1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-01 17:36:21 +03:00
occt/resources/Shaders/PathtraceBase.fs
Pasukhin Dmitry df4b931988
Configuration - Resource structure reorganization #429
Reorganized resources to keep source part in src and real-time scripts in resource folder.
For the installation result no changes, still installed to src for windows.
2025-03-18 22:54:43 +00:00

994 lines
34 KiB
Forth

#ifdef _MSC_VER
#define PATH_TRACING // just for editing in MS VS
#define in
#define out
#define inout
typedef struct { float x; float y; } vec2;
typedef struct { float x; float y; float z; } vec3;
typedef struct { float x; float y; float z; float w; } vec4;
#endif
#ifdef PATH_TRACING
///////////////////////////////////////////////////////////////////////////////////////
// Specific data types
//! Describes local space at the hit point (visualization space).
struct SLocalSpace
{
//! Local X axis.
vec3 AxisX;
//! Local Y axis.
vec3 AxisY;
//! Local Z axis.
vec3 AxisZ;
};
//! Describes material properties (BSDF).
struct SBSDF
{
//! Weight of coat specular/glossy BRDF.
vec4 Kc;
//! Weight of base diffuse BRDF + base color texture index in W.
vec4 Kd;
//! Weight of base specular/glossy BRDF.
vec4 Ks;
//! Weight of base specular/glossy BTDF + metallic-roughness texture index in W.
vec4 Kt;
//! Fresnel coefficients of coat layer.
vec3 FresnelCoat;
//! Fresnel coefficients of base layer + normal map texture index in W.
vec4 FresnelBase;
};
///////////////////////////////////////////////////////////////////////////////////////
// Support subroutines
//=======================================================================
// function : buildLocalSpace
// purpose : Generates local space for the given normal
//=======================================================================
SLocalSpace buildLocalSpace (in vec3 theNormal)
{
vec3 anAxisX = vec3 (theNormal.z, 0.f, -theNormal.x);
vec3 anAxisY = vec3 (0.f, -theNormal.z, theNormal.y);
float aSqrLenX = dot (anAxisX, anAxisX);
float aSqrLenY = dot (anAxisY, anAxisY);
if (aSqrLenX > aSqrLenY)
{
anAxisX *= inversesqrt (aSqrLenX);
anAxisY = cross (anAxisX, theNormal);
}
else
{
anAxisY *= inversesqrt (aSqrLenY);
anAxisX = cross (anAxisY, theNormal);
}
return SLocalSpace (anAxisX, anAxisY, theNormal);
}
//=======================================================================
// function : toLocalSpace
// purpose : Transforms the vector to local space from world space
//=======================================================================
vec3 toLocalSpace (in vec3 theVector, in SLocalSpace theSpace)
{
return vec3 (dot (theVector, theSpace.AxisX),
dot (theVector, theSpace.AxisY),
dot (theVector, theSpace.AxisZ));
}
//=======================================================================
// function : fromLocalSpace
// purpose : Transforms the vector from local space to world space
//=======================================================================
vec3 fromLocalSpace (in vec3 theVector, in SLocalSpace theSpace)
{
return theVector.x * theSpace.AxisX +
theVector.y * theSpace.AxisY +
theVector.z * theSpace.AxisZ;
}
//=======================================================================
// function : convolve
// purpose : Performs a linear convolution of the vector components
//=======================================================================
float convolve (in vec3 theVector, in vec3 theFactor)
{
return dot (theVector, theFactor) * (1.f / max (theFactor.x + theFactor.y + theFactor.z, 1e-15f));
}
//=======================================================================
// function : fresnelSchlick
// purpose : Computes the Fresnel reflection formula using
// Schlick's approximation.
//=======================================================================
vec3 fresnelSchlick (in float theCosI, in vec3 theSpecularColor)
{
return theSpecularColor + (UNIT - theSpecularColor) * pow (1.f - theCosI, 5.f);
}
//=======================================================================
// function : fresnelDielectric
// purpose : Computes the Fresnel reflection formula for dielectric in
// case of circularly polarized light (Based on PBRT code).
