1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/GeomLib/GeomLib_CheckCurveOnSurface.cxx
tiv 0423218095 0030895: Coding Rules - specify std namespace explicitly for std::cout and streams
"endl" manipulator for Message_Messenger is renamed to "Message_EndLine".

The following entities from std namespace are now used
with std:: explicitly specified (from Standard_Stream.hxx):
std::istream,std::ostream,std::ofstream,std::ifstream,std::fstream,
std::filebuf,std::streambuf,std::streampos,std::ios,std::cout,std::cerr,
std::cin,std::endl,std::ends,std::flush,std::setw,std::setprecision,
std::hex,std::dec.
2019-08-16 12:16:38 +03:00

814 lines
25 KiB
C++

// Created by: Nikolai BUKHALOV
// Copyright (c) 2015 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Adaptor2d_HCurve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_CurveOnSurface.hxx>
#include <Adaptor3d_HSurface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <Geom2dAdaptor_GHCurve.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <GeomAdaptor_HSurface.hxx>
#include <GeomLib_CheckCurveOnSurface.hxx>
#include <gp_Pnt.hxx>
#include <math_Matrix.hxx>
#include <math_MultipleVarFunctionWithHessian.hxx>
#include <math_NewtonMinimum.hxx>
#include <math_PSO.hxx>
#include <math_PSOParticlesPool.hxx>
#include <OSD_Parallel.hxx>
#include <Standard_ErrorHandler.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_HArray1OfReal.hxx>
class GeomLib_CheckCurveOnSurface_TargetFunc;
static
Standard_Boolean MinComputing(
GeomLib_CheckCurveOnSurface_TargetFunc& theFunction,
const Standard_Real theEpsilon, //1.0e-3
const Standard_Integer theNbParticles,
Standard_Real& theBestValue,
Standard_Real& theBestParameter);
static Standard_Integer FillSubIntervals( const Handle(Geom_Curve)& theCurve3d,
const Handle(Geom2d_Curve)& theCurve2d,
const Standard_Real theFirst,
const Standard_Real theLast,
Standard_Integer &theNbParticles,
TColStd_Array1OfReal* const theSubIntervals = 0);
//=======================================================================
//class : GeomLib_CheckCurveOnSurface_TargetFunc
//purpose : Target function (to be minimized)
//=======================================================================
class GeomLib_CheckCurveOnSurface_TargetFunc :
public math_MultipleVarFunctionWithHessian
{
public:
GeomLib_CheckCurveOnSurface_TargetFunc( const Adaptor3d_Curve& theC3D,
const Adaptor3d_Curve& theAdCS,
const Standard_Real theFirst,
const Standard_Real theLast):
myCurve1(theC3D),
myCurve2(theAdCS),
myFirst(theFirst),
myLast(theLast)
{
}
//returns the number of parameters of the function
//(the function is one-dimension).
virtual Standard_Integer NbVariables() const {
return 1;
}
//returns value of the function when parameters are equal to theX
virtual Standard_Boolean Value(const math_Vector& theX,
Standard_Real& theFVal)
{
return Value(theX(1), theFVal);
}
//returns value of the one-dimension-function when parameter
//is equal to theX
Standard_Boolean Value( const Standard_Real theX,
Standard_Real& theFVal) const
{
try
{
OCC_CATCH_SIGNALS
if (!CheckParameter(theX))
return Standard_False;
const gp_Pnt aP1(myCurve1.Value(theX)),
aP2(myCurve2.Value(theX));
theFVal = -1.0*aP1.SquareDistance(aP2);
}
catch(Standard_Failure const&) {
return Standard_False;
}
//
return Standard_True;
}
//see analogical method for abstract owner class math_MultipleVarFunction
virtual Standard_Integer GetStateNumber()
{
return 0;
}
//returns the gradient of the function when parameters are
//equal to theX
virtual Standard_Boolean Gradient(const math_Vector& theX,
math_Vector& theGrad)
{
return Derive(theX(1), theGrad(1));
}
//returns 1st derivative of the the one-dimension-function when
//parameter is equal to theX
Standard_Boolean Derive(const Standard_Real theX, Standard_Real& theDeriv1, Standard_Real* const theDeriv2 = 0) const
{
try
{
OCC_CATCH_SIGNALS
