mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
804 lines
23 KiB
C++
804 lines
23 KiB
C++
// Created: 2001-05-21
|
|
//
|
|
// Copyright (c) 2001-2013 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of commercial software by OPEN CASCADE SAS,
|
|
// furnished in accordance with the terms and conditions of the contract
|
|
// and with the inclusion of this copyright notice.
|
|
// This file or any part thereof may not be provided or otherwise
|
|
// made available to any third party.
|
|
//
|
|
// No ownership title to the software is transferred hereby.
|
|
//
|
|
// OPEN CASCADE SAS makes no representation or warranties with respect to the
|
|
// performance of this software, and specifically disclaims any responsibility
|
|
// for any damages, special or consequential, connected with its use.
|
|
|
|
|
|
#include <ElCLib.hxx>
|
|
#include <Extrema_ExtPC.hxx>
|
|
#include <gce_MakeCirc.hxx>
|
|
#include <Geom_BezierCurve.hxx>
|
|
#include <Geom_BSplineCurve.hxx>
|
|
#include <Geom_Circle.hxx>
|
|
#include <Geom_Curve.hxx>
|
|
#include <Geom_Ellipse.hxx>
|
|
#include <Geom_Line.hxx>
|
|
#include <Geom_TrimmedCurve.hxx>
|
|
#include <GeomAdaptor_Curve.hxx>
|
|
#include <gp_Ax2.hxx>
|
|
#include <gp_Ax3.hxx>
|
|
#include <gp_Circ.hxx>
|
|
#include <gp_Lin.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <Precision.hxx>
|
|
#include <GeomConvert_CurveToAnaCurve.hxx>
|
|
#include <TColgp_Array1OfPnt.hxx>
|
|
#include <TColgp_HArray1OfPnt.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <TColStd_Array2OfReal.hxx>
|
|
#include <GeomAbs_CurveType.hxx>
|
|
#include <math_Vector.hxx>
|
|
#include <math_Matrix.hxx>
|
|
#include <math_Gauss.hxx>
|
|
|
|
|
|
GeomConvert_CurveToAnaCurve::GeomConvert_CurveToAnaCurve():
|
|
myGap(Precision::Infinite()),
|
|
myConvType(GeomConvert_MinGap),
|
|
myTarget(GeomAbs_Line)
|
|
{
|
|
}
|
|
|
|
GeomConvert_CurveToAnaCurve::GeomConvert_CurveToAnaCurve(const Handle(Geom_Curve)& C) :
|
|
myGap(Precision::Infinite()),
|
|
myConvType(GeomConvert_MinGap),
|
|
myTarget(GeomAbs_Line)
|
|
{
|
|
myCurve = C;
|
|
}
|
|
|
|
void GeomConvert_CurveToAnaCurve::Init(const Handle(Geom_Curve)& C)
|
|
{
|
|
myCurve = C;
|
|
myGap = Precision::Infinite();
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ConvertToAnalytical
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Boolean GeomConvert_CurveToAnaCurve::ConvertToAnalytical(const Standard_Real tol,
|
|
Handle(Geom_Curve)& theResultCurve,
|
|
const Standard_Real F, const Standard_Real L,
|
|
Standard_Real& NewF, Standard_Real& NewL)
|
|
{
|
|
if(myCurve.IsNull())
|
|
return Standard_False;
|
|
|
|
Handle(Geom_Curve) aCurve = myCurve;
|
|
while (aCurve->IsKind(STANDARD_TYPE(Geom_TrimmedCurve))) {
|
|
Handle(Geom_TrimmedCurve) aTrimmed = Handle(Geom_TrimmedCurve)::
|
|
DownCast(aCurve);
|
|
aCurve = aTrimmed->BasisCurve();
|
|
}
|
