertex V[2];
V[0] = sae.FirstVertex(FE);
V[1] = sae.LastVertex(TopoDS::Edge(theChain.Last()));
Standard_Boolean isClosed = V[0].IsSame(V[1]);
if (!isClosed)
{
// additionally check the points for equality to make a final decision about closedness of the
// result curve
gp_Pnt aP0 = BRep_Tool::Pnt(V[0]);
gp_Pnt aP1 = BRep_Tool::Pnt(V[1]);
Standard_Real aTol = Max(BRep_Tool::Tolerance(V[0]), BRep_Tool::Tolerance(V[1]));
if (aP0.SquareDistance(aP1) < aTol * aTol)
{
isClosed = Standard_True;
V[1] = V[0];
V[1].Reverse();
}
}
TopoDS_Edge E;
if (isClosed)
{
// closed chain
BRepAdaptor_Curve adef(FE);
Handle(Geom_Circle) Cir1;
double FP, LP;
if (FE.Orientation() == TopAbs_FORWARD)
{
FP = adef.FirstParameter();
LP = adef.LastParameter();
}
else
{
FP = adef.LastParameter();
LP = adef.FirstParameter();
}
if (Abs(FP) < Precision::PConfusion())
{
B.MakeEdge(E, Cir, Precision::Confusion());
B.Add(E, V[0]);
B.Add(E, V[1]);
E.Orientation(FE.Orientation());
}
else
{
GC_MakeCircle MC1(adef.Value(FP), adef.Value((FP + LP) * 0.5), adef.Value(LP));
if (MC1.IsDone())
Cir1 = MC1.Value();
else
return Standard_False;
B.MakeEdge(E, Cir1, Precision::Confusion());
B.Add(E, V[0]);
B.Add(E, V[1]);
}
}
else // open chain
{
Standard_Real ParamFirst = BRep_Tool::Parameter(V[0], FE);
TopoDS_Vertex VertexLastOnFE = sae.LastVertex(FE);
Standard_Real ParamLast = BRep_Tool::Parameter(VertexLastOnFE, FE);
if (mySafeInputMode)
{
for (int k = 0; k < 2; k++)
{
if (!myContext->IsRecorded(V[k]))
{
TopoDS_Vertex Vcopy = TopoDS::Vertex(V[k].EmptyCopied());
myContext->Replace(V[k], Vcopy);
V[k] = Vcopy;
}
else
V[k] = TopoDS::Vertex(myContext->Apply(V[k]));
}
}
gp_Pnt PointFirst = BRep_Tool::Pnt(V[0]);
while (Abs(ParamLast - ParamFirst) > 7 * M_PI / 8)
ParamLast = (ParamFirst + ParamLast) / 2;
BRepAdaptor_Curve BAcurveFE(FE);
gp_Pnt PointLast = BAcurveFE.Value(ParamLast);
gp_Pnt Origin = Cir->Circ().Location();
gp_Dir Dir1 = gp_Vec(Origin, PointFirst);
gp_Dir Dir2 = gp_Vec(Origin, PointLast);
gp_Dir Vdir = Dir1 ^ Dir2;
gp_Ax2 anAx2(Origin, Vdir, Dir1);
Handle(Geom_Circle) aNewCircle = new Geom_Circle(anAx2, Cir->Radius());
gp_Pnt PointLastInChain = BRep_Tool::Pnt(V[1]);
gp_Dir DirLastInChain = gp_Vec(Origin, PointLastInChain);
Standard_Real lpar = Dir1.AngleWithRef(DirLastInChain, Vdir);
if (lpar < 0.)
lpar += 2 * M_PI;
Handle(Geom_TrimmedCurve) tc = new Geom_TrimmedCurve(aNewCircle, 0., lpar);
B.MakeEdge(E, tc, Precision::Confusion());
B.Add(E, V[0]);
B.Add(E, V[1]);
B.UpdateVertex(V[0], 0., E, 0.);
B.UpdateVertex(V[1], lpar, E, 0.);
}
UnionPCurves(theChain, E);
OutEdge = E;
return Standard_True;
}
if (theChain.Length() > 1 && myConcatBSplines)
{
// second step: union edges with various curves
// skl for bug 0020052 from Mantis: perform such unions
// only if curves are bspline or bezier
TopoDS_Vertex VF = sae.FirstVertex(TopoDS::Edge(theChain.First()));
TopoDS_Vertex VL = sae.LastVertex(TopoDS::Edge(theChain.Last()));
Standard_Boolean NeedUnion = Standard_True;
for (j = 1; j <= theChain.Length(); j++)
{
TopoDS_Edge edge = TopoDS::Edge(theChain.Value(j));
TopLoc_Location Loc;
Handle(Geom_Curve) c3d = BRep_Tool::Curve(edge, Loc, fp1, lp1);
if (c3d.IsNull())
continue;
if (c3d->IsKind(STANDARD_TYPE(Geom_TrimmedCurve)))
{
Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(c3d);
c3d = tc->BasisCurve();
}
if ((c3d->IsKind(STANDARD_TYPE(Geom_BSplineCurve))
|| c3d->IsKind(STANDARD_TYPE(Geom_BezierCurve))))
continue;
NeedUnion = Standard_False;
break;
}
if (NeedUnion)
{
#ifdef OCCT_DEBUG
std::cout << "can not make analytical union => make approximation" << std::endl;
#endif
TopoDS_Edge E = GlueEdgesWithPCurves(theChain, VF, VL);
OutEdge = E;
return Standard_True;
}
else
{
#ifdef OCCT_DEBUG
std::cout << "can not make approximation for such types of curves" << std::endl;
#endif
return Standard_False;
}
}
return Standard_False;
}
//=======================================================================
// function : IsMergingPossible
// purpose : Checks if merging of two edges is possible
//=======================================================================
static Standard_Boolean IsMergingPossible(const TopoDS_Edge& edge1,
const TopoDS_Edge& edge2,
double theAngTol,
double theLinTol,
const TopTools_MapOfShape& AvoidEdgeVrt,
const bool theLineDirectionOk,
const gp_Pnt& theFirstPoint,
const gp_Vec& theDirectionVec,
const TopTools_IndexedDataMapOfShapeListOfShape& theVFmap)
{
Standard_Boolean IsDegE1 = BRep_Tool::Degenerated(edge1);
Standard_Boolean IsDegE2 = BRep_Tool::Degenerated(edge2);
if (IsDegE1 && IsDegE2)
{
// Find connstion point in 2d
TopoDS_Face CommonFace;
Standard_Real MinSqDist;
TopAbs_Orientation OrOfE1OnFace, OrOfE2OnFace;
Standard_Integer IndOnE1, IndOnE2;
gp_Pnt2d PointsOnEdge1[2], PointsOnEdge2[2];
if (!FindClosestPoints(edge1,
edge2,
theVFmap,
CommonFace,
MinSqDist,
OrOfE1OnFace,
OrOfE2OnFace,
IndOnE1,
IndOnE2,
PointsOnEdge1,
PointsOnEdge2))
return Standard_False;
if (MinSqDist <= Precision::SquareConfusion())
return Standard_True;
return Standard_False;
}
else if (IsDegE1 || IsDegE2)
return Standard_False;
TopoDS_Vertex CV = TopExp::LastVertex(edge1, Standard_True);
if (CV.IsNull() || AvoidEdgeVrt.Contains(CV))
return Standard_False;
BRepAdaptor_Curve ade1(edge1);
BRepAdaptor_Curve ade2(edge2);
GeomAbs_CurveType t1 = ade1.GetType();
GeomAbs_CurveType t2 = ade2.GetType();
if (t1 == GeomAbs_Circle && t2 == GeomAbs_Circle)
{
if (ade1.Circle().Location().Distance(ade2.Circle().Location()) > Precision::Confusion())
return Standard_False;
}
gp_Dir aDir1, aDir2;
if (!(IsLinear(ade1, aDir1) && IsLinear(ade2, aDir2))
&& ((t1 != GeomAbs_BezierCurve && t1 != GeomAbs_BSplineCurve)
|| (t2 != GeomAbs_BezierCurve && t2 != GeomAbs_BSplineCurve))
&& t1 != t2)
return Standard_False;
gp_Vec Diff1, Diff2;
gp_Pnt P1, P2;
if (edge1.Orientation() == TopAbs_FORWARD)
ade1.D1(ade1.LastParameter(), P1, Diff1);
else
{
ade1.D1(ade1.FirstParameter(), P1, Diff1);
Diff1 = -Diff1;
}
if (edge2.Orientation() == TopAbs_FORWARD)
ade2.D1(ade2.FirstParameter(), P2, Diff2);
else
{
ade2.D1(ade2.LastParameter(), P2, Diff2);
Diff2 = -Diff2;
}
if (Diff1.Angle(Diff2) > theAngTol)
return Standard_False;
if (theLineDirectionOk && t2 == GeomAbs_Line)
{
// Check that the accumulated deflection does not exceed the linear tolerance
Standard_Real aLast =
(edge2.Orientation() == TopAbs_FORWARD) ? ade2.LastParameter() : ade2.FirstParameter();
gp_Vec aCurV(theFirstPoint, ade2.Value(aLast));
Standard_Real aDD = theDirectionVec.CrossSquareMagnitude(aCurV);
if (aDD > theLinTol * theLinTol)
return Standard_False;
// Check that the accumulated angle does not exceed the angular tolerance.