if (!CheckParameter(theX))
{
return Standard_False;
}
//
gp_Pnt aP1, aP2;
gp_Vec aDC1, aDC2, aDCC1, aDCC2;
//
if (!theDeriv2)
{
myCurve1.D1(theX, aP1, aDC1);
myCurve2.D1(theX, aP2, aDC2);
}
else
{
myCurve1.D2(theX, aP1, aDC1, aDCC1);
myCurve2.D2(theX, aP2, aDC2, aDCC2);
}
const gp_Vec aVec1(aP1, aP2), aVec2(aDC2-aDC1);
//
theDeriv1 = -2.0*aVec1.Dot(aVec2);
if (theDeriv2)
{
const gp_Vec aVec3(aDCC2 - aDCC1);
*theDeriv2 = -2.0*(aVec2.SquareMagnitude() + aVec1.Dot(aVec3));
}
}
catch(Standard_Failure const&)
{
return Standard_False;
}
return Standard_True;
}
//returns value and gradient
virtual Standard_Boolean Values(const math_Vector& theX,
Standard_Real& theVal,
math_Vector& theGrad)
{
if (!Value(theX, theVal))
{
return Standard_False;
}
//
if (!Gradient(theX, theGrad)) {
return Standard_False;
}
//
return Standard_True;
}
//returns value, gradient and hessian
virtual Standard_Boolean Values(const math_Vector& theX,
Standard_Real& theVal,
math_Vector& theGrad,
math_Matrix& theHessian)
{
if (!Value(theX, theVal))
{
return Standard_False;
}
//
if (!Derive(theX(1), theGrad(1), &theHessian(1, 1)))
{
return Standard_False;
}
//
return Standard_True;
}
//
Standard_Real FirstParameter() const
{
return myFirst;
}
//
Standard_Real LastParameter() const
{
return myLast;
}
private:
GeomLib_CheckCurveOnSurface_TargetFunc operator=(GeomLib_CheckCurveOnSurface_TargetFunc&);
//checks if the function can be computed when its parameter is
//equal to theParam
Standard_Boolean CheckParameter(const Standard_Real theParam) const
{
return ((myFirst <= theParam) && (theParam <= myLast));
}
const Adaptor3d_Curve& myCurve1;
const Adaptor3d_Curve& myCurve2;
const Standard_Real myFirst;
const Standard_Real myLast;
};
//=======================================================================
//class : GeomLib_CheckCurveOnSurface_Local
//purpose : Created for parallelization possibility only
//=======================================================================
class GeomLib_CheckCurveOnSurface_Local
{
public:
GeomLib_CheckCurveOnSurface_Local(
const Handle(Geom_Curve)& theCurve3D,
const Handle(Geom2d_Curve)& theCurve2D,
const Handle(Geom_Surface)& theSurface,
const TColStd_Array1OfReal& theIntervalsArr,
const Standard_Real theEpsilonRange,
const Standard_Integer theNbParticles):
myCurve3D(theCurve3D),
myCurve2D(theCurve2D),
mySurface(theSurface),
mySubIntervals(theIntervalsArr),
myEpsilonRange(theEpsilonRange),
myNbParticles(theNbParticles),
myArrOfDist(theIntervalsArr.Lower(), theIntervalsArr.Upper()-1),
myArrOfParam(theIntervalsArr.Lower(), theIntervalsArr.Upper()-1)
{
}
void operator()(const Standard_Integer& theIndex) const
{
//For every sub-interval (which is set by mySubIntervals array) this method
//computes optimal value of GeomLib_CheckCurveOnSurface_TargetFunc function.
//This optimal value will be put in corresponding (depending on theIndex - the
//identificator of the current interval in mySubIntervals array) cell of
//myArrOfDist and myArrOfParam arrays.
const GeomAdaptor_Curve anAC(myCurve3D);
const Handle(Adaptor2d_HCurve2d) anAd2dC = new Geom2dAdaptor_GHCurve(myCurve2D);
const Handle(Adaptor3d_HSurface) anAdS = new GeomAdaptor_HSurface(mySurface);
const Adaptor3d_CurveOnSurface anACS(anAd2dC, anAdS);
GeomLib_CheckCurveOnSurface_TargetFunc aFunc( anAC, anACS,
mySubIntervals.Value(theIndex),
mySubIntervals.Value(theIndex+1));
Standard_Real aMinDist = RealLast(), aPar = 0.0;
if(!MinComputing(aFunc, myEpsilonRange, myNbParticles, aMinDist, aPar))
{
myArrOfDist(theIndex) = RealLast();
myArrOfParam(theIndex) = aFunc.FirstParameter();
return;
}
myArrOfDist(theIndex) = aMinDist;
myArrOfParam(theIndex) = aPar;
}
//Returns optimal value (inverse of square of maximal distance)
void OptimalValues(Standard_Real& theMinimalValue, Standard_Real& theParameter) const
{
//This method looks for the minimal value of myArrOfDist.