//=======================================================================
float fresnelDielectric (in float theCosI,
in float theCosT,
in float theEtaI,
in float theEtaT)
{
float aParl = (theEtaT * theCosI - theEtaI * theCosT) /
(theEtaT * theCosI + theEtaI * theCosT);
float aPerp = (theEtaI * theCosI - theEtaT * theCosT) /
(theEtaI * theCosI + theEtaT * theCosT);
return (aParl * aParl + aPerp * aPerp) * 0.5f;
}
#define ENVIRONMENT_IOR 1.f
//=======================================================================
// function : fresnelDielectric
// purpose : Computes the Fresnel reflection formula for dielectric in
// case of circularly polarized light (based on PBRT code)
//=======================================================================
float fresnelDielectric (in float theCosI, in float theIndex)
{
float aFresnel = 1.f;
float anEtaI = theCosI > 0.f ? 1.f : theIndex;
float anEtaT = theCosI > 0.f ? theIndex : 1.f;
float aSinT2 = (anEtaI * anEtaI) / (anEtaT * anEtaT) * (1.f - theCosI * theCosI);
if (aSinT2 < 1.f)
{
aFresnel = fresnelDielectric (abs (theCosI), sqrt (1.f - aSinT2), anEtaI, anEtaT);
}
return aFresnel;
}
//=======================================================================
// function : fresnelConductor
// purpose : Computes the Fresnel reflection formula for conductor in case
// of circularly polarized light (based on PBRT source code)
//=======================================================================
float fresnelConductor (in float theCosI, in float theEta, in float theK)
{
float aTmp = 2.f * theEta * theCosI;
float aTmp1 = theEta * theEta + theK * theK;
float aSPerp = (aTmp1 - aTmp + theCosI * theCosI) /
(aTmp1 + aTmp + theCosI * theCosI);
float aTmp2 = aTmp1 * theCosI * theCosI;
float aSParl = (aTmp2 - aTmp + 1.f) /
(aTmp2 + aTmp + 1.f);
return (aSPerp + aSParl) * 0.5f;
}
#define FRESNEL_SCHLICK -0.5f
#define FRESNEL_CONSTANT -1.5f
#define FRESNEL_CONDUCTOR -2.5f
#define FRESNEL_DIELECTRIC -3.5f
//=======================================================================
// function : fresnelMedia
// purpose : Computes the Fresnel reflection formula for general medium
// in case of circularly polarized light.
//=======================================================================
vec3 fresnelMedia (in float theCosI, in vec3 theFresnel)
{
vec3 aFresnel;
if (theFresnel.x > FRESNEL_SCHLICK)
{
aFresnel = fresnelSchlick (abs (theCosI), theFresnel);
}
else if (theFresnel.x > FRESNEL_CONSTANT)
{
aFresnel = vec3 (theFresnel.z);
}
else if (theFresnel.x > FRESNEL_CONDUCTOR)
{
aFresnel = vec3 (fresnelConductor (abs (theCosI), theFresnel.y, theFresnel.z));
}
else
{
aFresnel = vec3 (fresnelDielectric (theCosI, theFresnel.y));
}
return aFresnel;
}
//=======================================================================
// function : transmitted
// purpose : Computes transmitted direction in tangent space
// (in case of TIR returned result is undefined!)
//=======================================================================
void transmitted (in float theIndex, in vec3 theIncident, out vec3 theTransmit)
{
// Compute relative index of refraction
float anEta = (theIncident.z > 0.f) ? 1.f / theIndex : theIndex;
// Handle total internal reflection (TIR)
float aSinT2 = anEta * anEta * (1.f - theIncident.z * theIncident.z);
// Compute direction of transmitted ray
float aCosT = sqrt (1.f - min (aSinT2, 1.f)) * sign (-theIncident.z);
theTransmit = normalize (vec3 (-anEta * theIncident.x,
-anEta * theIncident.y,
aCosT));
}
//////////////////////////////////////////////////////////////////////////////////////////////
// Handlers and samplers for materials
//////////////////////////////////////////////////////////////////////////////////////////////
//=======================================================================
// function : EvalLambertianReflection
// purpose : Evaluates Lambertian BRDF, with cos(N, PSI)
//=======================================================================
float EvalLambertianReflection (in vec3 theWi, in vec3 theWo)
{