|
|
|
Handle(Geom_Curve) C = ComputeCurve(aCurve,tol,F, L, NewF, NewL, myGap, myConvType, myTarget);
|
|
|
|
if(C.IsNull()) return Standard_False;
|
|
theResultCurve = C;
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IsLinear
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Boolean GeomConvert_CurveToAnaCurve::IsLinear(const TColgp_Array1OfPnt& aPoles,
|
|
const Standard_Real tolerance,
|
|
Standard_Real& Deviation)
|
|
{
|
|
Standard_Integer nbPoles = aPoles.Length();
|
|
if(nbPoles < 2)
|
|
return Standard_False;
|
|
|
|
Standard_Real dMax = 0;
|
|
Standard_Integer iMax1=0,iMax2=0;
|
|
|
|
Standard_Integer i;
|
|
for(i = 1; i < nbPoles; i++)
|
|
for(Standard_Integer j = i+1; j <= nbPoles; j++) {
|
|
Standard_Real dist = aPoles(i).SquareDistance(aPoles(j));
|
|
if(dist > dMax) {
|
|
dMax = dist;
|
|
iMax1 = i;
|
|
iMax2 = j;
|
|
}
|
|
}
|
|
|
|
if (dMax < Precision::SquareConfusion())
|
|
return Standard_False;
|
|
|
|
Standard_Real tol2 = tolerance*tolerance;
|
|
gp_Vec avec (aPoles(iMax1),aPoles(iMax2)); gp_Dir adir (avec); gp_Lin alin (aPoles(iMax1),adir);
|
|
|
|
Standard_Real aMax = 0.;
|
|
for(i = 1; i <= nbPoles; i++) {
|
|
Standard_Real dist = alin.SquareDistance(aPoles(i));
|
|
if(dist > tol2)
|
|
return Standard_False;
|
|
if(dist > aMax)
|
|
aMax = dist;
|
|
}
|
|
Deviation = sqrt(aMax);
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : GetLine
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
gp_Lin GeomConvert_CurveToAnaCurve::GetLine(const gp_Pnt& P1, const gp_Pnt& P2,
|
|
Standard_Real& cf, Standard_Real& cl)
|
|
{
|
|
gp_Vec avec(P1, P2); gp_Dir adir(avec); gp_Lin alin(P1, adir);
|
|
cf = ElCLib::Parameter(alin, P1);
|
|
cl = ElCLib::Parameter(alin, P2);
|
|
return alin;
|
|
}
|
|
//=======================================================================
|
|
//function : ComputeLine
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Handle(Geom_Line) GeomConvert_CurveToAnaCurve::ComputeLine (const Handle(Geom_Curve)& curve,
|
|
const Standard_Real tolerance,
|
|
const Standard_Real c1, const Standard_Real c2,
|
|
Standard_Real& cf, Standard_Real& cl,
|
|
Standard_Real& Deviation)
|
|
{
|
|
Handle(Geom_Line) line;
|
|
if (curve.IsNull()) return line;
|
|
line = Handle(Geom_Line)::DownCast(curve); // qui sait
|
|
if (!line.IsNull()) {
|
|
cf = c1;
|
|
cl = c2;
|
|
Deviation = 0.;
|
|
return line;
|
|
}
|
|
|
|
gp_Pnt P1 = curve->Value (c1);
|
|
gp_Pnt P2 = curve->Value (c2);
|
|
if(P1.SquareDistance(P2) < Precision::SquareConfusion())
|
|
return line;
|
|
cf = c1; cl = c2;
|
|
|
|
Handle(TColgp_HArray1OfPnt) Poles;
|
|
Standard_Integer nbPoles;
|
|
Handle(Geom_BSplineCurve) bsc = Handle(Geom_BSplineCurve)::DownCast(curve);
|
|
if (!bsc.IsNull()) {
|
|
nbPoles = bsc->NbPoles();
|
|
Poles = new TColgp_HArray1OfPnt(1, nbPoles);
|
|
bsc->Poles(Poles->ChangeArray1());
|
|
}
|
|
else
|