const Standard_Integer aStartInd = myArrOfDist.Lower();
theMinimalValue = myArrOfDist(aStartInd);
theParameter = myArrOfParam(aStartInd);
for(Standard_Integer i = aStartInd + 1; i <= myArrOfDist.Upper(); i++)
{
if(myArrOfDist(i) < theMinimalValue)
{
theMinimalValue = myArrOfDist(i);
theParameter = myArrOfParam(i);
}
}
}
private:
GeomLib_CheckCurveOnSurface_Local operator=(GeomLib_CheckCurveOnSurface_Local&);
const Handle(Geom_Curve)& myCurve3D;
const Handle(Geom2d_Curve)& myCurve2D;
const Handle(Geom_Surface)& mySurface;
const TColStd_Array1OfReal& mySubIntervals;
const Standard_Real myEpsilonRange;
const Standard_Integer myNbParticles;
mutable NCollection_Array1<Standard_Real> myArrOfDist;
mutable NCollection_Array1<Standard_Real> myArrOfParam;
};
//=======================================================================
//function : GeomLib_CheckCurveOnSurface
//purpose :
//=======================================================================
GeomLib_CheckCurveOnSurface::GeomLib_CheckCurveOnSurface()
:
myFirst(0.),
myLast(0.),
myErrorStatus(0),
myMaxDistance(RealLast()),
myMaxParameter(0.),
myTolRange(Precision::PConfusion())
{
}
//=======================================================================
//function : GeomLib_CheckCurveOnSurface
//purpose :
//=======================================================================
GeomLib_CheckCurveOnSurface::
GeomLib_CheckCurveOnSurface(const Handle(Geom_Curve)& theCurve,
const Handle(Geom_Surface)& theSurface,
const Standard_Real theFirst,
const Standard_Real theLast,
const Standard_Real theTolRange):
myCurve(theCurve),
mySurface(theSurface),
myFirst(theFirst),
myLast(theLast),
myErrorStatus(0),
myMaxDistance(RealLast()),
myMaxParameter(0.),
myTolRange(theTolRange)
{
}
//=======================================================================
//function : Init
//purpose :
//=======================================================================
void GeomLib_CheckCurveOnSurface::Init()
{
myCurve.Nullify();
mySurface.Nullify();
myFirst = 0.0;
myLast = 0.0;
myErrorStatus = 0;
myMaxDistance = RealLast();
myMaxParameter = 0.0;
myTolRange = Precision::PConfusion();
}
//=======================================================================
//function : Init
//purpose :
//=======================================================================
void GeomLib_CheckCurveOnSurface::Init( const Handle(Geom_Curve)& theCurve,
const Handle(Geom_Surface)& theSurface,
const Standard_Real theFirst,
const Standard_Real theLast,
const Standard_Real theTolRange)
{
myCurve = theCurve;
mySurface = theSurface;
myFirst = theFirst;
myLast = theLast;
myErrorStatus = 0;
myMaxDistance = RealLast();
myMaxParameter = 0.0;
myTolRange = theTolRange;
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
#ifndef HAVE_TBB
//After fixing bug # 26365, this fragment should be deleted
//(together the text "#ifdef HAVE_TBB")
void GeomLib_CheckCurveOnSurface::Perform(const Handle(Geom2d_Curve)& thePCurve,
const Standard_Boolean)
{
const Standard_Boolean isTheMTDisabled = Standard_True;
#else
void GeomLib_CheckCurveOnSurface::Perform(const Handle(Geom2d_Curve)& thePCurve,
const Standard_Boolean isTheMTDisabled)
{
#endif
if( myCurve.IsNull() ||
mySurface.IsNull() ||
thePCurve.IsNull())
{
myErrorStatus = 1;
return;
}
if(((myCurve->FirstParameter() - myFirst) > myTolRange) ||
((myCurve->LastParameter() - myLast) < -myTolRange) ||
((thePCurve->FirstParameter() - myFirst) > myTolRange) ||
((thePCurve->LastParameter() - myLast) < -myTolRange))
{
myErrorStatus = 2;
return;
}
const Standard_Real anEpsilonRange = 1.e-3;
Standard_Integer aNbParticles = 3;
//Polynomial function with degree n has not more than n-1 maxima and
//minima (degree of 1st derivative is equal to n-1 => 1st derivative has
//no greater than n-1 roots). Consequently, this function has
//maximum n monotonicity intervals. That is a good idea to try to put
//at least one particle in every monotonicity interval. Therefore,
//number of particles should be equal to n.