// For symmetry, check the angle between vectors of:
// - first edge and resulting curve, and
// - the last edge and resulting curve.
if (theDirectionVec.Angle(aCurV) > theAngTol || Diff2.Angle(aCurV) > theAngTol)
return Standard_False;
}
return Standard_True;
}
//=================================================================================================
static Standard_Boolean GetLineEdgePoints(const TopoDS_Edge& theInpEdge,
gp_Pnt& theFirstPoint,
gp_Vec& theDirectionVec)
{
double f, l;
Handle(Geom_Curve) aCur = BRep_Tool::Curve(theInpEdge, f, l);
if (aCur.IsNull())
return Standard_False;
Handle(Geom_TrimmedCurve) aTC = Handle(Geom_TrimmedCurve)::DownCast(aCur);
if (!aTC.IsNull())
aCur = aTC->BasisCurve();
if (aCur->DynamicType() != STANDARD_TYPE(Geom_Line))
return Standard_False;
if (theInpEdge.Orientation() == TopAbs_REVERSED)
{
Standard_Real tmp = f;
f = l;
l = tmp;
}
theFirstPoint = aCur->Value(f);
gp_Pnt aLP = aCur->Value(l);
theDirectionVec = aLP.XYZ().Subtracted(theFirstPoint.XYZ());
theDirectionVec.Normalize();
return Standard_True;
}
struct ShapeUpgrade_UnifySameDomain::SubSequenceOfEdges
{
TopTools_SequenceOfShape SeqsEdges;
TopoDS_Edge UnionEdges;
};
//=================================================================================================
void ShapeUpgrade_UnifySameDomain::generateSubSeq(
const TopTools_SequenceOfShape& anInpEdgeSeq,
NCollection_Sequence<SubSequenceOfEdges>& SeqOfSubSeqOfEdges,
Standard_Boolean IsClosed,
double theAngTol,
double theLinTol,
const TopTools_MapOfShape& AvoidEdgeVrt,
const TopTools_IndexedDataMapOfShapeListOfShape& theVFmap)
{
Standard_Boolean isOk = Standard_False;
TopoDS_Edge edge1, edge2;
SubSequenceOfEdges SubSeq;
TopoDS_Edge RefEdge = TopoDS::Edge(anInpEdgeSeq(1));
SubSeq.SeqsEdges.Append(RefEdge);
SeqOfSubSeqOfEdges.Append(SubSeq);
gp_Pnt aFirstPoint;
gp_Vec aDirectionVec;
Standard_Boolean isLineDirectionOk = GetLineEdgePoints(RefEdge, aFirstPoint, aDirectionVec);
for (int i = 1; i < anInpEdgeSeq.Length(); i++)
{
edge1 = TopoDS::Edge(anInpEdgeSeq(i));
edge2 = TopoDS::Edge(anInpEdgeSeq(i + 1));
isOk = IsMergingPossible(edge1,
edge2,
theAngTol,
theLinTol,
AvoidEdgeVrt,
isLineDirectionOk,
aFirstPoint,
aDirectionVec,
theVFmap);
if (!isOk)
{
SubSequenceOfEdges aSubSeq;
aSubSeq.SeqsEdges.Append(edge2);
SeqOfSubSeqOfEdges.Append(aSubSeq);
isLineDirectionOk = GetLineEdgePoints(edge2, aFirstPoint, aDirectionVec);
}
else
SeqOfSubSeqOfEdges.ChangeLast().SeqsEdges.Append(edge2);
}
/// check first and last chain segments
if (IsClosed && SeqOfSubSeqOfEdges.Length() > 1)
{
edge1 = TopoDS::Edge(anInpEdgeSeq.Last());
edge2 = TopoDS::Edge(anInpEdgeSeq.First());
if (IsMergingPossible(edge1,
edge2,
theAngTol,
theLinTol,
AvoidEdgeVrt,
Standard_False,
aFirstPoint,
aDirectionVec,
theVFmap))
{
SeqOfSubSeqOfEdges.ChangeLast().SeqsEdges.Append(SeqOfSubSeqOfEdges.ChangeFirst().SeqsEdges);
SeqOfSubSeqOfEdges.Remove(1);
}
}
}
//=================================================================================================
Standard_Boolean ShapeUpgrade_UnifySameDomain::MergeEdges(
TopTools_SequenceOfShape& SeqEdges,
const TopTools_IndexedDataMapOfShapeListOfShape& theVFmap,
NCollection_Sequence<SubSequenceOfEdges>& SeqOfSubSeqOfEdges,
const TopTools_MapOfShape& NonMergVrt)
{
TopTools_IndexedDataMapOfShapeListOfShape aMapVE;
Standard_Integer j;
TopTools_MapOfShape VerticesToAvoid;
const Standard_Integer aNbE = SeqEdges.Length();
for (j = 1; j <= aNbE; j++)
{
TopoDS_Edge anEdge = TopoDS::Edge(SeqEdges(j));
// fill in the map V-E
for (TopoDS_Iterator it(anEdge.Oriented(TopAbs_FORWARD)); it.More(); it.Next())
{
const TopoDS_Shape& aV = it.Value();
if (aV.Orientation() == TopAbs_FORWARD || aV.Orientation() == TopAbs_REVERSED)
{
if (!aMapVE.Contains(aV))
aMapVE.Add(aV, TopTools_ListOfShape());
aMapVE.ChangeFromKey(aV).Append(anEdge);
}
}
}
NCollection_MapAlgo::Unite(VerticesToAvoid, NonMergVrt);
// do loop while there are unused edges
TopTools_MapOfShape aUsedEdges;
for (Standard_Integer iE = 1; iE <= aNbE; ++iE)
{
TopoDS_Edge edge = TopoDS::Edge(SeqEdges(iE));
if (!aUsedEdges.Add(edge))
continue;
// make chain for unite
TopTools_SequenceOfShape aChain;
aChain.Append(edge);
TopoDS_Vertex V[2];
TopExp::Vertices(edge, V[0], V[1], Standard_True);
// connect more edges to the chain in both directions
for (j = 0; j < 2; j++)
{
Standard_Boolean isAdded = Standard_True;
while (isAdded)
{
isAdded = Standard_False;
if (V[j].IsNull())
break;
const TopTools_ListOfShape& aLE = aMapVE.FindFromKey(V[j]);
for (TopTools_ListIteratorOfListOfShape itL(aLE); itL.More(); itL.Next())
{
edge = TopoDS::Edge(itL.Value());
if (!aUsedEdges.Contains(edge))
{
TopoDS_Vertex V2[2];
TopExp::Vertices(edge, V2[0], V2[1], Standard_True);
// the neighboring edge must have V[j] reversed and located on the opposite end
if (V2[1 - j].IsEqual(V[j].Reversed()))
{
if (j == 0)
aChain.Prepend(edge);
else
aChain.Append(edge);
aUsedEdges.Add(edge);
V[j] = V2[j];
isAdded = Standard_True;
break;
}
}
}
}
}
if (aChain.Length() < 2)
continue;
Standard_Boolean IsClosed = Standard_False;
if (V[0].IsSame(V[1]))
IsClosed = Standard_True;
// split chain by vertices at which merging is not possible
NCollection_Sequence<SubSequenceOfEdges> aOneSeq;
generateSubSeq(aChain, aOneSeq, IsClosed, myAngTol, myLinTol, VerticesToAvoid, theVFmap);
// put sub-chains in the result
SeqOfSubSeqOfEdges.Append(aOneSeq);
}
for (int i = 1; i <= SeqOfSubSeqOfEdges.Length(); i++)
{
TopoDS_Edge UE;
if (SeqOfSubSeqOfEdges(i).SeqsEdges.Length() < 2)
continue;
if (MergeSubSeq(SeqOfSubSeqOfEdges(i).SeqsEdges, theVFmap, UE))
SeqOfSubSeqOfEdges(i).UnionEdges = UE;
}
return Standard_True;
}
//=======================================================================
// function : MergeSeq
// purpose : Tries to unify the sequence of edges with the set of
// another edges which lies on the same geometry
//=======================================================================
Standard_Boolean ShapeUpgrade_UnifySameDomain::MergeSeq(
TopTools_SequenceOfShape& SeqEdges,
const TopTools_IndexedDataMapOfShapeListOfShape& theVFmap,
const TopTools_MapOfShape& nonMergVert)
{
NCollection_Sequence<SubSequenceOfEdges> SeqOfSubsSeqOfEdges;
if (MergeEdges(SeqEdges, theVFmap, SeqOfSubsSeqOfEdges, nonMergVert))
{
for (Standard_Integer i = 1; i <= SeqOfSubsSeqOfEdges.Length(); i++)
{
if (SeqOfSubsSeqOfEdges(i).UnionEdges.IsNull())
continue;
myContext->Merge(SeqOfSubsSeqOfEdges(i).SeqsEdges, SeqOfSubsSeqOfEdges(i).UnionEdges);
}
return Standard_True;
}
return Standard_False;
}
//=======================================================================
// function : CheckSharedVertices
// purpose : Checks the sequence of edges on the presence of shared vertex
//=======================================================================
static void CheckSharedVertices(const TopTools_SequenceOfShape& theSeqEdges,
const TopTools_IndexedDataMapOfShapeListOfShape& theMapEdgesVertex,
const TopTools_MapOfShape& theMapKeepShape,
TopTools_MapOfShape& theShareVertMap)
{
ShapeAnalysis_Edge sae;
TopTools_SequenceOfShape SeqVertexes;
TopTools_MapOfShape MapVertexes;
for (Standard_Integer k = 1; k <= theSeqEdges.Length(); k++)