return (theWi.z <= 0.f || theWo.z <= 0.f) ? 0.f : theWi.z * (1.f / M_PI);
}
#define FLT_EPSILON 1.0e-5f
//=======================================================================
// function : SmithG1
// purpose :
//=======================================================================
float SmithG1 (in vec3 theDirection, in vec3 theM, in float theRoughness)
{
float aResult = 0.f;
if (dot (theDirection, theM) * theDirection.z > 0.f)
{
float aTanThetaM = sqrt (1.f - theDirection.z * theDirection.z) / theDirection.z;
if (aTanThetaM == 0.f)
{
aResult = 1.f;
}
else
{
float aVal = 1.f / (theRoughness * aTanThetaM);
// Use rational approximation to shadowing-masking function (from Mitsuba)
aResult = (3.535f + 2.181f * aVal) / (1.f / aVal + 2.276f + 2.577f * aVal);
}
}
return min (aResult, 1.f);
}
//=======================================================================
// function : EvalBlinnReflection
// purpose : Evaluates Blinn glossy BRDF, with cos(N, PSI)
//=======================================================================
vec3 EvalBlinnReflection (in vec3 theWi, in vec3 theWo, in vec3 theFresnel, in float theRoughness)
{
// calculate the reflection half-vec
vec3 aH = normalize (theWi + theWo);
// roughness value -> Blinn exponent
float aPower = max (2.f / (theRoughness * theRoughness) - 2.f, 0.f);
// calculate microfacet distribution
float aD = (aPower + 2.f) * (1.f / M_2_PI) * pow (aH.z, aPower);
// calculate shadow-masking function
float aG = SmithG1 (theWo, aH, theRoughness) *
SmithG1 (theWi, aH, theRoughness);
// return total amount of reflection
return (theWi.z <= 0.f || theWo.z <= 0.f) ? ZERO :
aD * aG / (4.f * theWo.z) * fresnelMedia (dot (theWo, aH), theFresnel);
}
//=======================================================================
// function : EvalBsdfLayered
// purpose : Evaluates BSDF for specified material, with cos(N, PSI)
//=======================================================================
vec3 EvalBsdfLayered (in SBSDF theBSDF, in vec3 theWi, in vec3 theWo)
{
#ifdef TWO_SIDED_BXDF
theWi.z *= sign (theWi.z);
theWo.z *= sign (theWo.z);
#endif
vec3 aBxDF = theBSDF.Kd.rgb * EvalLambertianReflection (theWi, theWo);
if (theBSDF.Ks.w > FLT_EPSILON)
{
aBxDF += theBSDF.Ks.rgb * EvalBlinnReflection (theWi, theWo, theBSDF.FresnelBase.rgb, theBSDF.Ks.w);
}
aBxDF *= UNIT - fresnelMedia (theWo.z, theBSDF.FresnelCoat);
if (theBSDF.Kc.w > FLT_EPSILON)
{
aBxDF += theBSDF.Kc.rgb * EvalBlinnReflection (theWi, theWo, theBSDF.FresnelCoat, theBSDF.Kc.w);
}
return aBxDF;
}
//=======================================================================
// function : SampleLambertianReflection
// purpose : Samples Lambertian BRDF, W = BRDF * cos(N, PSI) / PDF(PSI)
//=======================================================================
vec3 SampleLambertianReflection (in vec3 theWo, out vec3 theWi, inout float thePDF)
{
float aKsi1 = RandFloat();
float aKsi2 = RandFloat();
theWi = vec3 (cos (M_2_PI * aKsi1),
sin (M_2_PI * aKsi1),
sqrt (1.f - aKsi2));
theWi.xy *= sqrt (aKsi2);
#ifdef TWO_SIDED_BXDF
theWi.z *= sign (theWo.z);
#endif
thePDF *= theWi.z * (1.f / M_PI);
#ifdef TWO_SIDED_BXDF
return UNIT;
#else
return UNIT * step (0.f, theWo.z);
#endif
}
//=======================================================================
// function : SampleGlossyBlinnReflection
// purpose : Samples Blinn BRDF, W = BRDF * cos(N, PSI) / PDF(PSI)
// The BRDF is a product of three main terms, D, G, and F,
// which is then divided by two cosine terms. Here we perform
// importance sample the D part of the Blinn model; trying to
// develop a sampling procedure that accounted for all of the
// terms would be complex, and it is the D term that accounts
// for most of the variation.
//=======================================================================
vec3 SampleGlossyBlinnReflection (in vec3 theWo, out vec3 theWi, in vec3 theFresnel, in float theRoughness, inout float thePDF)
{
float aKsi1 = RandFloat();
float aKsi2 = RandFloat();
// roughness value --> Blinn exponent