const Standard_Integer aNbSubIntervals =
FillSubIntervals( myCurve, thePCurve,
myFirst, myLast, aNbParticles);
if(!aNbSubIntervals)
{
myErrorStatus = 3;
return;
}
try {
OCC_CATCH_SIGNALS
TColStd_Array1OfReal anIntervals(1, aNbSubIntervals+1);
FillSubIntervals(myCurve, thePCurve, myFirst, myLast, aNbParticles, &anIntervals);
GeomLib_CheckCurveOnSurface_Local aComp(myCurve, thePCurve,
mySurface, anIntervals, anEpsilonRange, aNbParticles);
OSD_Parallel::For(anIntervals.Lower(), anIntervals.Upper(), aComp, isTheMTDisabled);
aComp.OptimalValues(myMaxDistance, myMaxParameter);
myMaxDistance = sqrt(Abs(myMaxDistance));
}
catch (Standard_Failure const&) {
myErrorStatus = 3;
}
}
//=======================================================================
// Function : FillSubIntervals
// purpose : Divides [theFirst, theLast] interval on parts
// in order to make searching-algorithm more precisely
// (fills theSubIntervals array).
// Returns number of subintervals.
//=======================================================================
Standard_Integer FillSubIntervals(const Handle(Geom_Curve)& theCurve3d,
const Handle(Geom2d_Curve)& theCurve2d,
const Standard_Real theFirst,
const Standard_Real theLast,
Standard_Integer &theNbParticles,
TColStd_Array1OfReal* const theSubIntervals)
{
const Standard_Integer aMaxKnots = 101;
const Standard_Real anArrTempC[2] = {theFirst, theLast};
const TColStd_Array1OfReal anArrTemp(anArrTempC[0], 1, 2);
theNbParticles = 3;
Handle(Geom2d_BSplineCurve) aBS2DCurv;
Handle(Geom_BSplineCurve) aBS3DCurv;
Standard_Boolean isTrimmed3D = Standard_False, isTrimmed2D = Standard_False;
//
if (theCurve3d->IsKind(STANDARD_TYPE(Geom_TrimmedCurve)))
{
aBS3DCurv = Handle(Geom_BSplineCurve)::
DownCast(Handle(Geom_TrimmedCurve)::
DownCast(theCurve3d)->BasisCurve());
isTrimmed3D = Standard_True;
}
else
{
aBS3DCurv = Handle(Geom_BSplineCurve)::DownCast(theCurve3d);
}
if (theCurve2d->IsKind(STANDARD_TYPE(Geom2d_TrimmedCurve)))
{
aBS2DCurv = Handle(Geom2d_BSplineCurve)::
DownCast(Handle(Geom2d_TrimmedCurve)::
DownCast(theCurve2d)->BasisCurve());
isTrimmed2D = Standard_True;
}
else
{
aBS2DCurv = Handle(Geom2d_BSplineCurve)::DownCast(theCurve2d);
}
Handle(TColStd_HArray1OfReal) anArrKnots3D, anArrKnots2D;
if(!aBS3DCurv.IsNull())
{
if(aBS3DCurv->NbKnots() <= aMaxKnots)
{
anArrKnots3D = new TColStd_HArray1OfReal(aBS3DCurv->Knots());
}
else
{
Standard_Integer KnotCount;
if(isTrimmed3D)
{
Standard_Integer i;
KnotCount = 0;
const TColStd_Array1OfReal& aKnots = aBS3DCurv->Knots();
for(i = aBS3DCurv->FirstUKnotIndex(); i <= aBS3DCurv->LastUKnotIndex(); ++i)
{
if(aKnots(i) > theFirst && aKnots(i) < theLast)
{
++KnotCount;
}
}
KnotCount += 2;
}
else
{
KnotCount = aBS3DCurv->LastUKnotIndex() - aBS3DCurv->FirstUKnotIndex() + 1;
}
if(KnotCount <= aMaxKnots)
{
anArrKnots3D = new TColStd_HArray1OfReal(aBS3DCurv->Knots());
}
else
{
anArrKnots3D = new TColStd_HArray1OfReal(1, aMaxKnots);
anArrKnots3D->SetValue(1, theFirst);
anArrKnots3D->SetValue(aMaxKnots, theLast);
Standard_Integer i;
Standard_Real dt = (theLast - theFirst) / (aMaxKnots - 1);
Standard_Real t = theFirst + dt;