{
TopoDS_Vertex aV1 = sae.FirstVertex(TopoDS::Edge(theSeqEdges(k)));
TopoDS_Vertex aV2 = sae.LastVertex(TopoDS::Edge(theSeqEdges(k)));
if (!MapVertexes.Add(aV1))
SeqVertexes.Append(aV1);
if (!MapVertexes.Add(aV2))
SeqVertexes.Append(aV2);
}
for (Standard_Integer k = 1; k <= SeqVertexes.Length() /* && !IsSharedVertexPresent*/; k++)
{
const TopTools_ListOfShape& ListEdgesV1 = theMapEdgesVertex.FindFromKey(SeqVertexes(k));
if (ListEdgesV1.Extent() > 2 || theMapKeepShape.Contains(SeqVertexes(k)))
theShareVertMap.Add(SeqVertexes(k));
}
// return theShareVertMap.IsEmpty() ? false : true;
}
//=================================================================================================
ShapeUpgrade_UnifySameDomain::ShapeUpgrade_UnifySameDomain()
: myLinTol(Precision::Confusion()),
myAngTol(Precision::Angular()),
myUnifyFaces(Standard_True),
myUnifyEdges(Standard_True),
myConcatBSplines(Standard_False),
myAllowInternal(Standard_False),
mySafeInputMode(Standard_True),
myHistory(new BRepTools_History)
{
myContext = new ShapeBuild_ReShape;
}
//=================================================================================================
ShapeUpgrade_UnifySameDomain::ShapeUpgrade_UnifySameDomain(const TopoDS_Shape& aShape,
const Standard_Boolean UnifyEdges,
const Standard_Boolean UnifyFaces,
const Standard_Boolean ConcatBSplines)
: myInitShape(aShape),
myLinTol(Precision::Confusion()),
myAngTol(Precision::Angular()),
myUnifyFaces(UnifyFaces),
myUnifyEdges(UnifyEdges),
myConcatBSplines(ConcatBSplines),
myAllowInternal(Standard_False),
mySafeInputMode(Standard_True),
myShape(aShape),
myHistory(new BRepTools_History)
{
myContext = new ShapeBuild_ReShape;
}
//=================================================================================================
void ShapeUpgrade_UnifySameDomain::Initialize(const TopoDS_Shape& aShape,
const Standard_Boolean UnifyEdges,
const Standard_Boolean UnifyFaces,
const Standard_Boolean ConcatBSplines)
{
myInitShape = aShape;
myShape = aShape;
myUnifyEdges = UnifyEdges;
myUnifyFaces = UnifyFaces;
myConcatBSplines = ConcatBSplines;
myContext->Clear();
myKeepShapes.Clear();
myFacePlaneMap.Clear();
myEFmap.Clear();
myFaceNewFace.Clear();
myHistory->Clear();
}
//=================================================================================================
void ShapeUpgrade_UnifySameDomain::AllowInternalEdges(const Standard_Boolean theValue)
{
myAllowInternal = theValue;
}
//=================================================================================================
void ShapeUpgrade_UnifySameDomain::SetSafeInputMode(Standard_Boolean theValue)
{
mySafeInputMode = theValue;
}
//=================================================================================================
void ShapeUpgrade_UnifySameDomain::KeepShape(const TopoDS_Shape& theShape)
{
if (theShape.ShapeType() == TopAbs_EDGE || theShape.ShapeType() == TopAbs_VERTEX)
myKeepShapes.Add(theShape);
}
//=================================================================================================
void ShapeUpgrade_UnifySameDomain::KeepShapes(const TopTools_MapOfShape& theShapes)
{
for (TopTools_MapIteratorOfMapOfShape it(theShapes); it.More(); it.Next())
{
if (it.Value().ShapeType() == TopAbs_EDGE || it.Value().ShapeType() == TopAbs_VERTEX)
myKeepShapes.Add(it.Value());
}
}
//=================================================================================================
void ShapeUpgrade_UnifySameDomain::UnifyFaces()
{
// creating map of edge faces for the whole shape
TopTools_IndexedDataMapOfShapeListOfShape aGMapEdgeFaces;
TopTools_IndexedMapOfShape aFaceMap;
TopExp::MapShapes(myShape, TopAbs_FACE, aFaceMap);
for (Standard_Integer i = 1; i <= aFaceMap.Extent(); i++)
TopExp::MapShapesAndAncestors(aFaceMap(i), TopAbs_EDGE, TopAbs_FACE, aGMapEdgeFaces);
// creating map of face shells for the whole shape to avoid
// unification of faces belonging to the different shells
DataMapOfShapeMapOfShape aGMapFaceShells;
for (TopExp_Explorer anExp(myShape, TopAbs_SHELL); anExp.More(); anExp.Next())
{
const TopoDS_Shape& aShell = anExp.Current();
for (TopoDS_Iterator anItF(aShell); anItF.More(); anItF.Next())
{
const TopoDS_Shape& aF = anItF.Value();
if (TopTools_MapOfShape* pShells = aGMapFaceShells.ChangeSeek(aF))
{
pShells->Add(aShell);
}
else
{
(aGMapFaceShells.Bound(aF, TopTools_MapOfShape()))->Add(aShell);
}
}
}
// creating map of free boundaries
TopTools_MapOfShape aFreeBoundMap;
// look at only shells not belonging to solids
TopExp_Explorer anExplo(myShape, TopAbs_SHELL, TopAbs_SOLID);
for (; anExplo.More(); anExplo.Next())
{
const TopoDS_Shape& aShell = anExplo.Current();
TopTools_IndexedDataMapOfShapeListOfShape aEFmap;
TopExp::MapShapesAndAncestors(aShell, TopAbs_EDGE, TopAbs_FACE, aEFmap);
for (Standard_Integer ii = 1; ii <= aEFmap.Extent(); ii++)
{
const TopoDS_Edge& anEdge = TopoDS::Edge(aEFmap.FindKey(ii));
const TopTools_ListOfShape& aFaceList = aEFmap(ii);
if (!BRep_Tool::Degenerated(anEdge) && aFaceList.Extent() == 1)
aFreeBoundMap.Add(anEdge);
}
}
// unify faces in each shell separately
TopExp_Explorer exps;
for (exps.Init(myShape, TopAbs_SHELL); exps.More(); exps.Next())
IntUnifyFaces(exps.Current(), aGMapEdgeFaces, aGMapFaceShells, aFreeBoundMap);
// gather all faces out of shells in one compound and unify them at once
BRep_Builder aBB;
TopoDS_Compound aCmp;
aBB.MakeCompound(aCmp);
Standard_Integer nbf = 0;
for (exps.Init(myShape, TopAbs_FACE, TopAbs_SHELL); exps.More(); exps.Next(), nbf++)
aBB.Add(aCmp, exps.Current());
if (nbf > 0)
{
// No connection to shells, thus no need to pass the face-shell map
IntUnifyFaces(aCmp, aGMapEdgeFaces, DataMapOfShapeMapOfShape(), aFreeBoundMap);
}
myShape = myContext->Apply(myShape);
}
//=================================================================================================
static void SetFixWireModes(ShapeFix_Face& theSff)
{
Handle(ShapeFix_Wire) aFixWire = theSff.FixWireTool();
aFixWire->FixSelfIntersectionMode() = 0;
aFixWire->FixNonAdjacentIntersectingEdgesMode() = 0;
aFixWire->FixLackingMode() = 0;
aFixWire->FixNotchedEdgesMode() = 0;
aFixWire->ModifyTopologyMode() = Standard_False;
aFixWire->ModifyRemoveLoopMode() = 0;
aFixWire->FixGapsByRangesMode() = Standard_False;
aFixWire->FixSmallMode() = 0;
}
//=======================================================================
// function : isSameSets
// purpose : Compares two sets of shapes. Returns true if they are the same,
// false otherwise.
//=======================================================================
template <class Container>
static Standard_Boolean isSameSets(const Container* theFShells1, const Container* theFShells2)
{
// If both are null - no problem
if (theFShells1 == nullptr && theFShells2 == nullptr)
{
return Standard_True;
}
// If only one is null - not the same
if (theFShells1 == nullptr || theFShells2 == nullptr)
{
return Standard_False;
}
// Both not null
if (theFShells1->Extent() != theFShells2->Extent())
{
return Standard_False;
}
// number of shells in each set should be very small in normal cases - max 2.
// thus just check if all objects of one are contained in the other and vice versa.