float aPower = max (2.f / (theRoughness * theRoughness) - 2.f, 0.f);
// normal from microface distribution
float aCosThetaM = pow (aKsi1, 1.f / (aPower + 2.f));
vec3 aM = vec3 (cos (M_2_PI * aKsi2),
sin (M_2_PI * aKsi2),
aCosThetaM);
aM.xy *= sqrt (1.f - aCosThetaM * aCosThetaM);
// calculate PDF of sampled direction
thePDF *= (aPower + 2.f) * (1.f / M_2_PI) * pow (aCosThetaM, aPower + 1.f);
#ifdef TWO_SIDED_BXDF
bool toFlip = theWo.z < 0.f;
if (toFlip)
theWo.z = -theWo.z;
#endif
float aCosDelta = dot (theWo, aM);
// pick input based on half direction
theWi = -theWo + 2.f * aCosDelta * aM;
if (theWi.z <= 0.f || theWo.z <= 0.f)
{
return ZERO;
}
// Jacobian of half-direction mapping
thePDF /= 4.f * aCosDelta;
// compute shadow-masking coefficient
float aG = SmithG1 (theWo, aM, theRoughness) *
SmithG1 (theWi, aM, theRoughness);
#ifdef TWO_SIDED_BXDF
if (toFlip)
theWi.z = -theWi.z;
#endif
return (aG * aCosDelta) / (theWo.z * aM.z) * fresnelMedia (aCosDelta, theFresnel);
}
//=======================================================================
// function : BsdfPdfLayered
// purpose : Calculates BSDF of sampling input knowing output
//=======================================================================
float BsdfPdfLayered (in SBSDF theBSDF, in vec3 theWo, in vec3 theWi, in vec3 theWeight)
{
float aPDF = 0.f; // PDF of sampling input direction
// We choose whether the light is reflected or transmitted
// by the coating layer according to the Fresnel equations
vec3 aCoatF = fresnelMedia (theWo.z, theBSDF.FresnelCoat);
// Coat BRDF is scaled by its Fresnel reflectance term. For
// reasons of simplicity we scale base BxDFs only by coat's
// Fresnel transmittance term
vec3 aCoatT = UNIT - aCoatF;
float aPc = dot (theBSDF.Kc.rgb * aCoatF, theWeight);
float aPd = dot (theBSDF.Kd.rgb * aCoatT, theWeight);
float aPs = dot (theBSDF.Ks.rgb * aCoatT, theWeight);
float aPt = dot (theBSDF.Kt.rgb * aCoatT, theWeight);
if (theWi.z * theWo.z > 0.f)
{
vec3 aH = normalize (theWi + theWo);
aPDF = aPd * abs (theWi.z / M_PI);
if (theBSDF.Kc.w > FLT_EPSILON)
{
float aPower = max (2.f / (theBSDF.Kc.w * theBSDF.Kc.w) - 2.f, 0.f); // roughness --> exponent
aPDF += aPc * (aPower + 2.f) * (0.25f / M_2_PI) * pow (abs (aH.z), aPower + 1.f) / dot (theWi, aH);
}
if (theBSDF.Ks.w > FLT_EPSILON)
{
float aPower = max (2.f / (theBSDF.Ks.w * theBSDF.Ks.w) - 2.f, 0.f); // roughness --> exponent
aPDF += aPs * (aPower + 2.f) * (0.25f / M_2_PI) * pow (abs (aH.z), aPower + 1.f) / dot (theWi, aH);
}
}
return aPDF / (aPc + aPd + aPs + aPt);
}
//! Tool macro to handle sampling of particular BxDF
#define PICK_BXDF_LAYER(p, k) aPDF = p / aTotalR; theWeight *= k / aPDF;
//=======================================================================
// function : SampleBsdfLayered
// purpose : Samples specified composite material (BSDF)
//=======================================================================
float SampleBsdfLayered (in SBSDF theBSDF, in vec3 theWo, out vec3 theWi, inout vec3 theWeight, inout bool theInside)
{
// NOTE: OCCT uses two-layer material model. We have base diffuse, glossy, or transmissive
// layer, covered by one glossy/specular coat. In the current model, the layers themselves
// have no thickness; they can simply reflect light or transmits it to the layer under it.
// We use actual BRDF model only for direct reflection by the coat layer. For transmission
// through this layer, we approximate it as a flat specular surface.
float aPDF = 0.f; // PDF of sampled direction
// We choose whether the light is reflected or transmitted
// by the coating layer according to the Fresnel equations
vec3 aCoatF = fresnelMedia (theWo.z, theBSDF.FresnelCoat);
// Coat BRDF is scaled by its Fresnel term. According to
// Wilkie-Weidlich layered BSDF model, transmission term
// for light passing through the coat at direction I and
// leaving it in O is T = ( 1 - F (O) ) x ( 1 - F (I) ).
// For reasons of simplicity, we discard the second term
// and scale base BxDFs only by the first term.
vec3 aCoatT = UNIT - aCoatF;