for(i = 2; i < aMaxKnots; ++i, t += dt)
{
anArrKnots3D->SetValue(i, t);
}
}
}
}
else
{
anArrKnots3D = new TColStd_HArray1OfReal(anArrTemp);
}
if(!aBS2DCurv.IsNull())
{
if(aBS2DCurv->NbKnots() <= aMaxKnots)
{
anArrKnots2D = new TColStd_HArray1OfReal(aBS2DCurv->Knots());
}
else
{
Standard_Integer KnotCount;
if(isTrimmed2D)
{
Standard_Integer i;
KnotCount = 0;
const TColStd_Array1OfReal& aKnots = aBS2DCurv->Knots();
for(i = aBS2DCurv->FirstUKnotIndex(); i <= aBS2DCurv->LastUKnotIndex(); ++i)
{
if(aKnots(i) > theFirst && aKnots(i) < theLast)
{
++KnotCount;
}
}
KnotCount += 2;
}
else
{
KnotCount = aBS2DCurv->LastUKnotIndex() - aBS2DCurv->FirstUKnotIndex() + 1;
}
if(KnotCount <= aMaxKnots)
{
anArrKnots2D = new TColStd_HArray1OfReal(aBS2DCurv->Knots());
}
else
{
anArrKnots2D = new TColStd_HArray1OfReal(1, aMaxKnots);
anArrKnots2D->SetValue(1, theFirst);
anArrKnots2D->SetValue(aMaxKnots, theLast);
Standard_Integer i;
Standard_Real dt = (theLast - theFirst) / (aMaxKnots - 1);
Standard_Real t = theFirst + dt;
for(i = 2; i < aMaxKnots; ++i, t += dt)
{
anArrKnots2D->SetValue(i, t);
}
}
}
}
else
{
anArrKnots2D = new TColStd_HArray1OfReal(anArrTemp);
}
Standard_Integer aNbSubIntervals = 1;
try
{
OCC_CATCH_SIGNALS
const Standard_Integer anIndMax3D = anArrKnots3D->Upper(),
anIndMax2D = anArrKnots2D->Upper();
Standard_Integer anIndex3D = anArrKnots3D->Lower(),
anIndex2D = anArrKnots2D->Lower();
if(theSubIntervals)
theSubIntervals->ChangeValue(aNbSubIntervals) = theFirst;
while((anIndex3D <= anIndMax3D) && (anIndex2D <= anIndMax2D))
{
const Standard_Real aVal3D = anArrKnots3D->Value(anIndex3D),
aVal2D = anArrKnots2D->Value(anIndex2D);
const Standard_Real aDelta = aVal3D - aVal2D;
if(aDelta < Precision::PConfusion())
{//aVal3D <= aVal2D
if((aVal3D > theFirst) && (aVal3D < theLast))
{
aNbSubIntervals++;
if(theSubIntervals)
theSubIntervals->ChangeValue(aNbSubIntervals) = aVal3D;
}
anIndex3D++;
if(-aDelta < Precision::PConfusion())
{//aVal3D == aVal2D
anIndex2D++;
}
}
else
{//aVal2D < aVal3D
if((aVal2D > theFirst) && (aVal2D < theLast))
{
aNbSubIntervals++;
if(theSubIntervals)
theSubIntervals->ChangeValue(aNbSubIntervals) = aVal2D;
}
anIndex2D++;
}
}
if(theSubIntervals)
theSubIntervals->ChangeValue(aNbSubIntervals+1) = theLast;
if(!aBS3DCurv.IsNull())
{
theNbParticles = Max(theNbParticles, aBS3DCurv->Degree());
}
if(!aBS2DCurv.IsNull())
{
theNbParticles = Max(theNbParticles, aBS2DCurv->Degree());
}
}
catch(Standard_Failure const&)
{
#ifdef OCCT_DEBUG
std::cout << "ERROR! BRepLib_CheckCurveOnSurface.cxx, "
"FillSubIntervals(): Incorrect filling!" << std::endl;
#endif
aNbSubIntervals = 0;
}
return aNbSubIntervals;
}
//=======================================================================
//class : PSO_Perform
//purpose : Searches minimal distance with math_PSO class
//=======================================================================
Standard_Boolean PSO_Perform(GeomLib_CheckCurveOnSurface_TargetFunc& theFunction,
const math_Vector &theParInf,
const math_Vector &theParSup,
const Standard_Real theEpsilon,
const Standard_Integer theNbParticles,
Standard_Real& theBestValue,
math_Vector &theOutputParam)
