1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-26 10:19:45 +03:00
occt/src/Plate/Plate_FreeGtoCConstraint.cxx
abv d5f74e42d6 0024624: Lost word in license statement in source files
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast
Wrong license statements corrected in several files.
Copyright and license statements added in XSD and GLSL files.
Copyright year updated in some files.
Obsolete documentation files removed from DrawResources.
2014-02-20 16:15:17 +04:00

405 lines
12 KiB
C++

// Created on: 1998-03-27
// Created by: # Andre LIEUTIER
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <math_Matrix.hxx>
#include <math_Vector.hxx>
#include <math_Gauss.hxx>
#include <Plate_FreeGtoCConstraint.ixx>
#include <gp_Pnt.hxx>
#include <gp_Dir.hxx>
#include <gp_Trsf.hxx>
#include <gp_Ax1.hxx>
static const Standard_Real NORMIN = 1.e-10;
static const Standard_Real COSMIN = 1.e-2;
// G1 Constraints
Plate_FreeGtoCConstraint::Plate_FreeGtoCConstraint(const gp_XY& point2d,const Plate_D1& D1S,const Plate_D1& D1T,
const Standard_Real IncrementalLoad, const Standard_Integer orientation)
{
pnt2d = point2d;
nb_PPConstraints = 0;
nb_LSConstraints = 0;
gp_XYZ normale = D1T.Du^D1T.Dv;
if(normale.Modulus() < NORMIN) return;
normale.Normalize();
if(IncrementalLoad!=1.)
{
gp_XYZ N0 = D1S.Du^D1S.Dv;
if(N0.Modulus()< NORMIN) return;
N0.Normalize();
gp_XYZ N1 = normale;
if(orientation!=0) N1 *= orientation;
Standard_Real c = N0*N1;
if(orientation==0)
{
if (c <0.)
{
c *= -1.;
N1 *= -1.;
}
}
Standard_Real s = N0.CrossMagnitude(N1);
if((s < 1.e-2)&&(c<0.)) return;
Standard_Real angle = atan2(c,s);
//if (angle < 0.) angle += M_PI;
gp_XYZ d = N0^N1;
d.Normalize();
gp_Dir dir = gp_Dir(d);
gp_Trsf rota;
gp_Ax1 Axe(gp_Pnt(0,0,0), dir);
rota.SetRotation(Axe,angle*(IncrementalLoad-1.));
// gp_Trsf rota = gce_MakeRotation(gp_Pnt(0,0,0), dir, angle*(IncrementalLoad-1.));
rota.Transforms(normale);
}
gp_XYZ du = D1S.Du*(-1.);
gp_XYZ dv = D1S.Dv*(-1.);
myLSC[0] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, du,1,0), normale);
myLSC[1] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, dv,0,1), normale);
nb_LSConstraints = 2;
}
// G1 + G2 Constraints
Plate_FreeGtoCConstraint::Plate_FreeGtoCConstraint(const gp_XY& point2d,const Plate_D1& D1S,const Plate_D1& D1T0,
const Plate_D2& D2S,const Plate_D2& D2T0,
const Standard_Real IncrementalLoad, const Standard_Integer orientation)
{
pnt2d = point2d;
nb_PPConstraints = 0;
nb_LSConstraints = 0;
Plate_D1 D1T = D1T0;
Plate_D2 D2T = D2T0;
gp_XYZ normale = D1T.Du^D1T.Dv;
if(normale.Modulus() < NORMIN) return;
normale.Normalize();
// G1 Constraints
gp_XYZ normaleS = D1S.Du^D1S.Dv;
if(normaleS.Modulus() < NORMIN)
{
if(IncrementalLoad!=1.) return;
gp_XYZ du = D1S.Du*(-1.);
gp_XYZ dv = D1S.Dv*(-1.);
myLSC[0] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, du,1,0), normale);
myLSC[1] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, dv,0,1), normale);
nb_LSConstraints = 2;
return;
}
normaleS.Normalize();
if(IncrementalLoad!=1.)
{
gp_XYZ N0 = normaleS;
gp_XYZ N1 = normale;
if(orientation!=0) N1 *= orientation;
Standard_Real c = N0*N1;
if(orientation==0)
{
if (c <0.)