|
{
|
|
Handle(Geom_BezierCurve) bzc = Handle(Geom_BezierCurve)::DownCast(curve);
|
|
if (!bzc.IsNull()) {
|
|
nbPoles = bzc->NbPoles();
|
|
Poles = new TColgp_HArray1OfPnt(1, nbPoles);
|
|
bzc->Poles(Poles->ChangeArray1());
|
|
}
|
|
else
|
|
{
|
|
nbPoles = 23;
|
|
Poles = new TColgp_HArray1OfPnt(1, nbPoles);
|
|
Standard_Real dt = (c2 - c1) / (nbPoles - 1);
|
|
Poles->SetValue(1, P1);
|
|
Poles->SetValue(nbPoles, P2);
|
|
Standard_Integer i;
|
|
for (i = 2; i < nbPoles; ++i)
|
|
{
|
|
Poles->SetValue(i, curve->Value(c1 + (i - 1) * dt));
|
|
}
|
|
}
|
|
}
|
|
if(!IsLinear(Poles->Array1(),tolerance,Deviation)) return line; // non
|
|
gp_Lin alin = GetLine (P1, P2, cf, cl);
|
|
line = new Geom_Line (alin);
|
|
return line;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : GetCircle
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Boolean GeomConvert_CurveToAnaCurve::GetCircle (gp_Circ& crc,
|
|
const gp_Pnt& P0,const gp_Pnt& P1, const gp_Pnt& P2)
|
|
{
|
|
// Control if points are not aligned (should be done by MakeCirc
|
|
Standard_Real aMaxCoord = Sqrt(Precision::Infinite());
|
|
if (Abs(P0.X()) > aMaxCoord || Abs(P0.Y()) > aMaxCoord || Abs(P0.Z()) > aMaxCoord)
|
|
return Standard_False;
|
|
if (Abs(P1.X()) > aMaxCoord || Abs(P1.Y()) > aMaxCoord || Abs(P1.Z()) > aMaxCoord)
|
|
return Standard_False;
|
|
if (Abs(P2.X()) > aMaxCoord || Abs(P2.Y()) > aMaxCoord || Abs(P2.Z()) > aMaxCoord)
|
|
return Standard_False;
|
|
|
|
// Building the circle
|
|
gce_MakeCirc mkc (P0,P1,P2);
|
|
if (!mkc.IsDone()) return Standard_False;
|
|
crc = mkc.Value();
|
|
if (crc.Radius() < gp::Resolution()) return Standard_False;
|
|
// Recalage sur P0
|
|
gp_Pnt PC = crc.Location();
|
|
gp_Ax2 axe = crc.Position();
|
|
gp_Vec VX (PC,P0);
|
|
axe.SetXDirection (VX);
|
|
crc.SetPosition (axe);
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ComputeCircle
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Handle(Geom_Curve) GeomConvert_CurveToAnaCurve::ComputeCircle (const Handle(Geom_Curve)& c3d,
|
|
const Standard_Real tol,
|
|
const Standard_Real c1, const Standard_Real c2,
|
|
Standard_Real& cf, Standard_Real& cl,
|
|
Standard_Real& Deviation)
|
|
{
|
|
if (c3d->IsKind (STANDARD_TYPE(Geom_Circle))) {
|
|
cf = c1;
|
|
cl = c2;
|
|
Deviation = 0.;
|
|
Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast(c3d);
|
|
return aCirc;
|
|
}
|
|
|
|
Handle(Geom_Circle) circ;
|
|
gp_Pnt P0,P1,P2;
|
|
Standard_Real ca = (c1+c1+c2) / 3; Standard_Real cb = (c1+c2+c2) / 3;
|
|
P0 = c3d->Value(c1);
|
|
P1 = c3d->Value(ca);
|
|
P2 = c3d->Value(cb);
|
|
|
|
gp_Circ crc;
|
|
if (!GetCircle (crc,P0,P1,P2)) return circ;
|
|
|
|
// Reste a controler que c est bien un cercle : prendre 20 points
|
|
Standard_Real du = (c2-c1)/20;
|
|
Standard_Integer i;
|
|
Standard_Real aMax = 0.;
|
|
for (i = 0; i <= 20; i ++) {
|
|
Standard_Real u = c1+(du*i);