{
const Standard_Real aDeltaParam = theParSup(1) - theParInf(1);
if(aDeltaParam < Precision::PConfusion())
return Standard_False;
math_Vector aStepPar(1, 1);
aStepPar(1) = theEpsilon*aDeltaParam;
math_PSOParticlesPool aParticles(theNbParticles, 1);
//They are used for finding a position of theNbParticles worst places
const Standard_Integer aNbControlPoints = 3*theNbParticles;
const Standard_Real aStep = aDeltaParam/(aNbControlPoints-1);
Standard_Integer aCount = 1;
for(Standard_Real aPrm = theParInf(1); aCount <= aNbControlPoints; aCount++,
aPrm = (aCount == aNbControlPoints)? theParSup(1) : aPrm+aStep)
{
Standard_Real aVal = RealLast();
if(!theFunction.Value(aPrm, aVal))
continue;
PSO_Particle* aParticle = aParticles.GetWorstParticle();
if(aVal > aParticle->BestDistance)
continue;
aParticle->Position[0] = aPrm;
aParticle->BestPosition[0] = aPrm;
aParticle->Distance = aVal;
aParticle->BestDistance = aVal;
}
math_PSO aPSO(&theFunction, theParInf, theParSup, aStepPar);
aPSO.Perform(aParticles, theNbParticles, theBestValue, theOutputParam);
return Standard_True;
}
//=======================================================================
//class : MinComputing
//purpose : Performs computing minimal value
//=======================================================================
Standard_Boolean MinComputing (
GeomLib_CheckCurveOnSurface_TargetFunc& theFunction,
const Standard_Real theEpsilon, //1.0e-3
const Standard_Integer theNbParticles,
Standard_Real& theBestValue,
Standard_Real& theBestParameter)
{
try
{
OCC_CATCH_SIGNALS
//
math_Vector aParInf(1, 1), aParSup(1, 1), anOutputParam(1, 1);
aParInf(1) = theFunction.FirstParameter();
aParSup(1) = theFunction.LastParameter();
theBestParameter = aParInf(1);
theBestValue = RealLast();
if(!PSO_Perform(theFunction, aParInf, aParSup, theEpsilon, theNbParticles,
theBestValue, anOutputParam))
{
#ifdef OCCT_DEBUG
std::cout << "BRepLib_CheckCurveOnSurface::Compute(): math_PSO is failed!" << std::endl;
#endif
return Standard_False;
}
theBestParameter = anOutputParam(1);
//Here, anOutputParam contains parameter, which is near to optimal.
//It needs to be more precise. Precision is made by math_NewtonMinimum.
math_NewtonMinimum aMinSol(theFunction);
aMinSol.Perform(theFunction, anOutputParam);
if(aMinSol.IsDone() && (aMinSol.GetStatus() == math_OK))
{//math_NewtonMinimum has precised the value. We take it.
aMinSol.Location(anOutputParam);
theBestParameter = anOutputParam(1);
theBestValue = aMinSol.Minimum();
}
else
{//Use math_PSO again but on smaller range.
const Standard_Real aStep = theEpsilon*(aParSup(1) - aParInf(1));
aParInf(1) = theBestParameter - 0.5*aStep;
aParSup(1) = theBestParameter + 0.5*aStep;
Standard_Real aValue = RealLast();
if(PSO_Perform(theFunction, aParInf, aParSup, theEpsilon, theNbParticles,
aValue, anOutputParam))
{
if(aValue < theBestValue)
{
theBestValue = aValue;
theBestParameter = anOutputParam(1);
}
}
}
}
catch(Standard_Failure const&)
{
#ifdef OCCT_DEBUG
std::cout << "BRepLib_CheckCurveOnSurface.cxx: Exception in MinComputing()!" << std::endl;
#endif
return Standard_False;
}
return Standard_True;
}