float aPc = dot (theBSDF.Kc.rgb * aCoatF, theWeight);
float aPd = dot (theBSDF.Kd.rgb * aCoatT, theWeight);
float aPs = dot (theBSDF.Ks.rgb * aCoatT, theWeight);
float aPt = dot (theBSDF.Kt.rgb * aCoatT, theWeight);
// Calculate total reflection probability
float aTotalR = (aPc + aPd) + (aPs + aPt);
// Generate random variable to select BxDF
float aKsi = aTotalR * RandFloat();
if (aKsi < aPc) // REFLECTION FROM COAT
{
PICK_BXDF_LAYER (aPc, theBSDF.Kc.rgb)
if (theBSDF.Kc.w < FLT_EPSILON)
{
theWeight *= aCoatF;
theWi = vec3 (-theWo.x,
-theWo.y,
theWo.z);
}
else
{
theWeight *= SampleGlossyBlinnReflection (theWo, theWi, theBSDF.FresnelCoat, theBSDF.Kc.w, aPDF);
}
aPDF = mix (aPDF, MAXFLOAT, theBSDF.Kc.w < FLT_EPSILON);
}
else if (aKsi < aTotalR) // REFLECTION FROM BASE
{
theWeight *= aCoatT;
if (aKsi < aPc + aPd) // diffuse BRDF
{
PICK_BXDF_LAYER (aPd, theBSDF.Kd.rgb)
theWeight *= SampleLambertianReflection (theWo, theWi, aPDF);
}
else if (aKsi < (aPc + aPd) + aPs) // specular/glossy BRDF
{
PICK_BXDF_LAYER (aPs, theBSDF.Ks.rgb)
if (theBSDF.Ks.w < FLT_EPSILON)
{
theWeight *= fresnelMedia (theWo.z, theBSDF.FresnelBase.rgb);
theWi = vec3 (-theWo.x,
-theWo.y,
theWo.z);
}
else
{
theWeight *= SampleGlossyBlinnReflection (theWo, theWi, theBSDF.FresnelBase.rgb, theBSDF.Ks.w, aPDF);
}
aPDF = mix (aPDF, MAXFLOAT, theBSDF.Ks.w < FLT_EPSILON);
}
else // specular transmission
{
PICK_BXDF_LAYER (aPt, theBSDF.Kt.rgb)
// refracted direction should exist if we are here
transmitted (theBSDF.FresnelCoat.y, theWo, theWi);
theInside = !theInside; aPDF = MAXFLOAT;
}
}
// path termination for extra small weights
theWeight = mix (ZERO, theWeight, step (FLT_EPSILON, aTotalR));
return aPDF;
}
//////////////////////////////////////////////////////////////////////////////////////////////
// Handlers and samplers for light sources
//////////////////////////////////////////////////////////////////////////////////////////////
//=======================================================================
// function : SampleLight
// purpose : General sampling function for directional and point lights
//=======================================================================
vec3 SampleLight (in vec3 theToLight, inout float theDistance, in bool isInfinite, in float theSmoothness, inout float thePDF)
{
SLocalSpace aSpace = buildLocalSpace (theToLight * (1.f / theDistance));
// for point lights smoothness defines radius
float aCosMax = isInfinite ? theSmoothness :
inversesqrt (1.f + theSmoothness * theSmoothness / (theDistance * theDistance));
float aKsi1 = RandFloat();
float aKsi2 = RandFloat();
float aTmp = 1.f - aKsi2 * (1.f - aCosMax);
vec3 anInput = vec3 (cos (M_2_PI * aKsi1),
sin (M_2_PI * aKsi1),
aTmp);
anInput.xy *= sqrt (1.f - aTmp * aTmp);
thePDF = (aCosMax < 1.f) ? (thePDF / M_2_PI) / (1.f - aCosMax) : MAXFLOAT;
return normalize (fromLocalSpace (anInput, aSpace));
}
//=======================================================================
// function : HandlePointLight
// purpose :
//=======================================================================
float HandlePointLight (in vec3 theInput, in vec3 theToLight, in float theRadius, in float theDistance, inout float thePDF)
{
float aCosMax = inversesqrt (1.f + theRadius * theRadius / (theDistance * theDistance));
float aVisibility = step (aCosMax, dot (theInput, theToLight));
thePDF *= step (-1.f, -aCosMax) * aVisibility * (1.f / M_2_PI) / (1.f - aCosMax);
return aVisibility;
}
//=======================================================================
// function : HandleDistantLight
// purpose :
//=======================================================================
float HandleDistantLight (in vec3 theInput, in vec3 theToLight, in float theCosMax, inout float thePDF)
{
float aVisibility = step (theCosMax, dot (theInput, theToLight));
thePDF *= step (-1.f, -theCosMax) * aVisibility * (1.f / M_2_PI) / (1.f - theCosMax);
return aVisibility;
}
// =======================================================================
// function: IntersectLight