|
|
gp_Pnt PP = c3d->Value(u);
|
|
Standard_Real dist = crc.Distance(PP);
|
|
if (dist > tol) return circ; // not done
|
|
if (dist > aMax)
|
|
aMax = dist;
|
|
}
|
|
Deviation = aMax;
|
|
|
|
// defining the parameters
|
|
Standard_Real PI2 = 2 * M_PI;
|
|
|
|
cf = ElCLib::Parameter (crc,c3d->Value (c1));
|
|
cf = ElCLib::InPeriod(cf, 0., PI2);
|
|
|
|
//first parameter should be closed to zero
|
|
|
|
if(Abs(cf) < Precision::PConfusion() || Abs(PI2-cf) < Precision::PConfusion())
|
|
cf = 0.;
|
|
|
|
Standard_Real cm = ElCLib::Parameter (crc,c3d->Value ((c1+c2)/2.));
|
|
cm = ElCLib::InPeriod(cm, cf, cf + PI2);
|
|
|
|
cl = ElCLib::Parameter (crc,c3d->Value (c2));
|
|
cl = ElCLib::InPeriod(cl, cm, cm + PI2);
|
|
|
|
circ = new Geom_Circle (crc);
|
|
return circ;
|
|
}
|
|
|
|
//=======================================================================
|
|
// Compute Ellipse
|
|
//=======================================================================
|
|
|
|
//=======================================================================
|
|
//function : IsArrayPntPlanar
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
static Standard_Boolean IsArrayPntPlanar(const Handle(TColgp_HArray1OfPnt)& HAP,
|
|
gp_Dir& Norm, const Standard_Real prec)
|
|
{
|
|
Standard_Integer size = HAP->Length();
|
|
if(size<3)
|
|
return Standard_False;
|
|
gp_Pnt P1 = HAP->Value(1);
|
|
gp_Pnt P2 = HAP->Value(2);
|
|
gp_Pnt P3 = HAP->Value(3);
|
|
Standard_Real dist1 = P1.Distance(P2);
|
|
Standard_Real dist2 = P1.Distance(P3);
|
|
if( dist1<prec || dist2<prec )
|
|
return Standard_False;
|
|
gp_Vec V1(P1,P2);
|
|
gp_Vec V2(P1,P3);
|
|
if(V1.IsParallel(V2,prec))
|
|
return Standard_False;
|
|
gp_Vec NV = V1.Crossed(V2);
|
|
|
|
Standard_Integer i;
|
|
for (i = 1; i <= 3; ++i)
|
|
{
|
|
if (Precision::IsInfinite(NV.Coord(i)))
|
|
return Standard_False;
|
|
}
|
|
|
|
if(NV.Magnitude() < gp::Resolution())
|
|
return Standard_False;
|
|
|
|
if(size>3) {
|
|
for(i=4; i<=size; i++) {
|
|
gp_Pnt PN = HAP->Value(i);
|
|
dist1 = P1.Distance(PN);
|
|
if (dist1 < prec || Precision::IsInfinite(dist1))
|
|
{
|
|
return Standard_False;
|
|
}
|
|
gp_Vec VN(P1,PN);
|
|
if(!NV.IsNormal(VN,prec))
|
|
return Standard_False;
|
|
}
|
|
}
|
|
Norm = NV;
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ConicdDefinition
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
static Standard_Boolean ConicDefinition
|
|
( const Standard_Real a, const Standard_Real b1, const Standard_Real c,
|
|
const Standard_Real d1, const Standard_Real e1, const Standard_Real f,
|
|
const Standard_Boolean IsParab, const Standard_Boolean IsEllip,
|
|
gp_Pnt& Center, gp_Dir& MainAxis, Standard_Real& Rmin, Standard_Real& Rmax )
|
|
{
|
|
Standard_Real Xcen = 0.,Ycen = 0., Xax = 0.,Yax = 0.;
|
|
Standard_Real b,d,e;
|
|
// conic : a*x2 + 2*b*x*y + c*y2 + 2*d*x + 2*e*y + f = 0.
