mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-01 17:36:21 +03:00
Reorganized resources to keep source part in src and real-time scripts in resource folder. For the installation result no changes, still installed to src for windows.
122 lines
4.9 KiB
GLSL
122 lines
4.9 KiB
GLSL
|
|
//! @file DeclarationsImpl.glsl includes implementation of common functions and properties accessors
|
|
#if defined(FRAGMENT_SHADER)
|
|
|
|
#if defined(OCC_DEPTH_PEEL_OIT)
|
|
uniform sampler2D occDepthPeelingDepth;
|
|
uniform sampler2D occDepthPeelingFrontColor;
|
|
int IsFrontPeelLayer = -1;
|
|
bool occFragEarlyReturn()
|
|
{
|
|
#define THE_DEPTH_CLEAR_VALUE -1e15f
|
|
ivec2 aFragCoord = ivec2 (gl_FragCoord.xy);
|
|
vec2 aLastDepth = texelFetch (occDepthPeelingDepth, aFragCoord, 0).rg;
|
|
occPeelFrontColor = texelFetch (occDepthPeelingFrontColor, aFragCoord, 0);
|
|
occPeelDepth.rg = vec2 (THE_DEPTH_CLEAR_VALUE); // depth value always increases, so that MAX blend equation can be used
|
|
occPeelBackColor = vec4 (0.0); // back color is blend after each peeling pass
|
|
|
|
float aNearDepth = -aLastDepth.x;
|
|
float aFarDepth = aLastDepth.y;
|
|
float aFragDepth = gl_FragCoord.z; // 0 - 1
|
|
if (aFragDepth < aNearDepth || aFragDepth > aFarDepth)
|
|
{
|
|
return true; // skip peeled depth
|
|
}
|
|
else if (aFragDepth > aNearDepth && aFragDepth < aFarDepth)
|
|
{
|
|
// to be rendered at next peeling pass
|
|
occPeelDepth.rg = vec2 (-aFragDepth, aFragDepth);
|
|
return true;
|
|
}
|
|
|
|
IsFrontPeelLayer = (gl_FragCoord.z == aNearDepth) ? 1 : 0;
|
|
return false;
|
|
}
|
|
#else
|
|
bool occFragEarlyReturn() { return false; }
|
|
#endif
|
|
|
|
void occSetFragColor (in vec4 theColor)
|
|
{
|
|
#if defined(OCC_ALPHA_TEST)
|
|
if (theColor.a < occAlphaCutoff) discard;
|
|
#endif
|
|
#if defined(OCC_WRITE_WEIGHT_OIT_COVERAGE)
|
|
float aWeight = theColor.a * clamp (1e+2 * pow (1.0 - gl_FragCoord.z * occOitDepthFactor, 3.0), 1e-2, 1e+2);
|
|
occFragCoverage.r = theColor.a * aWeight;
|
|
occFragColor = vec4 (theColor.rgb * theColor.a * aWeight, theColor.a);
|
|
#elif defined(OCC_DEPTH_PEEL_OIT)
|
|
if (IsFrontPeelLayer == 1) // front is blended directly
|
|
{
|
|
vec4 aLastColor = occPeelFrontColor;
|
|
float anAlphaMult = 1.0 - aLastColor.a;
|
|
occPeelFrontColor.rgb = aLastColor.rgb + theColor.rgb * theColor.a * anAlphaMult;
|
|
occPeelFrontColor.a = 1.0 - anAlphaMult * (1.0 - theColor.a);
|
|
}
|
|
else if (IsFrontPeelLayer == 0) // back is blended afterwards
|
|
{
|
|
occPeelBackColor = theColor;
|
|
}
|
|
#else
|
|
occFragColor = theColor;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if defined(THE_MAX_LIGHTS) && (THE_MAX_LIGHTS > 0)
|
|
// arrays of light sources
|
|
uniform vec4 occLightSources[THE_MAX_LIGHTS * 4]; //!< packed light sources parameters
