mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-06-10 11:34:06 +03:00
The Delete() methods have been deleted from the following classes: - Adaptor2d_Curve2d - Adaptor3d_Curve - Adaptor3d_Surface - AppBlend_Approx - AppCont_Function - AppParCurves_MultiCurve - AppParCurves_MultiPoint - ApproxInt_SvSurfaces - BRepPrim_OneAxis - BRepSweep_NumLinearRegularSweep - BRepSweep_Translation - BRepSweep_Trsf - DBC_BaseArray - GeomFill_Profiler - HatchGen_PointOnHatching - math_BFGS - math_FunctionSet - math_FunctionSetRoot - math_FunctionWithDerivative - math_MultipleVarFunction - math_MultipleVarFunctionWithHessian - math_MultipleVarFunctionWithGradient - math_Powell - math_NewtonMinimum - math_NewtonFunctionSetRoot - math_BissecNewton (just add virtual destructor) - math_FRPR - math_BrentMinimum (just add virtual destructor) - OSD_Chronometer - ProjLib_Projector Virtual methods Delete() or Destroy() of the transient inheritors is not changed (-> separate issue). Classes Graphic3d_DataStructureManager and PrsMgr_Presentation without changes.
174 lines
4.5 KiB
C++
174 lines
4.5 KiB
C++
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <math_BrentMinimum.ixx>
|
|
#include <math_Function.hxx>
|
|
|
|
#define CGOLD 0.3819660
|
|
#ifdef MAX
|
|
#undef MAX
|
|
#endif
|
|
#define MAX(a,b) ((a) > (b) ? (a) : (b))
|
|
#define SIGN(a,b) ((b) > 0.0 ? fabs(a) : -fabs(a))
|
|
#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d)
|
|
|
|
math_BrentMinimum::~math_BrentMinimum()
|
|
{
|
|
}
|
|
|
|
void math_BrentMinimum::Perform(math_Function& F,
|
|
const Standard_Real ax,
|
|
const Standard_Real bx,
|
|
const Standard_Real cx) {
|
|
|
|
Standard_Boolean OK;
|
|
Standard_Real etemp, fu, p, q, r;
|
|
Standard_Real tol1, tol2, u, v, w, xm;
|
|
Standard_Real e = 0.0;
|
|
Standard_Real d = RealLast();
|
|
|
|
a = ((ax < cx) ? ax : cx);
|
|
b = ((ax > cx) ? ax : cx);
|
|
x = w = v = bx;
|
|
if (!myF) {
|
|
OK = F.Value(x, fx);
|
|
if(!OK) return;
|
|
}
|
|
fw = fv = fx;
|
|
for(iter = 1; iter <= Itermax; iter++) {
|
|
xm = 0.5 * (a + b);
|
|
tol1 = XTol * fabs(x) + EPSZ;
|
|
tol2 = 2.0 * tol1;
|
|
if(IsSolutionReached(F)) {
|
|
Done = Standard_True;
|
|
return;
|
|
}
|
|
if(fabs(e) > tol1) {
|
|
r = (x - w) * (fx - fv);
|
|
q = (x - v) * (fx - fw);
|
|
p = (x - v) * q - (x - w) * r;
|
|
q = 2.0 * (q - r);
|
|
if(q > 0.0) p = -p;
|
|
q = fabs(q);
|
|
etemp = e;
|
|
e = d;
|
|
if(fabs(p) >= fabs(0.5 * q * etemp)
|
|
|| p <= q * ( a - x) || p >= q * (b - x)) {
|
|
e = (x >= xm ? a - x : b - x);
|
|
d = CGOLD * e;
|
|
}
|
|
else {
|
|
d = p / q;
|
|
u = x + d;
|
|
if(u - a < tol2 || b - u < tol2) d = SIGN(tol1, xm - x);
|
|
}
|
|
}
|
|
else {
|
|
e = (x >= xm ? a - x : b - x);
|
|
d = CGOLD * e;
|
|
}
|
|
u = (fabs(d) >= tol1 ? x + d : x + SIGN(tol1, d));
|
|
OK = F.Value(u, fu);
|
|
if(!OK) return;
|
|
if(fu <= fx) {
|
|
if(u >= x) a = x; else b = x;
|
|
SHFT(v, w, x, u);
|
|
SHFT(fv, fw, fx, fu);
|
|
}
|
|
else {
|
|
if(u < x) a = u; else b = u;
|
|
if(fu <= fw || w == x) {
|
|
v = w;
|
|
w = u;
|
|
fv = fw;
|
|
fw = fu;
|
|
}
|
|
else if(fu <= fv || v == x || v == w) {
|
|
v = u;
|
|
fv = fu;
|
|
}
|
|
}
|
|
}
|
|
Done = Standard_False;
|
|
return;
|
|
}
|
|
|
|
|
|
math_BrentMinimum::math_BrentMinimum(math_Function& F,
|
|
const Standard_Real Ax,
|
|
const Standard_Real Bx,
|
|
const Standard_Real Cx,
|
|
const Standard_Real TolX,
|
|
const Standard_Integer NbIterations,
|
|
const Standard_Real ZEPS) {
|
|
|
|
XTol = TolX;
|
|
EPSZ = ZEPS;
|
|
Itermax = NbIterations;
|
|
myF = Standard_False;
|
|
Perform(F, Ax, Bx, Cx);
|
|
}
|
|
|
|
|
|
// Constructeur d'initialisation des champs.
|
|
|
|
math_BrentMinimum::math_BrentMinimum(const Standard_Real TolX,
|
|
const Standard_Integer NbIterations,
|
|
const Standard_Real ZEPS) {
|
|
myF = Standard_False;
|
|
XTol = TolX;
|
|
EPSZ = ZEPS;
|
|
Itermax = NbIterations;
|
|
}
|
|
|
|
math_BrentMinimum::math_BrentMinimum(const Standard_Real TolX,
|
|
const Standard_Real Fbx,
|
|
const Standard_Integer NbIterations,
|
|
const Standard_Real ZEPS) {
|
|
|
|
fx = Fbx;
|
|
myF = Standard_True;
|
|
XTol = TolX;
|
|
EPSZ = ZEPS;
|
|
Itermax = NbIterations;
|
|
}
|
|
|
|
|
|
// Standard_Boolean math_BrentMinimum::IsSolutionReached(math_Function& F) {
|
|
Standard_Boolean math_BrentMinimum::IsSolutionReached(math_Function& ) {
|
|
|
|
// Standard_Real xm = 0.5 * (a + b);
|
|
// modified by NIZHNY-MKK Mon Oct 3 17:45:57 2005.BEGIN
|
|
// Standard_Real tol = XTol * fabs(x) + EPSZ;
|
|
// return fabs(x - xm) <= 2.0 * tol - 0.5 * (b - a);
|
|
Standard_Real TwoTol = 2.0 *(XTol * fabs(x) + EPSZ);
|
|
return ((x <= (TwoTol + a)) && (x >= (b - TwoTol)));
|
|
// modified by NIZHNY-MKK Mon Oct 3 17:46:00 2005.END
|
|
}
|
|
|
|
|
|
|
|
void math_BrentMinimum::Dump(Standard_OStream& o) const {
|
|
o << "math_BrentMinimum ";
|
|
if(Done) {
|
|
o << " Status = Done \n";
|
|
o << " Location value = " << x <<"\n";
|
|
o << " Minimum value = " << fx << "\n";
|
|
o << " Number of iterations = " << iter <<"\n";
|
|
}
|
|
else {
|
|
o << " Status = not Done \n";
|
|
}
|
|
}
|