for (typename Container::Iterator it1(*theFShells1), it2(*theFShells2); it1.More() && it2.More();
it1.Next(), it2.Next())
{
if (!theFShells1->Contains(it2.Value()) || !theFShells2->Contains(it1.Value()))
{
return Standard_False;
}
}
return Standard_True;
}
//=================================================================================================
void ShapeUpgrade_UnifySameDomain::IntUnifyFaces(
const TopoDS_Shape& theInpShape,
const TopTools_IndexedDataMapOfShapeListOfShape& theGMapEdgeFaces,
const DataMapOfShapeMapOfShape& theGMapFaceShells,
const TopTools_MapOfShape& theFreeBoundMap)
{
// creating map of edge faces for the shape
TopTools_IndexedDataMapOfShapeListOfShape aMapEdgeFaces;
TopExp::MapShapesAndAncestors(theInpShape, TopAbs_EDGE, TopAbs_FACE, aMapEdgeFaces);
// map of processed shapes
TopTools_MapOfShape aProcessed;
// processing each face
TopExp_Explorer exp;
for (exp.Init(theInpShape, TopAbs_FACE); exp.More(); exp.Next())
{
TopoDS_Face aFace = TopoDS::Face(exp.Current());
if (aProcessed.Contains(aFace))
continue;
// Boundary edges for the new face
TopTools_SequenceOfShape edges;
TopTools_SequenceOfShape RemovedEdges;
Standard_Integer dummy;
AddOrdinaryEdges(edges, aFace, dummy, RemovedEdges);
// Faces to get unified with the current faces
TopTools_SequenceOfShape faces;
// Add the current face for unification
faces.Append(aFace);
// surface and location to construct result
TopLoc_Location aBaseLocation;
Handle(Geom_Surface) aBaseSurface = BRep_Tool::Surface(aFace);
aBaseSurface = ClearRts(aBaseSurface);
TopAbs_Orientation RefFaceOrientation = aFace.Orientation();
// Take original surface
TopoDS_Face RefFace;
BRep_Builder BB;
BB.MakeFace(RefFace, aBaseSurface, aBaseLocation, 0.);
RefFace.Orientation(RefFaceOrientation);
TopTools_MapOfShape MapEdgesWithTemporaryPCurves; // map of edges not lying on RefFace
// these edges may be updated by temporary pcurves
Standard_Real Uperiod = (aBaseSurface->IsUPeriodic()) ? aBaseSurface->UPeriod() : 0.;
Standard_Real Vperiod = (aBaseSurface->IsVPeriodic()) ? aBaseSurface->VPeriod() : 0.;
// Get shells connected to the face (in normal cases should not be more than 2)
const TopTools_MapOfShape* pFShells1 = theGMapFaceShells.Seek(aFace);
// find adjacent faces to union
Standard_Integer i;
for (i = 1; i <= edges.Length(); i++)
{
TopoDS_Edge edge = TopoDS::Edge(edges(i));
if (BRep_Tool::Degenerated(edge))
continue;
// get connectivity of the edge in the global shape
const TopTools_ListOfShape& aGList = theGMapEdgeFaces.FindFromKey(edge);
if (!myAllowInternal
&& (aGList.Extent() != 2 || myKeepShapes.Contains(edge)
|| theFreeBoundMap.Contains(edge)))
{
// non manifold case is not processed unless myAllowInternal
continue;
}
//
// Get the faces connected through the edge in the current shape
const TopTools_ListOfShape& aList = aMapEdgeFaces.FindFromKey(edge);
if (aList.Extent() < 2)
{
continue;
}
// for a planar face create and store pcurve of edge on face
// to speed up all operations
if (!mySafeInputMode && aBaseSurface->IsKind(STANDARD_TYPE(Geom_Plane)))
BRepLib::BuildPCurveForEdgeOnPlane(edge, aFace);
// get normal of the face to compare it with normals of other faces
gp_Dir aDN1;
//
// take intermediate point on edge to compute the normal
Standard_Real f, l;
BRep_Tool::Range(edge, f, l);
Standard_Real aTMid = (f + l) * .5;
//
Standard_Boolean bCheckNormals = GetNormalToSurface(aFace, edge, aTMid, aDN1);
//
// Process the faces
TopTools_ListIteratorOfListOfShape anIter(aList);
for (; anIter.More(); anIter.Next())
{
TopoDS_Face aCheckedFace = TopoDS::Face(anIter.Value());
if (aCheckedFace.IsSame(aFace))
continue;
if (aProcessed.Contains(aCheckedFace))
continue;
// Get shells connected to the checked face
const TopTools_MapOfShape* pFShells2 = theGMapFaceShells.Seek(aCheckedFace);
// Faces can be unified only if the shells of faces connected to
// these faces are the same. Otherwise, topology would be broken.
if (!isSameSets(pFShells1, pFShells2))
{
continue;
}
if (bCheckNormals)
{
// get normal of checked face using the same parameter on edge
gp_Dir aDN2;
if (GetNormalToSurface(aCheckedFace, edge, aTMid, aDN2))
{
// and check if the adjacent faces are having approximately same normals
Standard_Real anAngle = aDN1.Angle(aDN2);
if (anAngle > myAngTol)
{
continue;
}
}
}
//
if (IsSameDomain(aFace, aCheckedFace, myLinTol, myAngTol, myFacePlaneMap))
{
if (AddOrdinaryEdges(edges, aCheckedFace, dummy, RemovedEdges))
{
// sequence edges is modified
i = dummy;
}
faces.Append(aCheckedFace);
aProcessed.Add(aCheckedFace);
break;
}
}
}
if (faces.Length() > 1)
{
if (myFacePlaneMap.IsBound(faces(1)))
{
const Handle(Geom_Plane)& aPlane = myFacePlaneMap(faces(1));
TopLoc_Location aLoc;
BB.UpdateFace(RefFace, aPlane, aLoc, Precision::Confusion());
}
// Add correct pcurves for the reference surface to the edges of other faces
TopoDS_Face F_RefFace = RefFace;
F_RefFace.Orientation(TopAbs_FORWARD);
AddPCurves(faces, F_RefFace, MapEdgesWithTemporaryPCurves);
// fill in the connectivity map for selected faces
TopTools_IndexedDataMapOfShapeListOfShape aMapEF;
for (i = 1; i <= faces.Length(); i++)
{
TopExp::MapShapesAndAncestors(faces(i), TopAbs_EDGE, TopAbs_FACE, aMapEF);
}
// Collect keep edges and multi-connected edges, i.e. edges that are internal to
// the set of selected faces and have connections to other faces.
TopTools_ListOfShape aKeepEdges;
for (i = 1; i <= aMapEF.Extent(); i++)
{
const TopTools_ListOfShape& aLF = aMapEF(i);
if (aLF.Extent() == 2)
{
const TopoDS_Shape& aE = aMapEF.FindKey(i);
const TopTools_ListOfShape& aGLF = theGMapEdgeFaces.FindFromKey(aE);
if (aGLF.Extent() > 2 || myKeepShapes.Contains(aE) || theFreeBoundMap.Contains(aE))
{
aKeepEdges.Append(aE);
}
}
}
if (!aKeepEdges.IsEmpty())
{
if (!myAllowInternal)
{
// Remove from the selection the faces which have no other connect edges
// and contain multi-connected edges and/or keep edges.
TopTools_MapOfShape anAvoidFaces;
TopTools_ListIteratorOfListOfShape it(aKeepEdges);
for (; it.More(); it.Next())
{
const TopoDS_Shape& aE = it.Value();
const TopTools_ListOfShape& aLF = aMapEF.FindFromKey(aE);
anAvoidFaces.Add(aLF.First());
anAvoidFaces.Add(aLF.Last());
}
for (i = 1; i <= faces.Length(); i++)
{
if (anAvoidFaces.Contains(faces(i)))
{
// update the boundaries of merged area, for that
// remove from 'edges' the edges of this face and add to 'edges'
// the edges of this face that were not present in 'edges' before
Standard_Boolean hasConnectAnotherFaces = Standard_False;
TopExp_Explorer ex(faces(i), TopAbs_EDGE);
for (; ex.More() && !hasConnectAnotherFaces; ex.Next())
{
const TopoDS_Shape& aE = ex.Current();
const TopTools_ListOfShape& aLF = aMapEF.FindFromKey(aE);
if (aLF.Extent() > 1)
{
for (it.Init(aLF); it.More() && !hasConnectAnotherFaces; it.Next())
{
if (!anAvoidFaces.Contains(it.Value()))
hasConnectAnotherFaces = Standard_True;
}
}
}
if (!hasConnectAnotherFaces)
{
AddOrdinaryEdges(edges, faces(i), dummy, RemovedEdges);
faces.Remove(i);
i--;
}
}
}
// check if the faces with keep edges contained in
// already updated the boundaries of merged area
if (!faces.IsEmpty())
{
TopTools_MapOfShape aMapFaces;
for (i = 1; i <= faces.Length(); i++)
{
aMapFaces.Add(faces(i));
}
for (it.Init(aKeepEdges); it.More(); it.Next())
{
const TopoDS_Shape& aE = it.Value();
const TopTools_ListOfShape& aLF = aMapEF.FindFromKey(aE);
if (aLF.Extent() < 2)
continue;
if (aMapFaces.Contains(aLF.First()) && aMapFaces.Contains(aLF.Last()))
{
for (i = 1; i <= faces.Length(); i++)
{
if (faces(i).IsEqual(aLF.First()) || faces(i).IsEqual(aLF.Last()))
{
AddOrdinaryEdges(edges, faces(i), dummy, RemovedEdges);
faces.Remove(i);
i--;
}
}
}
}
}
} // if (!myAllowInternal)
else
{ // internal edges are allowed
// add multi-connected and keep edges as internal in new face
TopTools_ListIteratorOfListOfShape it(aKeepEdges);
for (; it.More(); it.Next())
{
const TopoDS_Shape& aE = it.Value();
edges.Append(aE.Oriented(TopAbs_INTERNAL));
}
}
} // if (!aKeepEdges.IsEmpty())
} // if (faces.Length() > 1)
TopTools_IndexedDataMapOfShapeListOfShape aMapEF;
for (i = 1; i <= faces.Length(); i++)
TopExp::MapShapesAndUniqueAncestors(faces(i), TopAbs_EDGE, TopAbs_FACE, aMapEF);
// Correct orientation of edges
for (Standard_Integer ii = 1; ii <= edges.Length(); ii++)
{
const TopoDS_Shape& anEdge = edges(ii);
Standard_Integer indE = aMapEF.FindIndex(anEdge);
const TopTools_ListOfShape& aLF = aMapEF(indE);
if (myAllowInternal && myKeepShapes.Contains(anEdge) && aLF.Extent() == 2)
edges(ii).Orientation(TopAbs_INTERNAL);
if (anEdge.Orientation() != TopAbs_INTERNAL)
edges(ii) = aMapEF.FindKey(indE);
}
// Exclude internal edges
TopTools_IndexedMapOfShape InternalEdges;
Standard_Integer ind_e = 1;
while (ind_e <= edges.Length())
{
const TopoDS_Shape& anEdge = edges(ind_e);
if (anEdge.Orientation() == TopAbs_INTERNAL)
{
InternalEdges.Add(anEdge);
edges.Remove(ind_e);
}
else
ind_e++;
}
if (RefFaceOrientation == TopAbs_REVERSED)
for (Standard_Integer ii = 1; ii <= edges.Length(); ii++)
edges(ii).Reverse();
TopoDS_Face F_RefFace = RefFace;
F_RefFace.Orientation(TopAbs_FORWARD);
// all faces collected in the sequence. Perform union of faces
if (faces.Length() > 1)
{
Standard_Real CoordTol = Precision::Confusion();
TopTools_MapOfShape edgesMap;
CoordTol = ComputeMinEdgeSize(edges, F_RefFace, edgesMap);
CoordTol /= 10.;
CoordTol = Max(CoordTol, Precision::Confusion());
TopTools_IndexedDataMapOfShapeListOfShape VEmap;
for (Standard_Integer ind = 1; ind <= edges.Length(); ind++)
TopExp::MapShapesAndUniqueAncestors(edges(ind), TopAbs_VERTEX, TopAbs_EDGE, VEmap);
// Try to find seam edge and an edge that is not seam but has 2 pcurves on the surface
Standard_Boolean SeamFound = Standard_False, UseamFound = Standard_False,
VseamFound = Standard_False;
TopoDS_Edge EdgeWith2pcurves;
for (Standard_Integer ii = 1; ii <= faces.Length(); ii++)
{
const TopoDS_Face& face_ii = TopoDS::Face(faces(ii));
TopoDS_Wire anOuterWire = BRepTools::OuterWire(face_ii);
TopoDS_Iterator itw(anOuterWire);
for (; itw.More(); itw.Next())
{
const TopoDS_Edge& anEdge = TopoDS::Edge(itw.Value());
if (BRep_Tool::IsClosed(anEdge, face_ii))
{
if (BRepTools::IsReallyClosed(anEdge, face_ii))
{
if (IsUiso(anEdge, face_ii))
UseamFound = Standard_True;
else
VseamFound = Standard_True;
}
else
EdgeWith2pcurves = anEdge;
}
}
}
SeamFound = UseamFound || VseamFound;
Standard_Boolean aIsEdgeWith2pcurvesSmooth = Standard_False;
if (myConcatBSplines && !EdgeWith2pcurves.IsNull() && !SeamFound)
{
const TopTools_ListOfShape& aFaceList = theGMapEdgeFaces.FindFromKey(EdgeWith2pcurves);
const TopoDS_Face& aFace1 = TopoDS::Face(aFaceList.First());
const TopoDS_Face& aFace2 = TopoDS::Face(aFaceList.Last());
GeomAbs_Shape anOrderOfCont =
BRepLib::ContinuityOfFaces(EdgeWith2pcurves, aFace1, aFace2, myAngTol);
aIsEdgeWith2pcurvesSmooth = (anOrderOfCont >= GeomAbs_G1);
}
if (aIsEdgeWith2pcurvesSmooth)
{
Handle(Geom2d_Curve) aPC1, aPC2;
Standard_Real aFirst, aLast;
aPC1 = BRep_Tool::CurveOnSurface(EdgeWith2pcurves, F_RefFace, aFirst, aLast);
EdgeWith2pcurves.Reverse();
aPC2 = BRep_Tool::CurveOnSurface(EdgeWith2pcurves, F_RefFace, aFirst, aLast);
gp_Pnt2d aPnt1 = aPC1->Value(aFirst);
gp_Pnt2d aPnt2 = aPC2->Value(aFirst);
Standard_Boolean anIsUclosed = (Abs(aPnt1.X() - aPnt2.X()) > Abs(aPnt1.Y() - aPnt2.Y()));
Standard_Boolean aToMakeUPeriodic = Standard_False, aToMakeVPeriodic = Standard_False;
if (anIsUclosed && Uperiod == 0.)