{
c *= -1.;
N1 *= -1.;
}
}
Standard_Real s = N0.CrossMagnitude(N1);
if((s < 1.e-2)&&(c<0.)) return;
Standard_Real angle = atan2(c,s);
gp_XYZ d = N0^N1;
d.Normalize();
gp_Dir dir = gp_Dir(d);
gp_Trsf rota;
gp_Ax1 Axe(gp_Pnt(0,0,0), dir);
rota.SetRotation(Axe,angle*(IncrementalLoad-1.));
// gp_Trsf rota = gce_MakeRotation(gp_Pnt(0,0,0), dir, angle*(IncrementalLoad-1.));
rota.Transforms(normale);
rota.Transforms(D1T.Du);
rota.Transforms(D1T.Dv);
rota.Transforms(D2T.Duu);
rota.Transforms(D2T.Duv);
rota.Transforms(D2T.Dvv);
}
Standard_Real cos_normales = normale*normaleS;
if( fabs(cos_normales)<COSMIN)
{
gp_XYZ du = D1S.Du*(-1.);
gp_XYZ dv = D1S.Dv*(-1.);
myLSC[0] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, du,1,0), normale);
myLSC[1] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, dv,0,1), normale);
nb_LSConstraints = 2;
return;
}
Standard_Real invcos = 1./cos_normales;
gp_XYZ du = normaleS* -(normale*D1S.Du)*invcos;
gp_XYZ dv = normaleS* -(normale*D1S.Dv)*invcos;
myPPC[0] = Plate_PinpointConstraint(pnt2d, du,1,0);
myPPC[1] = Plate_PinpointConstraint(pnt2d, dv,0,1);
nb_PPConstraints = 2;
// G2 Constraints
gp_XYZ Su = D1S.Du+du;
gp_XYZ Sv = D1S.Dv+dv;
math_Matrix mat(0,1,0,1);
mat(0,0) = Su*D1T.Du;
mat(0,1) = Su*D1T.Dv;
mat(1,0) = Sv*D1T.Du;
mat(1,1) = Sv*D1T.Dv;
math_Gauss gauss(mat);
if(!gauss.IsDone()) return;
math_Vector vec(0,1);
vec(0) = Su*Su;
vec(1) = Su*Sv;
math_Vector sol(0,1);
gauss.Solve(vec,sol);
Standard_Real a = sol(0);
Standard_Real b = sol(1);
vec(0) = Sv*Su;
vec(1) = Sv*Sv;
gauss.Solve(vec,sol);
Standard_Real c = sol(0);
Standard_Real d = sol(1);
gp_XYZ Suu = D2T.Duu*(a*a) + D2T.Duv*(2*a*b) + D2T.Dvv*(b*b);
gp_XYZ Suv = D2T.Duu*(a*c) + D2T.Duv*(a*d+b*c) + D2T.Dvv*(b*d);
gp_XYZ Svv = D2T.Duu*(c*c) + D2T.Duv*(2*c*d) + D2T.Dvv*(d*d);
gp_XYZ duu = Suu-D2S.Duu;
gp_XYZ duv = Suv-D2S.Duv;
gp_XYZ dvv = Svv-D2S.Dvv;
duu *= IncrementalLoad;
duv *= IncrementalLoad;
dvv *= IncrementalLoad;
myLSC[0] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, duu,2,0), normale);
myLSC[1] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, duv,1,1), normale);
myLSC[2] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, dvv,0,2), normale);
nb_LSConstraints = 3;
}
// G1 + G2 + G3 Constraints
Plate_FreeGtoCConstraint::Plate_FreeGtoCConstraint(const gp_XY& point2d,const Plate_D1& D1S,const Plate_D1& D1T0,
const Plate_D2& D2S,const Plate_D2& D2T0,
const Plate_D3& D3S,const Plate_D3& D3T0,
const Standard_Real IncrementalLoad, const Standard_Integer orientation)
{
pnt2d = point2d;
nb_PPConstraints = 0;
nb_LSConstraints = 0;
Plate_D1 D1T = D1T0;
Plate_D2 D2T = D2T0;
Plate_D3 D3T = D3T0;
gp_XYZ normale = D1T.Du^D1T.Dv;
if(normale.Modulus() < NORMIN) return;
normale.Normalize();
// G1 Constraints
gp_XYZ normaleS = D1S.Du^D1S.Dv;
if(normaleS.Modulus() < NORMIN)
{
if(IncrementalLoad!=1.) return;
gp_XYZ du = D1S.Du*(-1.);
gp_XYZ dv = D1S.Dv*(-1.);
myLSC[0] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, du,1,0), normale);
myLSC[1] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, dv,0,1), normale);
nb_LSConstraints = 2;
return;
}
normaleS.Normalize();
if(IncrementalLoad!=1.)