|
|
//Equation (a,b,c,d,e,f);
|
|
b = b1/2.; d = d1/2.; e = e1/2.; // chgt de variable
|
|
|
|
Standard_Real eps = 1.E-08; // ?? comme ComputedForm
|
|
|
|
if (IsParab) {
|
|
|
|
}
|
|
else {
|
|
// -> Conique a centre, cas general
|
|
// On utilise les Determinants des matrices :
|
|
// | a b d |
|
|
// gdet (3x3) = | b c e | et pdet (2X2) = | a b |
|
|
// | d e f | | b c |
|
|
|
|
Standard_Real gdet = a*c*f + 2*b*d*e - c*d*d - a*e*e - b*b*f;
|
|
Standard_Real pdet = a*c - b*b;
|
|
|
|
Xcen = (b*e - c*d) / pdet;
|
|
Ycen = (b*d - a*e) / pdet;
|
|
|
|
Standard_Real term1 = a-c;
|
|
Standard_Real term2 = 2*b;
|
|
Standard_Real cos2t;
|
|
Standard_Real auxil;
|
|
|
|
if (Abs(term2) <= eps && Abs(term1) <= eps) {
|
|
cos2t = 1.;
|
|
auxil = 0.;
|
|
}
|
|
else {
|
|
if (Abs(term1) < eps)
|
|
{
|
|
return Standard_False;
|
|
}
|
|
Standard_Real t2d = term2/term1; //skl 21.11.2001
|
|
cos2t = 1./sqrt(1+t2d*t2d);
|
|
auxil = sqrt (term1*term1 + term2*term2);
|
|
}
|
|
|
|
Standard_Real cost = sqrt ( (1+cos2t)/2. );
|
|
Standard_Real sint = sqrt ( (1-cos2t)/2. );
|
|
|
|
Standard_Real aprim = (a+c+auxil)/2.;
|
|
Standard_Real cprim = (a+c-auxil)/2.;
|
|
|
|
if (Abs(aprim) < gp::Resolution() || Abs(cprim) < gp::Resolution())
|
|
return Standard_False;
|
|
|
|
term1 = -gdet/(aprim*pdet);
|
|
term2 = -gdet/(cprim*pdet);
|
|
|
|
if (IsEllip) {
|
|
if (term1 <= eps || term2 <= eps)
|
|
return Standard_False;
|
|
Xax = cost;
|
|
Yax = sint;
|
|
Rmin = sqrt ( term1);
|
|
Rmax = sqrt ( term2);
|
|
if(Rmax<Rmin){
|
|
Rmax = sqrt ( term1);
|
|
Rmin = sqrt ( term2);
|
|
}
|
|
}
|
|
else if (term1 <= eps){
|
|
if (-term1 <= eps || term2 <= eps)
|
|
return Standard_False;
|
|
Xax = -sint;
|
|
Yax = cost;
|
|
Rmin = sqrt (-term1);
|
|
Rmax = sqrt (term2);
|
|
}
|
|
else {
|
|
if (term1 <= eps || -term2 <= eps)
|
|
return Standard_False;
|
|
Xax = cost;
|
|
Yax = sint;
|
|
Rmin = sqrt (-term2);
|
|
Rmax = sqrt (term1);
|
|
}
|
|
}
|
|
Center.SetCoord (Xcen,Ycen,0.);
|
|
MainAxis.SetCoord (Xax,Yax,0.);
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ComputeEllipse
|
|
//purpose :
|
|
//=======================================================================
|
|
Handle(Geom_Curve) GeomConvert_CurveToAnaCurve::ComputeEllipse(const Handle(Geom_Curve)& c3d,
|
|
const Standard_Real tol,
|
|
const Standard_Real c1, const Standard_Real c2,
|
|
Standard_Real& cf, Standard_Real& cl,
|
|
Standard_Real& Deviation)
|
|
{
|
|
if (c3d->IsKind (STANDARD_TYPE(Geom_Ellipse))) {
|
|
cf = c1;
|
|
cl = c2;
|
|
Deviation = 0.;
|
|
Handle(Geom_Ellipse) anElips = Handle(Geom_Ellipse)::DownCast(c3d);
|
|
return anElips;
|
|
}
|
|
|
|
Handle(Geom_Curve) res;
|
|
Standard_Real prec = Precision::PConfusion();
|
|
|
|