aToMakeUPeriodic = Standard_True;
if (!anIsUclosed && Vperiod == 0.)
aToMakeVPeriodic = Standard_True;
if (aToMakeUPeriodic || aToMakeVPeriodic)
{
Handle(Geom_BSplineSurface) aBSplineSurface =
Handle(Geom_BSplineSurface)::DownCast(aBaseSurface);
if (aBSplineSurface.IsNull())
{
Standard_Real aTol = 1.e-4;
GeomAbs_Shape aUCont = GeomAbs_C1, aVCont = GeomAbs_C1;
Standard_Integer degU = 14, degV = 14;
Standard_Integer nmax = 16;
Standard_Integer aPrec = 1;
GeomConvert_ApproxSurface
Approximator(aBaseSurface, aTol, aUCont, aVCont, degU, degV, nmax, aPrec);
aBSplineSurface = Approximator.Surface();
}
if (aToMakeUPeriodic)
{
aBSplineSurface->SetUPeriodic();
Uperiod = aBSplineSurface->UPeriod();
}
if (aToMakeVPeriodic)
{
aBSplineSurface->SetVPeriodic();
Vperiod = aBSplineSurface->VPeriod();
}
// Update ref face and pcurves if the surface changed
if (aBSplineSurface != aBaseSurface)
{
TopoDS_Face OldRefFace = RefFace;
Handle(Geom2d_Curve) NullPCurve;
RefFace.Nullify();
BB.MakeFace(RefFace, aBSplineSurface, aBaseLocation, 0.);
for (Standard_Integer ii = 1; ii <= edges.Length(); ii++)
{
TopoDS_Edge anEdge = TopoDS::Edge(edges(ii));
Handle(Geom2d_Curve) aPCurve =
BRep_Tool::CurveOnSurface(anEdge, OldRefFace, aFirst, aLast);
if (MapEdgesWithTemporaryPCurves.Contains(anEdge))
BB.UpdateEdge(anEdge, NullPCurve, OldRefFace, 0.);
BB.UpdateEdge(anEdge, aPCurve, RefFace, 0.);
}
F_RefFace = RefFace;
F_RefFace.Orientation(TopAbs_FORWARD);
}
}
} // if (myConcatBSplines && !EdgeWith2pcurves.IsNull() && !SeamFound)
// Perform relocating to new U-origin
// Define boundaries in 2d space of RefFace
Standard_Real aPeriods[2] = {Uperiod, Vperiod};
Standard_Boolean anIsSeamFound[2] = {UseamFound, VseamFound};
Standard_Real aSurfMin[2], aSurfMax[2];
aBaseSurface->Bounds(aSurfMin[0], aSurfMax[0], aSurfMin[1], aSurfMax[1]);
for (Standard_Integer ii = 0; ii < 2; ii++)
if (aPeriods[ii] != 0.)
{
// if seam edge exists, do nothing
if (!anIsSeamFound[ii])
{
// try to find the origin of U in 2d space
// so that all the faces are in [origin, origin + Uperiod]
Standard_Real aMinCoord, aMaxCoord; // Umin, Umax;
Standard_Integer aNumberOfIntervals, i_face_max;
if (!FindCoordBounds(faces,
F_RefFace,
aMapEF,
edgesMap,
ii + 1,
aPeriods[ii],
aMinCoord,
aMaxCoord,
aNumberOfIntervals,
i_face_max))
{
break;
}
if (aMaxCoord - aMinCoord > aPeriods[ii] - 1.e-5)
anIsSeamFound[ii] = Standard_True;
else if (aNumberOfIntervals == 2)
{
TopTools_MapOfShape UsedEdges;
NCollection_DataMap<TopoDS_Shape, Handle(Geom2d_Curve)> EdgeNewPCurve;
// Relocate pcurves to new U-origin
RelocatePCurvesToNewUorigin(edges,
faces(i_face_max),
F_RefFace,
CoordTol,
ii + 1,
aPeriods[ii],
VEmap,
EdgeNewPCurve,
UsedEdges);
// PCurves from unused edges (may be degenerated edges)
for (Standard_Integer ind = 1; ind <= edges.Length(); ind++)
{
const TopoDS_Edge& anEdge = TopoDS::Edge(edges(ind));
if (!UsedEdges.Contains(anEdge))
{
Standard_Real fpar, lpar;
Handle(Geom2d_Curve) aPCurve =
BRep_Tool::CurveOnSurface(anEdge, F_RefFace, fpar, lpar);
aPCurve = new Geom2d_TrimmedCurve(aPCurve, fpar, lpar);
EdgeNewPCurve.Bind(anEdge, aPCurve);
}
}
// Restore VEmap
VEmap.Clear();
for (Standard_Integer ind = 1; ind <= edges.Length(); ind++)
TopExp::MapShapesAndUniqueAncestors(edges(ind), TopAbs_VERTEX, TopAbs_EDGE, VEmap);
// Find NewUmin and NewUmax
Standard_Real NewCoordMin = RealLast(), NewCoordMax = RealFirst();
for (Standard_Integer jj = 1; jj <= edges.Length(); jj++)
{
const Handle(Geom2d_Curve)& aPCurve = EdgeNewPCurve(edges(jj));
UpdateBoundaries(aPCurve,
aPCurve->FirstParameter(),
aPCurve->LastParameter(),
ii + 1,
NewCoordMin,
NewCoordMax);
}
if (NewCoordMax - NewCoordMin < aPeriods[ii] - CoordTol
&& !(-Precision::Confusion() < NewCoordMin
&& NewCoordMin < aPeriods[ii] + Precision::Confusion()
&& -Precision::Confusion() < NewCoordMax
&& NewCoordMax < aPeriods[ii] + Precision::Confusion()))
{
// we can build a face without seam edge:
// update the edges with earlier computed relocated pcurves
// fitting into (NewUorigin, NewUorigin + Uperiod)
Standard_Real RestSpaceInCoord = aPeriods[ii] - (NewCoordMax - NewCoordMin);
Standard_Real NewCoordOrigin = NewCoordMin - RestSpaceInCoord / 2;
if (NewCoordOrigin < aSurfMin[ii])
NewCoordOrigin = aSurfMin[ii];
Handle(Geom_Surface) NewSurf;
Standard_Boolean anIsInU = (ii == 0);
if (NewCoordOrigin == aSurfMin[ii])
NewSurf = aBaseSurface;
else
NewSurf = new Geom_RectangularTrimmedSurface(aBaseSurface,
NewCoordOrigin,
NewCoordOrigin + aPeriods[ii],
anIsInU); // trim in U or V
TopoDS_Face OldRefFace = RefFace;
Handle(Geom2d_Curve) NullPCurve;
RefFace.Nullify();
BB.MakeFace(RefFace, NewSurf, aBaseLocation, 0.);
for (Standard_Integer jj = 1; jj <= edges.Length(); jj++)
{
TopoDS_Edge anEdge = TopoDS::Edge(edges(jj));
if (MapEdgesWithTemporaryPCurves.Contains(anEdge))
BB.UpdateEdge(anEdge, NullPCurve, OldRefFace, 0.);
const Handle(Geom2d_Curve)& aPCurve = EdgeNewPCurve(anEdge);
BB.UpdateEdge(anEdge, aPCurve, RefFace, 0.);
}
}
} // else (Umax - Umin < Uperiod - 1.e-5, no Useam)
} // if (!UseamFound)
} // if (Uperiod != 0.)