|
|
uniform THE_PREC_ENUM int occLightSourcesTypes[THE_MAX_LIGHTS]; //!< packed light sources types
|
|
#endif
|
|
|
|
#if defined(THE_IS_PBR)
|
|
vec3 occDiffIBLMap (in vec3 theNormal)
|
|
{
|
|
vec3 aSHCoeffs[9];
|
|
for (int i = 0; i < 9; ++i)
|
|
{
|
|
aSHCoeffs[i] = occTexture2D (occDiffIBLMapSHCoeffs, vec2 ((float(i) + 0.5) / 9.0, 0.0)).rgb;
|
|
}
|
|
return aSHCoeffs[0]
|
|
|
|
+ aSHCoeffs[1] * theNormal.x
|
|
+ aSHCoeffs[2] * theNormal.y
|
|
+ aSHCoeffs[3] * theNormal.z
|
|
|
|
+ aSHCoeffs[4] * theNormal.x * theNormal.z
|
|
+ aSHCoeffs[5] * theNormal.y * theNormal.z
|
|
+ aSHCoeffs[6] * theNormal.x * theNormal.y
|
|
|
|
+ aSHCoeffs[7] * (3.0 * theNormal.z * theNormal.z - 1.0)
|
|
+ aSHCoeffs[8] * (theNormal.x * theNormal.x - theNormal.y * theNormal.y);
|
|
}
|
|
#endif
|
|
|
|
// front and back material properties accessors
|
|
#if defined(THE_IS_PBR)
|
|
uniform vec4 occPbrMaterial[3 * 2];
|
|
|
|
#define MIN_ROUGHNESS 0.01
|
|
float occRoughness (in float theNormalizedRoughness) { return theNormalizedRoughness * (1.0 - MIN_ROUGHNESS) + MIN_ROUGHNESS; }
|
|
vec4 occPBRMaterial_Color(in bool theIsFront) { return theIsFront ? occPbrMaterial[0] : occPbrMaterial[3]; }
|
|
vec3 occPBRMaterial_Emission(in bool theIsFront) { return theIsFront ? occPbrMaterial[1].rgb : occPbrMaterial[4].rgb; }
|
|
float occPBRMaterial_IOR(in bool theIsFront) { return theIsFront ? occPbrMaterial[1].w : occPbrMaterial[4].w; }
|
|
float occPBRMaterial_Metallic(in bool theIsFront) { return theIsFront ? occPbrMaterial[2].b : occPbrMaterial[5].b; }
|
|
float occPBRMaterial_NormalizedRoughness(in bool theIsFront) { return theIsFront ? occPbrMaterial[2].g : occPbrMaterial[5].g; }
|
|
#else
|
|
uniform vec4 occCommonMaterial[4 * 2];
|
|
|
|
vec4 occMaterial_Diffuse(in bool theIsFront) { return theIsFront ? occCommonMaterial[0] : occCommonMaterial[4]; }
|
|
vec3 occMaterial_Emission(in bool theIsFront) { return theIsFront ? occCommonMaterial[1].rgb : occCommonMaterial[5].rgb; }
|
|
vec3 occMaterial_Specular(in bool theIsFront) { return theIsFront ? occCommonMaterial[2].rgb : occCommonMaterial[6].rgb; }
|
|
float occMaterial_Shininess(in bool theIsFront) { return theIsFront ? occCommonMaterial[2].a : occCommonMaterial[6].a; }
|
|
vec3 occMaterial_Ambient(in bool theIsFront) { return theIsFront ? occCommonMaterial[3].rgb : occCommonMaterial[7].rgb; }
|
|
#endif
|
|
|
|
// 2D texture coordinates transformation
|
|
vec2 occTextureTrsf_Translation(void) { return occTexTrsf2d[0].xy; }
|
|
vec2 occTextureTrsf_Scale(void) { return occTexTrsf2d[0].zw; }
|
|
float occTextureTrsf_RotationSin(void) { return occTexTrsf2d[1].x; }
|
|
float occTextureTrsf_RotationCos(void) { return occTexTrsf2d[1].y; }
|
|
//! @endfile DeclarationsImpl.glsl
|