Standard_Real AF,BF,CF,DF,EF,Q1,Q2,Q3,c2n;
|
|
Standard_Integer i;
|
|
|
|
gp_Pnt PStart = c3d->Value(c1);
|
|
gp_Pnt PEnd = c3d->Value(c2);
|
|
|
|
const Standard_Boolean IsClos = PStart.Distance(PEnd) < prec;
|
|
if (IsClos)
|
|
{
|
|
c2n=c2-(c2-c1)/5;
|
|
}
|
|
else
|
|
c2n=c2;
|
|
//
|
|
gp_XYZ aBC;
|
|
Handle(TColgp_HArray1OfPnt) AP = new TColgp_HArray1OfPnt(1,5);
|
|
AP->SetValue(1,PStart);
|
|
aBC += PStart.XYZ();
|
|
Standard_Real dc=(c2n-c1)/4;
|
|
for (i = 1; i < 5; i++)
|
|
{
|
|
gp_Pnt aP = c3d->Value(c1 + dc*i);
|
|
AP->SetValue(i + 1, aP);
|
|
aBC += aP.XYZ();
|
|
}
|
|
aBC /= 5;
|
|
aBC *= -1;
|
|
gp_Vec aTrans(aBC);
|
|
for (i = 1; i <= 5; ++i)
|
|
{
|
|
AP->ChangeValue(i).Translate(aTrans);
|
|
}
|
|
gp_Dir ndir;
|
|
if(!IsArrayPntPlanar(AP,ndir,prec))
|
|
return res;
|
|
|
|
if (Abs(ndir.X()) < gp::Resolution() && Abs(ndir.Y()) < gp::Resolution()
|
|
&& Abs(ndir.Z()) < gp::Resolution())
|
|
return res;
|
|
|
|
gp_Ax3 AX(gp_Pnt(0,0,0),ndir);
|
|
gp_Trsf Tr;
|
|
Tr.SetTransformation(AX);
|
|
gp_Trsf Tr2 = Tr.Inverted();
|
|
|
|
math_Matrix Dt(1, 5, 1, 5);
|
|
math_Vector F(1, 5), Sl(1, 5);
|
|
|
|
Standard_Real XN,YN,ZN = 0.;
|
|
gp_Pnt PT,PP;
|
|
for(i=1; i<=5; i++) {
|
|
PT = AP->Value(i).Transformed(Tr);
|
|
PT.Coord(XN,YN,ZN);
|
|
Dt(i, 1) = XN*XN;
|
|
Dt(i, 2) = XN*YN;
|
|
Dt(i, 3) = YN*YN;
|
|
Dt(i, 4) = XN;
|
|
Dt(i, 5) = YN;
|
|
F(i) = -1.;
|
|
}
|
|
|
|
math_Gauss aSolver(Dt);
|
|
if (!aSolver.IsDone())
|
|
return res;
|
|
|
|
aSolver.Solve(F, Sl);
|
|
|
|
AF=Sl(1);
|
|
BF=Sl(2);
|
|
CF=Sl(3);
|
|
DF=Sl(4);
|
|
EF=Sl(5);
|
|
|
|
Q1=AF*CF+BF*EF*DF/4-CF*DF*DF/4-BF*BF/4-AF*EF*EF/4;
|
|
Q2=AF*CF-BF*BF/4;
|
|
Q3=AF+CF;
|
|
|
|
Standard_Real Rmax, Rmin;
|
|
gp_Pnt Center;
|
|
gp_Dir MainAxis;
|
|
Standard_Boolean IsParab = Standard_False, IsEllip = Standard_False;
|
|
|
|
if (Q2 > 0 && Q1*Q3 < 0) {
|
|
// ellipse
|
|
IsEllip = Standard_True;
|
|
if (ConicDefinition(AF, BF, CF, DF, EF, 1., IsParab, IsEllip,
|
|
Center, MainAxis, Rmin, Rmax)) {
|
|
// create ellipse
|
|
if (Rmax - Rmin < Precision::Confusion())
|
|
{
|
|
return res; //really it is circle, which must be recognized in other method
|
|
}
|
|
aTrans *= -1;
|
|
Center.SetZ(ZN);
|
|
gp_Pnt NewCenter = Center.Transformed(Tr2);
|
|
gp_Pnt Ptmp(Center.X() + MainAxis.X() * 10,
|
|
Center.Y() + MainAxis.Y() * 10,
|
|
Center.Z() + MainAxis.Z() * 10);
|
|
gp_Pnt NewPtmp = Ptmp.Transformed(Tr2);
|
|
gp_Dir NewMainAxis(NewPtmp.X() - NewCenter.X(),
|
|
NewPtmp.Y() - NewCenter.Y(),
|
|
NewPtmp.Z() - NewCenter.Z());
|
|
gp_Ax2 ax2(NewCenter, ndir, NewMainAxis);
|
|
|
|
gp_Elips anEllipse(ax2, Rmax, Rmin);
|
|
anEllipse.Translate(aTrans);
|
|
Handle(Geom_Ellipse) gell = new Geom_Ellipse(anEllipse);
|
|
|
|
// test for 20 points
|
|