UseamFound = anIsSeamFound[0];
VseamFound = anIsSeamFound[1];
////////////////////////////////////
F_RefFace = RefFace;
F_RefFace.Orientation(TopAbs_FORWARD);
TopTools_SequenceOfShape NewFaces, NewWires;
if (Uperiod == 0 || Vperiod == 0)
{
// Set the "periods" for closed non-periodic surface
TopLoc_Location aLoc;
Handle(Geom_Surface) aSurf = BRep_Tool::Surface(RefFace, aLoc);
if (aSurf->IsKind(STANDARD_TYPE(Geom_RectangularTrimmedSurface)))
aSurf = (Handle(Geom_RectangularTrimmedSurface)::DownCast(aSurf))->BasisSurface();
Standard_Real Ufirst, Ulast, Vfirst, Vlast;
aSurf->Bounds(Ufirst, Ulast, Vfirst, Vlast);
if (Uperiod == 0 && aSurf->IsUClosed())
Uperiod = Ulast - Ufirst;
if (Vperiod == 0 && aSurf->IsVClosed())
Vperiod = Vlast - Vfirst;
}
TopTools_MapOfShape UsedEdges;
Standard_Real FaceUmin = RealLast();
Standard_Real FaceVmin = RealLast();
for (Standard_Integer ii = 1; ii <= edges.Length(); ii++)
{
const TopoDS_Edge& anEdge = TopoDS::Edge(edges(ii));
BRepAdaptor_Curve2d aBAcurve(anEdge, F_RefFace);
gp_Pnt2d aFirstPoint = aBAcurve.Value(aBAcurve.FirstParameter());
gp_Pnt2d aLastPoint = aBAcurve.Value(aBAcurve.LastParameter());
if (aFirstPoint.X() < FaceUmin)
FaceUmin = aFirstPoint.X();
if (aLastPoint.X() < FaceUmin)
FaceUmin = aLastPoint.X();
if (aFirstPoint.Y() < FaceVmin)
FaceVmin = aFirstPoint.Y();
if (aLastPoint.Y() < FaceVmin)
FaceVmin = aLastPoint.Y();
}
// Building new wires from <edges>
// and build faces
while (!edges.IsEmpty())
{
// try to find non-degenerated edge
TopoDS_Edge StartEdge = TopoDS::Edge(edges(1));
Standard_Integer istart = 1;
while (BRep_Tool::Degenerated(StartEdge) && istart < edges.Length())
{
istart++;
StartEdge = TopoDS::Edge(edges(istart));
}
TopoDS_Wire aNewWire;
BB.MakeWire(aNewWire);
BB.Add(aNewWire, StartEdge);
RemoveEdgeFromMap(StartEdge, VEmap);
TopTools_IndexedMapOfShape SplittingVertices;
Standard_Real fpar, lpar;
Handle(Geom2d_Curve) StartPCurve =
BRep_Tool::CurveOnSurface(StartEdge, F_RefFace, fpar, lpar);
TopoDS_Vertex StartVertex, CurVertex;
TopExp::Vertices(StartEdge, StartVertex, CurVertex, Standard_True); // with orientation
Standard_Real StartParam, CurParam;
if (StartEdge.Orientation() == TopAbs_FORWARD)
{
StartParam = fpar;
CurParam = lpar;
}
else
{
StartParam = lpar;
CurParam = fpar;
}
gp_Pnt2d StartPoint = StartPCurve->Value(StartParam);
gp_Pnt2d CurPoint = StartPCurve->Value(CurParam);
TopoDS_Edge CurEdge = StartEdge;
for (;;) // loop till the end of current new wire
{
TopoDS_Edge NextEdge;
gp_Pnt2d NextPoint;
TopTools_ListOfShape Elist;
// const TopTools_ListOfShape& Elist = VEmap.FindFromKey(CurVertex);
if (VEmap.Contains(CurVertex))
Elist = VEmap.FindFromKey(CurVertex);
TopTools_ListIteratorOfListOfShape itl(Elist);
if (Elist.IsEmpty())
{
if (CurVertex.IsSame(StartVertex))
{
// Points of two vertices coincide in 3d but may be not in 2d
if ((Uperiod != 0. && Abs(StartPoint.X() - CurPoint.X()) > Uperiod / 2)
|| (Vperiod != 0.
&& Abs(StartPoint.Y() - CurPoint.Y())
> Vperiod / 2)) // end of parametric space
{
//<edges> do not contain seams => we must reconstruct the seam up to <NextEdge>
gp_Pnt2d StartOfNextEdge;
TopoDS_Vertex LastVertexOfSeam;
ReconstructMissedSeam(RemovedEdges,
F_RefFace,
CurEdge,
CurVertex,
CurPoint,
Uperiod,
Vperiod,
NextEdge,
NextPoint);
}
else
{
break; // end of wire
}
}
}
if (NextEdge.IsNull())
{
Standard_Boolean EndOfWire = Standard_False;
Standard_Boolean anIsOnSingularity = IsOnSingularity(Elist);
if (!anIsOnSingularity && Elist.Extent() > 1)
SplittingVertices.Add(CurVertex);
TopTools_ListOfShape TmpElist, TrueElist;
//<TrueElist> will be the list of candidates to become <NextEdge>
for (itl.Initialize(Elist); itl.More(); itl.Next())
{
const TopoDS_Edge& anEdge = TopoDS::Edge(itl.Value());
if (UsedEdges.Contains(anEdge))
continue;
TopoDS_Vertex aFirstVertex = TopExp::FirstVertex(anEdge, Standard_True);
if (!aFirstVertex.IsSame(CurVertex))
continue;
TmpElist.Append(anEdge);
}
if (TmpElist.Extent() <= 1 || (Uperiod != 0. || Vperiod != 0))
TrueElist.Assign(TmpElist);
else
{
// we must choose the closest direction - the biggest angle
Standard_Real MaxAngle = RealFirst();
TopoDS_Edge TrueEdge;
Handle(Geom2d_Curve) CurPCurve =
BRep_Tool::CurveOnSurface(CurEdge, F_RefFace, fpar, lpar);
CurParam = (CurEdge.Orientation() == TopAbs_FORWARD) ? lpar : fpar;
gp_Vec2d CurDir;
CurPCurve->D1(CurParam, CurPoint, CurDir);
CurDir.Normalize();
if (CurEdge.Orientation() == TopAbs_REVERSED)
CurDir.Reverse();
for (itl.Initialize(TmpElist); itl.More(); itl.Next())
{
const TopoDS_Edge& anEdge = TopoDS::Edge(itl.Value());
Handle(Geom2d_Curve) aPCurve =
BRep_Tool::CurveOnSurface(anEdge, F_RefFace, fpar, lpar);
Standard_Real aParam = (anEdge.Orientation() == TopAbs_FORWARD) ? fpar : lpar;
gp_Pnt2d aPoint;
gp_Vec2d aDir;
aPCurve->D1(aParam, aPoint, aDir);
aDir.Normalize();
if (anEdge.Orientation() == TopAbs_REVERSED)
aDir.Reverse();
Standard_Real anAngle = CurDir.Angle(aDir);
if (anAngle > MaxAngle)
{
MaxAngle = anAngle;
TrueEdge = anEdge;
}
}
TrueElist.Append(TrueEdge);
}
// Find next edge in TrueElist
for (itl.Initialize(TrueElist); itl.More(); itl.Next())
{
const TopoDS_Edge& anEdge = TopoDS::Edge(itl.Value());
Handle(Geom2d_Curve) aPCurve =
BRep_Tool::CurveOnSurface(anEdge, F_RefFace, fpar, lpar);
Standard_Real aParam = (anEdge.Orientation() == TopAbs_FORWARD) ? fpar : lpar;
gp_Pnt2d aPoint = aPCurve->Value(aParam);
Standard_Real DiffU = Abs(aPoint.X() - CurPoint.X());
Standard_Real DiffV = Abs(aPoint.Y() - CurPoint.Y());
if (Uperiod != 0. && DiffU > CoordTol
&& Abs(DiffU - Uperiod) > CoordTol) // may be it is a deg.vertex
continue;
if (Vperiod != 0. && DiffV > CoordTol
&& Abs(DiffV - Vperiod) > CoordTol) // may be it is a deg.vertex
continue;
// Check: may be <CurPoint> and <aPoint> are on Period from each other
if ((Uperiod != 0. && DiffU > Uperiod / 2)
|| (Vperiod != 0. && DiffV > Vperiod / 2)) // end of parametric space
{
//<edges> do not contain seams => we must reconstruct the seam up to <NextEdge>
gp_Pnt2d StartOfNextEdge;
TopoDS_Vertex LastVertexOfSeam;
ReconstructMissedSeam(RemovedEdges,
F_RefFace,
CurEdge,
CurVertex,
CurPoint,
Uperiod,
Vperiod,
NextEdge,
NextPoint);
// Check: may be it is the end
if (LastVertexOfSeam.IsSame(StartVertex)
&& Abs(StartPoint.X() - StartOfNextEdge.X()) < Uperiod / 2)
EndOfWire = Standard_True;
break;
}
else
{
NextEdge = anEdge;
Standard_Real LastParam = (NextEdge.Orientation() == TopAbs_FORWARD) ? lpar : fpar;
NextPoint = aPCurve->Value(LastParam);
break;
}
} // for (itl.Initialize(TrueElist); itl.More(); itl.Next())
if (EndOfWire)
break;
}
if (NextEdge.IsNull())
{
if (Uperiod != 0. || Vperiod != 0.)