// purpose : Checks intersections with light sources
// =======================================================================
vec3 IntersectLight (in SRay theRay, in int theDepth, in float theHitDistance, out float thePDF)
{
vec3 aTotalRadiance = ZERO;
thePDF = 0.f; // PDF of sampling light sources
for (int aLightIdx = 0; aLightIdx < uLightCount; ++aLightIdx)
{
vec4 aLight = texelFetch (uRaytraceLightSrcTexture, LIGHT_POS (aLightIdx));
vec4 aParam = texelFetch (uRaytraceLightSrcTexture, LIGHT_PWR (aLightIdx));
// W component: 0 for infinite light and 1 for point light
aLight.xyz -= mix (ZERO, theRay.Origin, aLight.w);
float aPDF = 1.0 / float(uLightCount);
if (aLight.w != 0.f) // point light source
{
float aCenterDst = length (aLight.xyz);
if (aCenterDst < theHitDistance)
{
float aVisibility = HandlePointLight (
theRay.Direct, normalize (aLight.xyz), aParam.w /* radius */, aCenterDst, aPDF);
if (aVisibility > 0.f)
{
theHitDistance = aCenterDst;
aTotalRadiance = aParam.rgb;
thePDF = aPDF;
}
}
}
else if (theHitDistance == MAXFLOAT) // directional light source
{
aTotalRadiance += aParam.rgb * HandleDistantLight (
theRay.Direct, aLight.xyz, aParam.w /* angle cosine */, aPDF);
thePDF += aPDF;
}
}
if (thePDF == 0.f && theHitDistance == MAXFLOAT) // light source not found
{
if (theDepth + uEnvMapForBack == 0) // view ray and map is hidden
{
aTotalRadiance = BackgroundColor().rgb;
}
else
{
#ifdef BACKGROUND_CUBEMAP
if (theDepth == 0)
{
vec2 aPixel = uEyeSize * (vPixel - vec2 (0.5)) * 2.0;
vec2 anAperturePnt = sampleUniformDisk() * uApertureRadius;
vec3 aLocalDir = normalize (vec3 (aPixel * uFocalPlaneDist - anAperturePnt, uFocalPlaneDist));
vec3 aDirect = uEyeView * aLocalDir.z +
uEyeSide * aLocalDir.x +
uEyeVert * aLocalDir.y;
aTotalRadiance = FetchEnvironment (aDirect, 1.0, true).rgb;
}
else
{
aTotalRadiance = FetchEnvironment (theRay.Direct, 1.0, false).rgb;
}
#else
aTotalRadiance = FetchEnvironment (theRay.Direct, 1.0, theDepth == 0).rgb;
#endif
}
#ifdef THE_SHIFT_sRGB
aTotalRadiance = pow (aTotalRadiance, vec3 (2.f));
#endif
}
return aTotalRadiance;
}
#define MIN_THROUGHPUT vec3 (1.0e-3f)
#define MIN_CONTRIBUTION vec3 (1.0e-2f)
#define MATERIAL_KC(index) (19 * index + 11)
#define MATERIAL_KD(index) (19 * index + 12)
#define MATERIAL_KS(index) (19 * index + 13)
#define MATERIAL_KT(index) (19 * index + 14)
#define MATERIAL_LE(index) (19 * index + 15)
#define MATERIAL_FRESNEL_COAT(index) (19 * index + 16)
#define MATERIAL_FRESNEL_BASE(index) (19 * index + 17)
#define MATERIAL_ABSORPT_BASE(index) (19 * index + 18)
//! Enables experimental Russian roulette sampling path termination.
//! In most cases, it provides faster image convergence with minimal
//! bias, so it is enabled by default.
#define RUSSIAN_ROULETTE
//! Frame step to increase number of bounces. This mode is used
//! for interaction with the model, when path length is limited
//! for the first samples, and gradually increasing when camera
//! is stabilizing.
#ifdef ADAPTIVE_SAMPLING
#define FRAME_STEP 4
#else
#define FRAME_STEP 5
#endif
//=======================================================================
// function : IsNotZero
// purpose : Checks whether BSDF reflects direct light
//=======================================================================
bool IsNotZero (in SBSDF theBSDF, in vec3 theThroughput)
{
vec3 aGlossy = theBSDF.Kc.rgb * step (FLT_EPSILON, theBSDF.Kc.w) +
theBSDF.Ks.rgb * step (FLT_EPSILON, theBSDF.Ks.w);
return convolve (theBSDF.Kd.rgb + aGlossy, theThroughput) > FLT_EPSILON;
}
//=======================================================================
// function : NormalAdaptation
// purpose : Adapt smooth normal (which may be different from geometry normal) in order to avoid black areas in render
//=======================================================================
bool NormalAdaptation (in vec3 theView, in vec3 theGeometryNormal, inout vec3 theSmoothNormal)
{
float aMinCos = dot(theView, theGeometryNormal);
aMinCos = 0.5 * (sqrt(1.0 - aMinCos) + sqrt(1.0 + aMinCos));