{
gp_XYZ N0 = normaleS;
gp_XYZ N1 = normale;
if(orientation!=0) N1 *= orientation;
Standard_Real c = N0*N1;
if(orientation==0)
{
if (c <0.)
{
c *= -1.;
N1 *= -1.;
}
}
Standard_Real s = N0.CrossMagnitude(N1);
if((s < 1.e-2)&&(c<0.)) return;
Standard_Real angle = atan2(c,s);
gp_XYZ d = N0^N1;
d.Normalize();
gp_Dir dir = gp_Dir(d);
gp_Trsf rota;
gp_Ax1 Axe(gp_Pnt(0,0,0), dir);
rota.SetRotation(Axe,angle*(IncrementalLoad-1.));
// gp_Trsf rota = gce_MakeRotation(gp_Pnt(0,0,0), dir, angle*(IncrementalLoad-1.));
rota.Transforms(normale);
rota.Transforms(D1T.Du);
rota.Transforms(D1T.Dv);
rota.Transforms(D2T.Duu);
rota.Transforms(D2T.Duv);
rota.Transforms(D2T.Dvv);
rota.Transforms(D3T.Duuu);
rota.Transforms(D3T.Duuv);
rota.Transforms(D3T.Duvv);
rota.Transforms(D3T.Dvvv);
}
Standard_Real cos_normales = normale*normaleS;
if( fabs(cos_normales)<COSMIN)
{
gp_XYZ du = D1S.Du*(-1.);
gp_XYZ dv = D1S.Dv*(-1.);
myLSC[0] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, du,1,0), normale);
myLSC[1] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, dv,0,1), normale);
nb_LSConstraints = 2;
return;
}
Standard_Real invcos = 1./cos_normales;
gp_XYZ du = normaleS* -(normale*D1S.Du)*invcos;
gp_XYZ dv = normaleS* -(normale*D1S.Dv)*invcos;
myPPC[0] = Plate_PinpointConstraint(pnt2d, du,1,0);
myPPC[1] = Plate_PinpointConstraint(pnt2d, dv,0,1);
nb_PPConstraints = 2;
// G2 Constraints
gp_XYZ Su = D1S.Du+du;
gp_XYZ Sv = D1S.Dv+dv;
math_Matrix mat(0,1,0,1);
mat(0,0) = Su*D1T.Du;
mat(0,1) = Su*D1T.Dv;
mat(1,0) = Sv*D1T.Du;
mat(1,1) = Sv*D1T.Dv;
math_Gauss gauss(mat);
if(!gauss.IsDone()) return;
math_Vector vec(0,1);
vec(0) = Su*Su;
vec(1) = Su*Sv;
math_Vector sol(0,1);
gauss.Solve(vec,sol);
Standard_Real a = sol(0);
Standard_Real b = sol(1);
vec(0) = Sv*Su;
vec(1) = Sv*Sv;
gauss.Solve(vec,sol);
Standard_Real c = sol(0);
Standard_Real d = sol(1);
gp_XYZ Suu = D2T.Duu*(a*a) + D2T.Duv*(2*a*b) + D2T.Dvv*(b*b);
gp_XYZ Suv = D2T.Duu*(a*c) + D2T.Duv*(a*d+b*c) + D2T.Dvv*(b*d);
gp_XYZ Svv = D2T.Duu*(c*c) + D2T.Duv*(2*c*d) + D2T.Dvv*(d*d);
gp_XYZ duu = normaleS * (normale*(Suu-D2S.Duu))*invcos;
gp_XYZ duv = normaleS * (normale*(Suv-D2S.Duv))*invcos;
