1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00
occt/src/math/math_SVD.hxx
dpasukhi a5a7b3185b Coding - Apply .clang-format formatting #286
Update empty method guards to new style with regex (see PR).
Used clang-format 18.1.8.
New actions to validate code formatting is added.
Update .clang-format with disabling of include sorting.
  It is temporary changes, then include will be sorted.
Apply formatting for /src and /tools folder.
The files with .hxx,.cxx,.lxx,.h,.pxx,.hpp,*.cpp extensions.
2025-01-26 00:43:57 +00:00

80 lines
2.8 KiB
C++

// Created on: 1991-05-13
// Created by: Laurent PAINNOT
// Copyright (c) 1991-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _math_SVD_HeaderFile
#define _math_SVD_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <math_Matrix.hxx>
#include <math_Vector.hxx>
#include <Standard_Integer.hxx>
#include <Standard_OStream.hxx>
//! SVD implements the solution of a set of N linear equations
//! of M unknowns without condition on N or M. The Singular
//! Value Decomposition algorithm is used. For singular or
//! nearly singular matrices SVD is a better choice than Gauss
//! or GaussLeastSquare.
class math_SVD
{
public:
DEFINE_STANDARD_ALLOC
//! Given as input an n X m matrix A with n < m, n = m or n > m
//! this constructor performs the Singular Value Decomposition.
Standard_EXPORT math_SVD(const math_Matrix& A);
//! Returns true if the computations are successful, otherwise returns false.
Standard_Boolean IsDone() const;
//! Given the input Vector B this routine solves the set of linear
//! equations A . X = B.
//! Exception NotDone is raised if the decomposition of A was not done
//! successfully.
//! Exception DimensionError is raised if the range of B is not
//! equal to the rowrange of A.
//! Exception DimensionError is raised if the range of X is not
//! equal to the colrange of A.
Standard_EXPORT void Solve(const math_Vector& B,
math_Vector& X,
const Standard_Real Eps = 1.0e-6);
//! Computes the inverse Inv of matrix A such as A * Inverse = Identity.
//! Exceptions
//! StdFail_NotDone if the algorithm fails (and IsDone returns false).
//! Standard_DimensionError if the ranges of Inv are
//! compatible with the ranges of A.
Standard_EXPORT void PseudoInverse(math_Matrix& Inv, const Standard_Real Eps = 1.0e-6);
//! Prints information on the current state of the object.
//! Is used to redefine the operator <<.
Standard_EXPORT void Dump(Standard_OStream& o) const;
protected:
private:
Standard_Boolean Done;
math_Matrix U;
math_Matrix V;
math_Vector Diag;
Standard_Integer RowA;
};
#include <math_SVD.lxx>
#endif // _math_SVD_HeaderFile