1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-06 18:26:22 +03:00
occt/src/IntPatch/IntPatch_PolyLine.cxx
abv d5f74e42d6 0024624: Lost word in license statement in source files
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast
Wrong license statements corrected in several files.
Copyright and license statements added in XSD and GLSL files.
Copyright year updated in some files.
Obsolete documentation files removed from DrawResources.
2014-02-20 16:15:17 +04:00

210 lines
6.4 KiB
C++

// Created on: 1993-01-29
// Created by: Isabelle GRIGNON
// Copyright (c) 1993-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
//-- lbr le 12 juin : Ajout des fleches sur les Lines
//-- msv 13.03.2002 : compute deflection for WLine; Error() returns deflection
#include <IntPatch_PolyLine.ixx>
#include <Precision.hxx>
#define INITDEFLE Precision::PConfusion()*100.
//=======================================================================
//function : IntPatch_PolyLine
//purpose :
//=======================================================================
IntPatch_PolyLine::IntPatch_PolyLine ()
: IntPatch_Polygo(INITDEFLE)
{}
//=======================================================================
//function : IntPatch_PolyLine
//purpose :
//=======================================================================
IntPatch_PolyLine::IntPatch_PolyLine (const Standard_Real InitDefle)
: IntPatch_Polygo(InitDefle)
{}
//=======================================================================
//function : SetWLine
//purpose :
//=======================================================================
void IntPatch_PolyLine::SetWLine(const Standard_Boolean OnFirst, const Handle(IntPatch_WLine)& Line)
{
typ = IntPatch_Walking;
wpoly = Line;
onfirst = OnFirst;
Prepare();
}
//=======================================================================
//function : SetRLine
//purpose :
//=======================================================================
void IntPatch_PolyLine::SetRLine(const Standard_Boolean OnFirst, const Handle(IntPatch_RLine)& Line)
{
typ = IntPatch_Restriction;
rpoly = Line;
onfirst = OnFirst;
Prepare();
}
//=======================================================================
//function : Prepare
//purpose :
//=======================================================================
void IntPatch_PolyLine::Prepare()
{
Standard_Integer i;
myBox.SetVoid();
Standard_Integer n=NbPoints();
const Standard_Real eps_2 = myError * myError;
gp_Pnt2d P1, P2;
if (n >= 3) {
P1 = Point(1); P2 = Point(2);
}
for (i=1; i<=n ;i++) {
const gp_Pnt2d& P3 = Point(i);
if (i >= 3) {
gp_XY V13 = P3.XY() - P1.XY();
gp_XY V12 = P2.XY() - P1.XY();
Standard_Real d13_2 = V13.SquareModulus(), d_2;
if (d13_2 > eps_2)
d_2 = V13.CrossSquareMagnitude(V12) / d13_2;
else
d_2 = eps_2;
if (d_2 > myError * myError) {
// try to compute deflection more precisely using parabola interpolation
gp_XY V23 = P3.XY() - P2.XY();
Standard_Real d12 = V12.Modulus(), d23 = V23.Modulus();
// compute parameter of P2 (assume parameters of P1,P3 are 0,1)
Standard_Real tm = d12 / (d12+d23);
if (tm > 0.1 && tm < 0.9) {
tm -= (tm-0.5) * 0.6;
Standard_Real tm1mtm = tm*(1-tm);
// coefficients of parabola
Standard_Real Ax = (tm*V13.X() - V12.X()) / tm1mtm;
Standard_Real Bx = (V12.X() - tm*tm*V13.X()) / tm1mtm;
Standard_Real Cx = P1.X();
Standard_Real Ay = (tm*V13.Y() - V12.Y()) / tm1mtm;
Standard_Real By = (V12.Y() - tm*tm*V13.Y()) / tm1mtm;
Standard_Real Cy = P1.Y();
// equations of lines P1-P2 and P2-P3
Standard_Real A1 = V12.Y() / d12;
Standard_Real B1 = -V12.X() / d12;
Standard_Real C1 = (P2.X()*P1.Y() - P1.X()*P2.Y()) / d12;
Standard_Real A2 = V23.Y() / d23;
Standard_Real B2 = -V23.X() / d23;
Standard_Real C2 = (P3.X()*P2.Y() - P2.X()*P3.Y()) / d23;
// points on parabola with max deflection
Standard_Real t1 = -0.5 * (A1*Bx + B1*By) / (A1*Ax + B1*Ay);
Standard_Real t2 = -0.5 * (A2*Bx + B2*By) / (A2*Ax + B2*Ay);
Standard_Real xt1 = Ax*t1*t1 + Bx*t1 + Cx;
Standard_Real yt1 = Ay*t1*t1 + By*t1 + Cy;
Standard_Real xt2 = Ax*t2*t2 + Bx*t2 + Cx;
Standard_Real yt2 = Ay*t2*t2 + By*t2 + Cy;
// max deflection on segments P1-P2 and P2-P3
Standard_Real d1 = Abs (A1*xt1 + B1*yt1 + C1);
Standard_Real d2 = Abs (A2*xt2 + B2*yt2 + C2);
if (d2 > d1) d1 = d2;
// select min deflection from linear and parabolic ones
if (d1 * d1 < d_2) d_2 = d1 * d1;
}
if (d_2 > myError * myError) myError=Sqrt(d_2);
}
P1 = P2; P2 = P3;
}
myBox.Add(P3);
}
myBox.Enlarge(myError);
}
//=======================================================================
//function : ResetError
//purpose :
//=======================================================================
void IntPatch_PolyLine::ResetError()
{
myError = INITDEFLE;
}
//=======================================================================
//function : NbPoints
//purpose :
//=======================================================================
Standard_Integer IntPatch_PolyLine::NbPoints() const
{
return (typ == IntPatch_Walking ? wpoly->NbPnts() : rpoly->NbPnts());
}
//=======================================================================
//function : Point
//purpose :
//=======================================================================
gp_Pnt2d IntPatch_PolyLine::Point(const Standard_Integer Index ) const
{
Standard_Real X,Y,X1,Y1,DX,DY;
DX=DY=0;
if (onfirst) {
if (typ == IntPatch_Walking) {
wpoly->Point(Index).ParametersOnS1(X,Y);
if(Index==1) {
wpoly->Point(2).ParametersOnS1(X1,Y1);
DX=0.0000001*(X-X1);
DY=0.0000001*(Y-Y1);
}
else if(Index==wpoly->NbPnts()) {
wpoly->Point(Index-1).ParametersOnS1(X1,Y1);
DX=0.0000001*(X-X1);
DY=0.0000001*(Y-Y1);
}
}
else {
rpoly->Point(Index).ParametersOnS1(X,Y);
}
}
else {
if (typ == IntPatch_Walking) {
wpoly->Point(Index).ParametersOnS2(X,Y);
if(Index==1) {
wpoly->Point(2).ParametersOnS2(X1,Y1);
DX=0.0000001*(X-X1);
DY=0.0000001*(Y-Y1);
}
else if(Index==wpoly->NbPnts()) {
wpoly->Point(Index-1).ParametersOnS2(X1,Y1);
DX=0.0000001*(X-X1);
DY=0.0000001*(Y-Y1);
}
}
else {
rpoly->Point(Index).ParametersOnS2(X,Y);
}
}
return(gp_Pnt2d(X+DX,Y+DY));
}