Standard_Real param2 = 0;
|
|
dc = (c2 - c1) / 20;
|
|
for (i = 1; i <= 20; i++) {
|
|
PP = c3d->Value(c1 + i*dc);
|
|
Standard_Real aPar = ElCLib::Parameter(anEllipse, PP);
|
|
Standard_Real dist = gell->Value(aPar).Distance(PP);
|
|
if (dist > tol) return res; // not done
|
|
if (dist > param2)
|
|
param2 = dist;
|
|
}
|
|
|
|
|
|
Deviation = param2;
|
|
|
|
Standard_Real PI2 = 2 * M_PI;
|
|
cf = ElCLib::Parameter(anEllipse, c3d->Value(c1));
|
|
cf = ElCLib::InPeriod(cf, 0., PI2);
|
|
|
|
//first parameter should be closed to zero
|
|
|
|
if (Abs(cf) < Precision::PConfusion() || Abs(PI2 - cf) < Precision::PConfusion())
|
|
cf = 0.;
|
|
|
|
Standard_Real cm = ElCLib::Parameter(anEllipse, c3d->Value((c1 + c2) / 2.));
|
|
cm = ElCLib::InPeriod(cm, cf, cf + PI2);
|
|
|
|
cl = ElCLib::Parameter(anEllipse, c3d->Value(c2));
|
|
cl = ElCLib::InPeriod(cl, cm, cm + PI2);
|
|
|
|
res = gell;
|
|
|
|
// reverse test for 20 points for cases of very thin and long ellipse (#30752)
|
|
if ((1 - anEllipse.Eccentricity()) < tol)
|
|
{
|
|
GeomAdaptor_Curve anAdpt(c3d);
|
|
Extrema_ExtPC aProj;
|
|
aProj.Initialize(anAdpt, c1, c2);
|
|
Standard_Real aTol2 = tol * tol;
|
|
Standard_Real aDelta = (cl - cf) / 20;
|
|
for (int aPntId = 1; aPntId <= 20; aPntId++)
|
|
{
|
|
gp_Pnt anEllPnt = res->Value(cf + aPntId * aDelta);
|
|
aProj.Perform(anEllPnt);
|
|
if (aProj.IsDone())
|
|
{
|
|
Standard_Real anExtDist = aProj.SquareDistance(1);
|
|
for (int anExtInd = 2; anExtInd <= aProj.NbExt(); anExtInd++)
|
|
{
|
|
Standard_Real aDist = aProj.SquareDistance(anExtInd);
|
|
if (anExtDist < aDist)
|
|
aDist = anExtDist;
|
|
}
|
|
if (anExtDist > aTol2)
|
|
return NULL; // not done
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
if (Q2 < 0 && Q1 != 0) {
|
|
// hyberbola
|
|
}
|
|
|
|
if (Q2 == 0 && Q1 != 0) {
|
|
// parabola
|
|
}
|
|
*/
|
|
return res;
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : ComputeCurve
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Handle(Geom_Curve) GeomConvert_CurveToAnaCurve::ComputeCurve(const Handle(Geom_Curve)& theC3d,
|
|
const Standard_Real tolerance,
|
|
const Standard_Real c1, const Standard_Real c2,
|
|
Standard_Real& cf, Standard_Real& cl,
|
|
Standard_Real& theGap,
|
|
const GeomConvert_ConvType theConvType, const GeomAbs_CurveType theTarget)
|
|
{
|
|
cf = c1; cl = c2;
|
|
Handle(Geom_Curve) c3d, newc3d[3];
|
|
Standard_Integer i, imin = -1;
|
|
c3d = theC3d;
|
|
if (c3d.IsNull()) return newc3d[imin];
|
|
gp_Pnt P1 = c3d->Value(c1);
|
|
gp_Pnt P2 = c3d->Value(c2);
|
|
gp_Pnt P3 = c3d->Value(c1 + (c2 - c1) / 2);
|
|
Standard_Real d[3] = { RealLast(), RealLast(), RealLast() };
|
|
Standard_Real fp[3], lp[3];
|
|
|
|
if (c3d->IsKind(STANDARD_TYPE(Geom_TrimmedCurve))) {
|
|