float aCos = dot(theGeometryNormal, theSmoothNormal);
if (aCos < aMinCos)
{
theSmoothNormal = aMinCos * theGeometryNormal + normalize(theSmoothNormal - aCos * theGeometryNormal) * sqrt(1.0 - aMinCos * aMinCos);
return true;
}
return false;
}
//=======================================================================
// function : PathTrace
// purpose : Calculates radiance along the given ray
//=======================================================================
vec4 PathTrace (in SRay theRay, in vec3 theInverse, in int theNbSamples)
{
float aRaytraceDepth = MAXFLOAT;
vec3 aRadiance = ZERO;
vec3 aThroughput = UNIT;
int aTransfID = 0; // ID of object transformation
bool aInMedium = false; // is the ray inside an object
float aExpPDF = 1.f;
float aImpPDF = 1.f;
for (int aDepth = 0; aDepth < NB_BOUNCES; ++aDepth)
{
SIntersect aHit = SIntersect (MAXFLOAT, vec2 (ZERO), ZERO);
STriangle aTriangle = SceneNearestHit (theRay, theInverse, aHit, aTransfID);
// check implicit path
vec3 aLe = IntersectLight (theRay, aDepth, aHit.Time, aExpPDF);
if (any (greaterThan (aLe, ZERO)) || aTriangle.TriIndex.x == -1)
{
float aMIS = (aDepth == 0 || aImpPDF == MAXFLOAT) ? 1.f :
aImpPDF * aImpPDF / (aExpPDF * aExpPDF + aImpPDF * aImpPDF);
aRadiance += aThroughput * aLe * aMIS; break; // terminate path
}
vec3 aInvTransf0 = texelFetch (uSceneTransformTexture, aTransfID + 0).xyz;
vec3 aInvTransf1 = texelFetch (uSceneTransformTexture, aTransfID + 1).xyz;
vec3 aInvTransf2 = texelFetch (uSceneTransformTexture, aTransfID + 2).xyz;
// compute geometrical normal
aHit.Normal = normalize (vec3 (dot (aInvTransf0, aHit.Normal),
dot (aInvTransf1, aHit.Normal),
dot (aInvTransf2, aHit.Normal)));
theRay.Origin += theRay.Direct * aHit.Time; // get new intersection point
// evaluate depth on first hit
if (aDepth == 0)
{
vec4 aNDCPoint = uViewMat * vec4 (theRay.Origin, 1.f);
float aPolygonOffset = PolygonOffset (aHit.Normal, theRay.Origin);
#ifdef THE_ZERO_TO_ONE_DEPTH
aRaytraceDepth = (aNDCPoint.z / aNDCPoint.w + aPolygonOffset * POLYGON_OFFSET_SCALE);
#else
aRaytraceDepth = (aNDCPoint.z / aNDCPoint.w + aPolygonOffset * POLYGON_OFFSET_SCALE) * 0.5f + 0.5f;
#endif
}
SBSDF aBSDF;
// fetch BxDF weights
aBSDF.Kc = texelFetch (uRaytraceMaterialTexture, MATERIAL_KC (aTriangle.TriIndex.w));
aBSDF.Kd = texelFetch (uRaytraceMaterialTexture, MATERIAL_KD (aTriangle.TriIndex.w));
aBSDF.Ks = texelFetch (uRaytraceMaterialTexture, MATERIAL_KS (aTriangle.TriIndex.w));
aBSDF.Kt = texelFetch (uRaytraceMaterialTexture, MATERIAL_KT (aTriangle.TriIndex.w));
// fetch Fresnel reflectance for both layers
aBSDF.FresnelCoat = texelFetch (uRaytraceMaterialTexture, MATERIAL_FRESNEL_COAT (aTriangle.TriIndex.w)).xyz;
aBSDF.FresnelBase = texelFetch (uRaytraceMaterialTexture, MATERIAL_FRESNEL_BASE (aTriangle.TriIndex.w));
vec4 anLE = texelFetch (uRaytraceMaterialTexture, MATERIAL_LE (aTriangle.TriIndex.w));
// compute smooth normal (in parallel with fetch)
vec3 aNormal = SmoothNormal (aHit.UV, aTriangle.TriIndex);
aNormal = normalize (vec3 (dot (aInvTransf0, aNormal),
dot (aInvTransf1, aNormal),
dot (aInvTransf2, aNormal)));
#ifdef USE_TEXTURES
if (aBSDF.Kd.w >= 0.0 || aBSDF.Kt.w >= 0.0 || aBSDF.FresnelBase.w >=0.0 || anLE.w >= 0.0)
{
vec2 aUVs[3];
vec4 aTexCoord = vec4 (SmoothUV (aHit.UV, aTriangle.TriIndex, aUVs), 0.f, 1.f);
vec4 aTrsfRow1 = texelFetch (uRaytraceMaterialTexture, MATERIAL_TRS1 (aTriangle.TriIndex.w));
vec4 aTrsfRow2 = texelFetch (uRaytraceMaterialTexture, MATERIAL_TRS2 (aTriangle.TriIndex.w));
aTexCoord.st = vec2 (dot (aTrsfRow1, aTexCoord),
dot (aTrsfRow2, aTexCoord));
if (anLE.w >= 0.0)
{
anLE.rgb *= textureLod (sampler2D (uTextureSamplers[int (anLE.w)]), aTexCoord.st, 0.0).rgb;
}
if (aBSDF.Kt.w >= 0.0)
{
vec2 aTexMetRough = textureLod (sampler2D (uTextureSamplers[int (aBSDF.Kt.w)]), aTexCoord.st, 0.0).bg;
float aPbrMetal = aTexMetRough.x;
float aPbrRough2 = aTexMetRough.y * aTexMetRough.y;
aBSDF.Ks.a *= aPbrRough2;
// when using metal-roughness texture, global metalness of material (encoded in FresnelBase) is expected to be 1.0 so that Kd will be 0.0