gp_XYZ dvv = normaleS * (normale*(Svv-D2S.Dvv))*invcos;
myPPC[2] = Plate_PinpointConstraint(pnt2d, duu,2,0);
myPPC[3] = Plate_PinpointConstraint(pnt2d, duv,1,1);
myPPC[4] = Plate_PinpointConstraint(pnt2d, dvv,0,2);
nb_PPConstraints = 5;
// G3 Constraints
vec(0) = (D2S.Duu + duu - Suu)*Su;
vec(1) = (D2S.Duu + duu - Suu)*Sv;
gauss.Solve(vec,sol);
Standard_Real B0uu = sol(0);
Standard_Real B1uu = sol(1);
vec(0) = (D2S.Duv + duv - Suv)*Su;
vec(1) = (D2S.Duv + duv - Suv)*Sv;
gauss.Solve(vec,sol);
Standard_Real B0uv = sol(0);
Standard_Real B1uv = sol(1);
vec(0) = (D2S.Dvv + dvv - Svv)*Su;
vec(1) = (D2S.Dvv + dvv - Svv)*Sv;
gauss.Solve(vec,sol);
Standard_Real B0vv = sol(0);
Standard_Real B1vv = sol(1);
gp_XYZ Suuu = D3T.Duuu*(a*a*a) + D3T.Duuv*(3*a*a*b) + D3T.Duvv*(3*a*b*b) + D3T.Dvvv*(b*b*b);
gp_XYZ Suuv = D3T.Duuu*(a*a*c) + D3T.Duuv*(a*a*d+2*a*b*c) + D3T.Duvv*(b*b*c+2*a*b*d) + D3T.Dvvv*(b*b*d);
gp_XYZ Suvv = D3T.Duuu*(a*c*c) + D3T.Duuv*(b*c*c+2*a*c*d) + D3T.Duvv*(a*d*d+2*b*c*d) + D3T.Dvvv*(b*d*d);
gp_XYZ Svvv = D3T.Duuu*(c*c*c) + D3T.Duuv*(3*c*c*d) + D3T.Duvv*(3*c*d*d) + D3T.Dvvv*(d*d*d);
Standard_Real &A0u = a;
Standard_Real &A1u = b;
Standard_Real &A0v = c;
Standard_Real &A1v = d;
Suuu += D2T.Duu*(3*A0u*B0uu) + D2T.Duv*(3*(A0u*B1uu+A1u*B0uu)) + D2T.Dvv*(3*A1u*B1uu);
Suuv += D2T.Duu*(2*A0u*B0uv+A0v*B0uu) + D2T.Duv*(2*(A0u*B1uv+A1u*B0uv)+A0v*B1uu+A1v*B0uu) + D2T.Dvv*(2*A1u*B1uv+A1v*B1uu);
Suvv += D2T.Duu*(A0u*B0vv+2*A0v*B0uv) + D2T.Duv*(2*(A0v*B1uv+A1v*B0uv)+A0u*B1vv+A1u*B0vv) + D2T.Dvv*(2*A1v*B1uv+A1u*B1vv);
Svvv += D2T.Duu*(3*A0v*B0vv) + D2T.Duv*(3*(A0v*B1vv+A1v*B0vv)) + D2T.Dvv*(3*A1v*B1vv);
gp_XYZ duuu = Suuu-D3S.Duuu;
gp_XYZ duuv = Suuv-D3S.Duuv;
gp_XYZ duvv = Suvv-D3S.Duvv;
gp_XYZ dvvv = Svvv-D3S.Dvvv;
duuu *= IncrementalLoad;
duuv *= IncrementalLoad;
duvv *= IncrementalLoad;
dvvv *= IncrementalLoad;
myLSC[0] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, duuu,3,0), normale);
myLSC[1] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, duuv,2,1), normale);
myLSC[2] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, duvv,1,2), normale);
myLSC[3] = Plate_LinearScalarConstraint(Plate_PinpointConstraint(pnt2d, dvvv,0,3), normale);
nb_LSConstraints = 4;
}