1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-21 10:13:43 +03:00
occt/src/ShapeUpgrade/ShapeUpgrade_SplitSurfaceArea.cxx
abv 92efcf78a6 0026936: Drawbacks of inlining in new type system in OCCT 7.0 -- automatic
Automatic restore of IMPLEMENT_STANDARD_RTTIEXT macro (upgrade -rtti)
2015-12-04 14:15:06 +03:00

84 lines
3.1 KiB
C++

// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <GeomAdaptor_Surface.hxx>
#include <ShapeUpgrade_SplitSurfaceArea.hxx>
#include <Standard_Type.hxx>
#include <TColStd_HSequenceOfReal.hxx>
IMPLEMENT_STANDARD_RTTIEXT(ShapeUpgrade_SplitSurfaceArea,ShapeUpgrade_SplitSurface)
//=======================================================================
//function : ShapeUpgrade_SplitSurfaceArea
//purpose :
//=======================================================================
ShapeUpgrade_SplitSurfaceArea::ShapeUpgrade_SplitSurfaceArea():
ShapeUpgrade_SplitSurface()
{
myNbParts =1;
}
//=======================================================================
//function : Compute
//purpose :
//=======================================================================
void ShapeUpgrade_SplitSurfaceArea::Compute(const Standard_Boolean /*Segment*/)
{
if(myNbParts <= 1)
return;
GeomAdaptor_Surface ads(mySurface,myUSplitValues->Value(1),myUSplitValues->Value(2),
myVSplitValues->Value(1),myVSplitValues->Value(2));
Standard_Real aKoefU = ads.UResolution(1.);
Standard_Real aKoefV = ads.VResolution(1.);
if(aKoefU ==0)
aKoefU =1.;
if(aKoefV ==0)
aKoefV =1.;
Standard_Real aUSize = fabs(myUSplitValues->Value(2) - myUSplitValues->Value(1))/aKoefU;
Standard_Real aVSize = fabs(myVSplitValues->Value(2) - myVSplitValues->Value(1))/aKoefV;
Standard_Real aNbUV = aUSize/aVSize;
Handle(TColStd_HSequenceOfReal) aFirstSplit = (aNbUV <1. ? myVSplitValues : myUSplitValues);
Handle(TColStd_HSequenceOfReal) aSecondSplit = (aNbUV <1. ? myUSplitValues : myVSplitValues);
if(aNbUV<1)
aNbUV = 1./aNbUV;
Standard_Integer nbSplitF = (aNbUV >= myNbParts ? myNbParts : RealToInt(ceil(sqrt(myNbParts*ceil(aNbUV)))));
Standard_Integer nbSplitS = (aNbUV >= myNbParts ? 0 : RealToInt(ceil((Standard_Real)myNbParts/(Standard_Real)nbSplitF)));
if(nbSplitS ==1)
nbSplitS++;
if(!nbSplitF)
return;
Standard_Real aStep = (aFirstSplit->Value(2) - aFirstSplit->Value(1))/nbSplitF;
Standard_Real aPrevPar = aFirstSplit->Value(1);
Standard_Integer i =1;
for( ; i < nbSplitF; i++) {
Standard_Real aNextPar = aPrevPar + aStep;
aFirstSplit->InsertBefore(i+1,aNextPar);
aPrevPar = aNextPar;
}
if(nbSplitS) {
aStep = (aSecondSplit->Value(2) - aSecondSplit->Value(1))/nbSplitS;
aPrevPar = aSecondSplit->Value(1);
for(i =1 ; i < nbSplitS; i++) {
Standard_Real aNextPar = aPrevPar + aStep;
aSecondSplit->InsertBefore(i+1,aNextPar);
aPrevPar = aNextPar;
}
}
}