{
if (CurVertex.IsSame(StartVertex)
&& (Uperiod == 0. || Abs(StartPoint.X() - CurPoint.X()) < Uperiod / 2)
&& (Vperiod == 0. || Abs(StartPoint.Y() - CurPoint.Y()) < Vperiod / 2))
break; // end of wire
ReconstructMissedSeam(RemovedEdges,
F_RefFace,
CurEdge,
CurVertex,
CurPoint,
Uperiod,
Vperiod,
NextEdge,
NextPoint);
if (NextEdge.IsNull())
{
return;
}
}
else
return;
}
CurPoint = NextPoint;
CurEdge = NextEdge;
CurVertex = TopExp::LastVertex(CurEdge, Standard_True); // with orientation
BB.Add(aNewWire, CurEdge);
UsedEdges.Add(CurEdge);
RemoveEdgeFromMap(CurEdge, VEmap);
} // for (;;)
aNewWire.Closed(Standard_True);
UsedEdges.Add(StartEdge);
// Remove used edges from sequence
Standard_Integer ind = 1;
while (ind <= edges.Length())
{
if (UsedEdges.Contains(edges(ind)))
edges.Remove(ind);
else
ind++;
}
// add just built wire to current face or save it in the sequence of wires
Standard_Boolean EdgeOnBoundOfSurfFound = Standard_False;
TopoDS_Iterator itw(aNewWire);
for (; itw.More(); itw.Next())
{
const TopoDS_Edge& anEdge = TopoDS::Edge(itw.Value());
if (BRep_Tool::IsClosed(anEdge, RefFace))
{
EdgeOnBoundOfSurfFound = Standard_True;
break;
}
}
if (EdgeOnBoundOfSurfFound) // this wire can not be a hole
{
TopLoc_Location aLoc;
Handle(Geom_Surface) aSurf = BRep_Tool::Surface(RefFace, aLoc);
TopoDS_Face aResult;
BB.MakeFace(aResult, aSurf, aLoc, 0);
BB.Add(aResult, aNewWire);
aResult.Orientation(RefFaceOrientation);
NewFaces.Append(aResult);
}
else // may be this wire is a hole
{
// split this wire if needed
if (!SplittingVertices.IsEmpty())
SplitWire(aNewWire, F_RefFace, SplittingVertices, NewWires);
else
NewWires.Append(aNewWire);
}
} // while (!edges.IsEmpty())
// Build wires from internal edges
TopTools_IndexedDataMapOfShapeListOfShape IntVEmap;
for (Standard_Integer ii = 1; ii <= InternalEdges.Extent(); ii++)
TopExp::MapShapesAndAncestors(InternalEdges(ii), TopAbs_VERTEX, TopAbs_EDGE, IntVEmap);
TopTools_SequenceOfShape InternalWires;
while (!InternalEdges.IsEmpty())
{
TopoDS_Edge aFirstEdge = TopoDS::Edge(InternalEdges(1));
InternalEdges.RemoveFromIndex(1);
TopoDS_Wire anInternalWire;
BB.MakeWire(anInternalWire);
BB.Add(anInternalWire, aFirstEdge);
TopoDS_Edge EndEdges[2];
EndEdges[0] = EndEdges[1] = aFirstEdge;
TopoDS_Vertex VV[2];
TopExp::Vertices(aFirstEdge, VV[0], VV[1]);
for (;;)
{
if (VV[0].IsSame(VV[1])) // closed wire
break;
Standard_Boolean found = Standard_False;
for (Standard_Integer ii = 0; ii < 2; ii++)
{
const TopTools_ListOfShape& Elist = IntVEmap.FindFromKey(VV[ii]);
TopTools_ListIteratorOfListOfShape itl(Elist);
for (; itl.More(); itl.Next())
{
TopoDS_Edge anEdge = TopoDS::Edge(itl.Value());
if (anEdge.IsSame(EndEdges[ii]))
continue;
found = Standard_True;
InternalEdges.RemoveKey(anEdge);
BB.Add(anInternalWire, anEdge);
TopoDS_Vertex V1, V2;
TopExp::Vertices(anEdge, V1, V2);
VV[ii] = (V1.IsSame(VV[ii])) ? V2 : V1;
EndEdges[ii] = anEdge;
break;
}
}
if (!found) // end of open wire
break;
}
InternalWires.Append(anInternalWire);
}
// Insert new faces instead of old ones
if (NewFaces.IsEmpty())
{
// one face without seam
TopLoc_Location aLoc;
Handle(Geom_Surface) aSurf = BRep_Tool::Surface(RefFace, aLoc);
TopoDS_Face aResult;
BB.MakeFace(aResult, aSurf, aLoc, 0.);
for (Standard_Integer ii = 1; ii <= NewWires.Length(); ii++)
BB.Add(aResult, NewWires(ii));
for (Standard_Integer ii = 1; ii <= InternalWires.Length(); ii++)
BB.Add(aResult, InternalWires(ii));
aResult.Orientation(RefFaceOrientation);
myContext->Merge(faces, aResult);
// Update the map Face-NewFace
for (Standard_Integer jj = 1; jj <= faces.Length(); jj++)
myFaceNewFace.Bind(faces(jj), aResult);
}
else if (NewFaces.Length() == 1)
{
TopoDS_Shape aNewFace = NewFaces(1).Oriented(TopAbs_FORWARD);
for (Standard_Integer ii = 1; ii <= NewWires.Length(); ii++)
BB.Add(aNewFace, NewWires(ii));
for (Standard_Integer ii = 1; ii <= InternalWires.Length(); ii++)
BB.Add(aNewFace, InternalWires(ii));
myContext->Merge(faces, NewFaces(1));
// Update the map Face-NewFace
for (Standard_Integer jj = 1; jj <= faces.Length(); jj++)
myFaceNewFace.Bind(faces(jj), NewFaces(1));
}
else
{
// Insert new wires and internal wires into correspondent faces
InsertWiresIntoFaces(NewWires, NewFaces, RefFace);
InsertWiresIntoFaces(InternalWires, NewFaces, RefFace);
NCollection_Sequence<TopTools_MapOfShape> Emaps;
for (Standard_Integer ii = 1; ii <= faces.Length(); ii++)
{
TopTools_MapOfShape aEmap;
TopExp::MapShapes(faces(ii), aEmap);
Emaps.Append(aEmap);
}
for (Standard_Integer ii = 1; ii <= NewFaces.Length(); ii++)
{
TopTools_SequenceOfShape facesForThisFace;
TopTools_MapOfShape UsedFaces;
TopExp_Explorer Explo(NewFaces(ii), TopAbs_EDGE);
for (; Explo.More(); Explo.Next())
{
const TopoDS_Edge& anEdge = TopoDS::Edge(Explo.Current());
if (BRep_Tool::Degenerated(anEdge) || BRep_Tool::IsClosed(anEdge, RefFace))
continue;
Standard_Integer jj;
for (jj = 1; jj <= Emaps.Length(); jj++)
if (Emaps(jj).Contains(anEdge))
break;
if (UsedFaces.Add(faces(jj)))
facesForThisFace.Append(faces(jj));
}
myContext->Merge(facesForThisFace, NewFaces(ii));
// Update the map Face-NewFace
for (Standard_Integer jj = 1; jj <= facesForThisFace.Length(); jj++)
myFaceNewFace.Bind(facesForThisFace(jj), NewFaces(ii));
}
}
} // if (faces.Length() > 1)
} // end processing each face
}
//=================================================================================================
void ShapeUpgrade_UnifySameDomain::UnifyEdges()
{
TopoDS_Shape aRes = myContext->Apply(myShape);
// creating map of edge faces
TopTools_IndexedDataMapOfShapeListOfShape aMapEdgeFaces;
TopExp::MapShapesAndAncestors(aRes, TopAbs_EDGE, TopAbs_FACE, aMapEdgeFaces);
// creating map of vertex edges
TopTools_IndexedDataMapOfShapeListOfShape aMapEdgesVertex;
TopExp::MapShapesAndUniqueAncestors(aRes, TopAbs_VERTEX, TopAbs_EDGE, aMapEdgesVertex);
// creating map of vertex faces
TopTools_IndexedDataMapOfShapeListOfShape aVFmap;
TopExp::MapShapesAndUniqueAncestors(aRes, TopAbs_VERTEX, TopAbs_FACE, aVFmap);
if (mySafeInputMode)
UpdateMapOfShapes(myKeepShapes, myContext);
// Sequence of the edges of the shape
TopTools_SequenceOfShape aSeqEdges;
const Standard_Integer aNbE = aMapEdgeFaces.Extent();
for (Standard_Integer i = 1; i <= aNbE; ++i)
aSeqEdges.Append(aMapEdgeFaces.FindKey(i));
// Prepare map of shared vertices (with the number of connected edges greater then 2)
TopTools_MapOfShape aSharedVert;
CheckSharedVertices(aSeqEdges, aMapEdgesVertex, myKeepShapes, aSharedVert);
// Merge the edges avoiding removal of the shared vertices
Standard_Boolean isMerged = MergeSeq(aSeqEdges, aVFmap, aSharedVert);
// Collect faces to rebuild
TopTools_IndexedMapOfShape aChangedFaces;
if (isMerged)
{
for (Standard_Integer i = 1; i <= aNbE; ++i)
{
const TopoDS_Shape& aE = aMapEdgeFaces.FindKey(i);
if (myContext->IsRecorded(aE))
{
TopTools_ListIteratorOfListOfShape it(aMapEdgeFaces(i));
for (; it.More(); it.Next())
aChangedFaces.Add(it.Value());
}
}
}
// fix changed faces and replace them in the local context
constexpr Standard_Real aPrec = Precision::Confusion();
for (Standard_Integer i = 1; i <= aChangedFaces.Extent(); i++)
{
TopoDS_Face aFace = TopoDS::Face(myContext->Apply(aChangedFaces.FindKey(i)));
if (aFace.IsNull())
continue;
// for a planar face create and store pcurve of edge on face
// to speed up all operations; but this is allowed only when non-safe mode in force
if (!mySafeInputMode)
{
TopLoc_Location aLoc;
Handle(Geom_Surface) aSurface = BRep_Tool::Surface(aFace, aLoc);
aSurface = ClearRts(aSurface);