Handle(Geom_TrimmedCurve) aTc = Handle(Geom_TrimmedCurve)::DownCast(c3d);
|
|
c3d = aTc->BasisCurve();
|
|
}
|
|
|
|
if (theConvType == GeomConvert_Target)
|
|
{
|
|
theGap = RealLast();
|
|
if (theTarget == GeomAbs_Line)
|
|
{
|
|
newc3d[0] = ComputeLine(c3d, tolerance, c1, c2, fp[0], lp[0], theGap);
|
|
cf = fp[0];
|
|
cl = lp[0];
|
|
return newc3d[0];
|
|
}
|
|
if (theTarget == GeomAbs_Circle)
|
|
{
|
|
newc3d[1] = ComputeCircle(c3d, tolerance, c1, c2, fp[1], lp[1], theGap);
|
|
cf = fp[1];
|
|
cl = lp[1];
|
|
return newc3d[1];
|
|
}
|
|
if (theTarget == GeomAbs_Ellipse)
|
|
{
|
|
newc3d[2] = ComputeEllipse(c3d, tolerance, c1, c2, fp[2], lp[2], theGap);
|
|
cf = fp[2];
|
|
cl = lp[2];
|
|
return newc3d[2];
|
|
}
|
|
}
|
|
//
|
|
if (theConvType == GeomConvert_Simplest)
|
|
{
|
|
theGap = RealLast();
|
|
newc3d[0] = ComputeLine(c3d, tolerance, c1, c2, fp[0], lp[0], theGap);
|
|
if (!newc3d[0].IsNull())
|
|
{
|
|
cf = fp[0];
|
|
cl = lp[0];
|
|
return newc3d[0];
|
|
}
|
|
theGap = RealLast();
|
|
newc3d[1] = ComputeCircle(c3d, tolerance, c1, c2, fp[1], lp[1], theGap);
|
|
if (!newc3d[1].IsNull())
|
|
{
|
|
cf = fp[1];
|
|
cl = lp[1];
|
|
return newc3d[1];
|
|
}
|
|
theGap = RealLast();
|
|
newc3d[2] = ComputeEllipse(c3d, tolerance, c1, c2, fp[2], lp[2], theGap);
|
|
if (!newc3d[2].IsNull())
|
|
{
|
|
cf = fp[2];
|
|
cl = lp[2];
|
|
return newc3d[2];
|
|
}
|
|
// Conversion failed, returns null curve
|
|
return newc3d[0];
|
|
}
|
|
|
|
// theConvType == GeomConvert_MinGap
|
|
// recognition in case of small curve
|
|
imin = -1;
|
|
if((P1.Distance(P2) < 2*tolerance) && (P1.Distance(P3) < 2*tolerance)) {
|
|
newc3d[1] = ComputeCircle(c3d, tolerance, c1, c2, fp[1], lp[1], d[1]);
|
|
newc3d[0] = ComputeLine(c3d, tolerance, c1, c2, fp[0], lp[0], d[0]);
|
|
imin = 1;
|
|
if (newc3d[1].IsNull() || d[0] < d[1])
|
|
{
|
|
imin = 0;
|
|
}
|
|
}
|
|
else {
|
|
d[0] = RealLast();
|
|
newc3d[0] = ComputeLine (c3d,tolerance,c1,c2,fp[0],lp[0],d[0]);
|
|
Standard_Real tol = Min(tolerance, d[0]);
|
|
if (!Precision::IsInfinite(c1) && !Precision::IsInfinite(c2))
|
|
{
|
|
d[1] = RealLast();
|
|
newc3d[1] = ComputeCircle(c3d, tol, c1, c2, fp[1], lp[1], d[1]);
|
|
tol = Min(tol, d[1]);
|
|
d[2] = RealLast();
|
|
newc3d[2] = ComputeEllipse(c3d, tol, c1, c2, fp[2], lp[2], d[2]);
|
|
}
|
|
Standard_Real dd = RealLast();
|
|
for (i = 0; i < 3; ++i)
|
|
{
|
|
if (newc3d[i].IsNull()) continue;
|
|
if (d[i] < dd)
|
|
{
|
|
dd = d[i];
|
|
imin = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (imin >= 0)
|
|
{
|
|
cf = fp[imin];
|
|
cl = lp[imin];
|
|
theGap = d[imin];
|
|
return newc3d[imin];
|
|
}
|
|
else
|
|
{
|
|
cf = c1;
|
|
cl = c2;
|
|
theGap = -1.;
|
|
return newc3d[0]; // must be null curve;
|
|
}
|
|
}
|