aBSDF.Kd.rgb = aBSDF.FresnelBase.rgb * (1.0 - aPbrMetal);
aBSDF.FresnelBase.rgb *= aPbrMetal;
}
if (aBSDF.Kd.w >= 0.0)
{
vec4 aTexColor = textureLod (sampler2D (uTextureSamplers[int (aBSDF.Kd.w)]), aTexCoord.st, 0.0);
vec3 aDiff = aTexColor.rgb * aTexColor.a;
aBSDF.Kd.rgb *= aDiff;
aBSDF.FresnelBase.rgb *= aDiff;
if (aTexColor.a != 1.0)
{
// mix transparency BTDF with texture alpha-channel
aBSDF.Ks.rgb *= aTexColor.a;
aBSDF.Kt.rgb = (UNIT - aTexColor.aaa) + aTexColor.a * aBSDF.Kt.rgb;
}
}
#ifndef IGNORE_NORMAL_MAP
if (aBSDF.FresnelBase.w >= 0.0)
{
for (int i = 0 ; i < 3; ++i)
{
aUVs[i] = vec2 (dot (aTrsfRow1, vec4(aUVs[i], 0.0, 1.0)),
dot (aTrsfRow2, vec4(aUVs[i], 0.0, 1.0)));
}
vec3 aMapNormalValue = textureLod (sampler2D (uTextureSamplers[int (aBSDF.FresnelBase.w)]), aTexCoord.st, 0.0).xyz;
mat2 aDeltaUVMatrix = mat2 (aUVs[1] - aUVs[0], aUVs[1] - aUVs[2]);
mat2x3 aDeltaVectorMatrix = mat2x3 (aTriangle.Points[1] - aTriangle.Points[0], aTriangle.Points[1] - aTriangle.Points[2]);
aNormal = TangentSpaceNormal (aDeltaUVMatrix, aDeltaVectorMatrix, aMapNormalValue, aNormal, true);
}
#endif
}
#endif
NormalAdaptation (-theRay.Direct, aHit.Normal, aNormal);
aHit.Normal = aNormal;
SLocalSpace aSpace = buildLocalSpace (aNormal);
if (uLightCount > 0 && IsNotZero (aBSDF, aThroughput))
{
aExpPDF = 1.0 / float(uLightCount);
int aLightIdx = min (int (floor (RandFloat() * float(uLightCount))), uLightCount - 1);
vec4 aLight = texelFetch (uRaytraceLightSrcTexture, LIGHT_POS (aLightIdx));
vec4 aParam = texelFetch (uRaytraceLightSrcTexture, LIGHT_PWR (aLightIdx));
// 'w' component is 0 for infinite light and 1 for point light
aLight.xyz -= mix (ZERO, theRay.Origin, aLight.w);
float aDistance = length (aLight.xyz);
aLight.xyz = SampleLight (aLight.xyz, aDistance,
aLight.w == 0.f /* is infinite */, aParam.w /* max cos or radius */, aExpPDF);
aImpPDF = BsdfPdfLayered (aBSDF,
toLocalSpace (-theRay.Direct, aSpace), toLocalSpace (aLight.xyz, aSpace), aThroughput);
// MIS weight including division by explicit PDF
float aMIS = (aExpPDF == MAXFLOAT) ? 1.f : aExpPDF / (aExpPDF * aExpPDF + aImpPDF * aImpPDF);
vec3 aContrib = aMIS * aParam.rgb /* Le */ * EvalBsdfLayered (
aBSDF, toLocalSpace (aLight.xyz, aSpace), toLocalSpace (-theRay.Direct, aSpace));
if (any (greaterThan (aContrib, MIN_CONTRIBUTION))) // check if light source is important
{
SRay aShadow = SRay (theRay.Origin + aLight.xyz * uSceneEpsilon, aLight.xyz);
aShadow.Origin += aHit.Normal * mix (
-uSceneEpsilon, uSceneEpsilon, step (0.f, dot (aHit.Normal, aLight.xyz)));
float aVisibility = SceneAnyHit (aShadow,
InverseDirection (aLight.xyz), aLight.w == 0.f ? MAXFLOAT : aDistance);
aRadiance += aVisibility * (aThroughput * aContrib);
}
}
// account for self-emission
aRadiance += aThroughput * anLE.rgb;
if (aInMedium) // handle attenuation
{
vec4 aScattering = texelFetch (uRaytraceMaterialTexture, MATERIAL_ABSORPT_BASE (aTriangle.TriIndex.w));
aThroughput *= exp (-aHit.Time * aScattering.w * (UNIT - aScattering.rgb));
}
vec3 anInput = UNIT; // sampled input direction
aImpPDF = SampleBsdfLayered (aBSDF,
toLocalSpace (-theRay.Direct, aSpace), anInput, aThroughput, aInMedium);
float aSurvive = float (any (greaterThan (aThroughput, MIN_THROUGHPUT)));
#ifdef RUSSIAN_ROULETTE
aSurvive = aDepth < 3 ? aSurvive : min (dot (LUMA, aThroughput), 0.95f);
#endif
// here, we additionally increase path length for non-diffuse bounces
if (RandFloat() > aSurvive
|| all (lessThan (aThroughput, MIN_THROUGHPUT))
|| aDepth >= (theNbSamples / FRAME_STEP + int(step (1.0 / M_PI, aImpPDF))))
{
aDepth = INVALID_BOUNCES; // terminate path
}
#ifdef RUSSIAN_ROULETTE
aThroughput /= aSurvive;
#endif
anInput = normalize (fromLocalSpace (anInput, aSpace));
theRay = SRay (theRay.Origin + anInput * uSceneEpsilon +
aHit.Normal * mix (-uSceneEpsilon, uSceneEpsilon, step (0.f, dot (aHit.Normal, anInput))), anInput);
theInverse = InverseDirection (anInput);
}
gl_FragDepth = aRaytraceDepth;
return vec4 (aRadiance, aRaytraceDepth);
}
#endif