if (aSurface->IsKind(STANDARD_TYPE(Geom_Plane)))
{
TopTools_ListOfShape aLE;
for (TopExp_Explorer anEx(aFace, TopAbs_EDGE); anEx.More(); anEx.Next())
aLE.Append(anEx.Current());
BRepLib::BuildPCurveForEdgesOnPlane(aLE, aFace);
}
}
ShapeFix_Face sff(aFace);
if (mySafeInputMode)
sff.SetContext(myContext);
sff.SetPrecision(aPrec);
sff.SetMinTolerance(aPrec);
sff.SetMaxTolerance(Max(1., aPrec * 1000.));
sff.FixOrientationMode() = 0;
sff.FixAddNaturalBoundMode() = 0;
sff.FixIntersectingWiresMode() = 0;
sff.FixLoopWiresMode() = 0;
sff.FixSplitFaceMode() = 0;
sff.FixPeriodicDegeneratedMode() = 0;
SetFixWireModes(sff);
sff.Perform();
TopoDS_Shape aNewFace = sff.Face();
myContext->Replace(aFace, aNewFace);
}
if (aChangedFaces.Extent() > 0)
{
// fix changed shell and replace it in the local context
TopoDS_Shape aRes1 = myContext->Apply(aRes);
Standard_Boolean isChanged = Standard_False;
TopExp_Explorer expsh;
for (expsh.Init(aRes1, TopAbs_SHELL); expsh.More(); expsh.Next())
{
TopoDS_Shell aShell = TopoDS::Shell(expsh.Current());
Handle(ShapeFix_Shell) sfsh = new ShapeFix_Shell;
sfsh->FixFaceOrientation(aShell);
TopoDS_Shape aNewShell = sfsh->Shell();
if (!aNewShell.IsSame(aShell))
{
myContext->Replace(aShell, aNewShell);
isChanged = Standard_True;
}
}
if (isChanged)
aRes1 = myContext->Apply(aRes1);
myContext->Replace(myShape, aRes1);
}
myShape = myContext->Apply(myShape);
}
//=======================================================================
// function : Build
// purpose : builds the resulting shape
//=======================================================================
void ShapeUpgrade_UnifySameDomain::Build()
{
TopExp::MapShapesAndAncestors(myInitShape, TopAbs_EDGE, TopAbs_FACE, myEFmap);
if (myUnifyFaces)
UnifyFaces();
if (myUnifyEdges)
UnifyEdges();
// Fill the history of modifications during the operation
FillHistory();
}
//=======================================================================
// function : FillHistory
// purpose : Fill the history of modifications during the operation
//=======================================================================
void ShapeUpgrade_UnifySameDomain::FillHistory()
{
if (myHistory.IsNull())
// History is not requested
return;
// Only Vertices, Edges and Faces can be modified during unification.
// Thus, only these kind of shapes should be checked.
// Get history from the context.
// It contains all modifications of the operation. Some of these
// modifications become not relevant and should be filtered.
Handle(BRepTools_History) aCtxHistory = myContext->History();
// Explore the history of the context and fill
// the history of UnifySameDomain algorithm
Handle(BRepTools_History) aUSDHistory = new BRepTools_History();
// Map all Vertices, Edges, Faces and Solids in the input shape
TopTools_IndexedMapOfShape aMapInputShape;
TopExp::MapShapes(myInitShape, TopAbs_VERTEX, aMapInputShape);
TopExp::MapShapes(myInitShape, TopAbs_EDGE, aMapInputShape);
TopExp::MapShapes(myInitShape, TopAbs_FACE, aMapInputShape);
TopExp::MapShapes(myInitShape, TopAbs_SOLID, aMapInputShape);
// Map all Vertices, Edges, Faces and Solids in the result shape
TopTools_IndexedMapOfShape aMapResultShapes;
TopExp::MapShapes(myShape, TopAbs_VERTEX, aMapResultShapes);
TopExp::MapShapes(myShape, TopAbs_EDGE, aMapResultShapes);
TopExp::MapShapes(myShape, TopAbs_FACE, aMapResultShapes);
TopExp::MapShapes(myShape, TopAbs_SOLID, aMapResultShapes);
// Iterate on all input shapes and get their modifications
Standard_Integer i, aNb = aMapInputShape.Extent();
for (i = 1; i <= aNb; ++i)
{
const TopoDS_Shape& aS = aMapInputShape(i);
// Check the shape itself to be present in the result
if (aMapResultShapes.Contains(aS))
{
// The shape is present in the result as is, thus has not been modified
continue;
}
// Check if the shape has been modified during the operation
const TopTools_ListOfShape& aLSImages = aCtxHistory->Modified(aS);
if (aLSImages.IsEmpty())
{
// The shape has not been modified and not present in the result,
// thus it has been removed
aUSDHistory->Remove(aS);
continue;
}
// Check the images of the shape to be present in the result
Standard_Boolean bRemoved = Standard_True;
TopTools_ListIteratorOfListOfShape aItLSIm(aLSImages);
for (; aItLSIm.More(); aItLSIm.Next())
{
const TopoDS_Shape& aSIm = aItLSIm.Value();
if (aMapResultShapes.Contains(aSIm))
{
if (!aSIm.IsSame(aS))
// Image is found in the result, thus the shape has been modified
aUSDHistory->AddModified(aS, aSIm);
bRemoved = Standard_False;
}
}
if (bRemoved)
{
// No images are found in the result, thus the shape has been removed
aUSDHistory->Remove(aS);
}
}
// Merge the history of the operation into global history
myHistory->Merge(aUSDHistory);
}
void SplitWire(const TopoDS_Wire& theWire,
const TopoDS_Face& theFace,
const TopTools_IndexedMapOfShape& theVmap,
TopTools_SequenceOfShape& theWireSeq)
{
TopTools_DataMapOfShapeListOfShape aVEmap;
TopTools_MapOfShape aEmap;
TopoDS_Iterator itw(theWire);
for (; itw.More(); itw.Next())
{
const TopoDS_Edge& anEdge = TopoDS::Edge(itw.Value());
if (!aEmap.Add(anEdge))
continue;
if (anEdge.Orientation() != TopAbs_FORWARD && anEdge.Orientation() != TopAbs_REVERSED)
continue;
const TopoDS_Vertex& aVertex = TopExp::FirstVertex(anEdge, Standard_True); // with orientation
if (aVEmap.IsBound(aVertex))
aVEmap(aVertex).Append(anEdge);
else
{
TopTools_ListOfShape aElist;
aElist.Append(anEdge);
aVEmap.Bind(aVertex, aElist);
}
}
BRep_Builder aBB;
for (Standard_Integer ii = 1; ii <= theVmap.Extent(); ii++)
{
const TopoDS_Vertex& anOrigin = TopoDS::Vertex(theVmap(ii));
TopTools_ListOfShape& aBranches = aVEmap(anOrigin);
TopTools_ListIteratorOfListOfShape anItl(aBranches);
while (anItl.More())
{
TopoDS_Edge CurEdge = TopoDS::Edge(anItl.Value());
aBranches.Remove(anItl);
TopoDS_Wire aNewWire;
aBB.MakeWire(aNewWire);
for (;;)
{
aBB.Add(aNewWire, CurEdge);
// clang-format off
const TopoDS_Vertex& aVertex = TopExp::LastVertex (CurEdge, Standard_True); //with orientation
// clang-format on
if (aVertex.IsSame(anOrigin))
break;
if (!aVEmap.IsBound(aVertex))
break;
TopTools_ListOfShape& aElist = aVEmap(aVertex);
if (aElist.Extent() == 0)
break;
if (aElist.Extent() == 1)
{
CurEdge = TopoDS::Edge(aElist.First());
aElist.Clear();
}
else
{
Standard_Real fpar, lpar;
Handle(Geom2d_Curve) aPCurve = BRep_Tool::CurveOnSurface(CurEdge, theFace, fpar, lpar);
Standard_Real aParam = (CurEdge.Orientation() == TopAbs_FORWARD) ? lpar : fpar;
gp_Pnt2d aPoint;
gp_Vec2d CurDir;
aPCurve->D1(aParam, aPoint, CurDir);
CurDir.Normalize();
if (CurEdge.Orientation() == TopAbs_REVERSED)
CurDir.Reverse();
// choose the rightest direction - the smallest angle
Standard_Real MinAngle = RealLast();
TopoDS_Edge NextEdge;
TopTools_ListIteratorOfListOfShape aLocalIter(aElist);
for (; aLocalIter.More(); aLocalIter.Next())
{
const TopoDS_Edge& anEdge = TopoDS::Edge(aLocalIter.Value());
aPCurve = BRep_Tool::CurveOnSurface(anEdge, theFace, fpar, lpar);
aParam = (anEdge.Orientation() == TopAbs_FORWARD) ? fpar : lpar;
gp_Vec2d aDir;
aPCurve->D1(aParam, aPoint, aDir);
aDir.Normalize();
if (anEdge.Orientation() == TopAbs_REVERSED)
aDir.Reverse();
Standard_Real anAngle = CurDir.Angle(aDir);
if (anAngle < MinAngle)
{
MinAngle = anAngle;
NextEdge = anEdge;
}
}
CurEdge = NextEdge;
// Remove <CurEdge> from list
for (aLocalIter.Initialize(aElist); aLocalIter.More(); aLocalIter.Next())
if (CurEdge.IsSame(aLocalIter.Value()))
{
aElist.Remove(aLocalIter);
break;
}
} // else (more than one edge)
} // for (;;)
theWireSeq.Append(aNewWire);
} // while (anItl.More())
}
}