1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-26 10:19:45 +03:00
occt/src/GeomPlate/GeomPlate_MakeApprox.cxx
abv d5f74e42d6 0024624: Lost word in license statement in source files
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast
Wrong license statements corrected in several files.
Copyright and license statements added in XSD and GLSL files.
Copyright year updated in some files.
Obsolete documentation files removed from DrawResources.
2014-02-20 16:15:17 +04:00

502 lines
14 KiB
C++

// Created on: 1996-03-05
// Created by: Joelle CHAUVET
// Copyright (c) 1996-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// PMN : 7/07/1997 : cout en #if DEB ... #endif
#include <GeomPlate_MakeApprox.ixx>
#include <GeomPlate_Surface.hxx>
#include <GeomPlate_PlateG0Criterion.hxx>
#include <GeomPlate_PlateG1Criterion.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_Surface.hxx>
#include <TColgp_SequenceOfXY.hxx>
#include <TColgp_SequenceOfXYZ.hxx>
#include <gp_Vec.hxx>
#include <gp_Pnt.hxx>
#include <gp_XY.hxx>
#include <PLib.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include <TColStd_HArray1OfInteger.hxx>
#include <TColStd_HArray2OfReal.hxx>
#include <Handle_TColStd_HArray1OfReal.hxx>
#include <Handle_TColStd_HArray2OfReal.hxx>
#include <AdvApp2Var_Criterion.hxx>
#include <AdvApp2Var_ApproxAFunc2Var.hxx>
#include <AdvApprox_PrefCutting.hxx>
#include <AdvApprox_Cutting.hxx>
#include <AdvApprox_DichoCutting.hxx>
#include <Plate_Plate.hxx>
class GeomPlate_MakeApprox_Eval : public AdvApp2Var_EvaluatorFunc2Var
{
public:
GeomPlate_MakeApprox_Eval (const Handle(Geom_Surface)& theSurf)
: mySurf (theSurf) {}
virtual void Evaluate (Standard_Integer* theDimension,
Standard_Real* theUStartEnd,
Standard_Real* theVStartEnd,
Standard_Integer* theFavorIso,
Standard_Real* theConstParam,
Standard_Integer* theNbParams,
Standard_Real* theParameters,
Standard_Integer* theUOrder,
Standard_Integer* theVOrder,
Standard_Real* theResult,
Standard_Integer* theErrorCode) const;
private:
Handle(Geom_Surface) mySurf;
};
void GeomPlate_MakeApprox_Eval::Evaluate (Standard_Integer * Dimension,
// Dimension
Standard_Real * UStartEnd,
// StartEnd[2] in U
Standard_Real * VStartEnd,
// StartEnd[2] in V
Standard_Integer * FavorIso,
// Choice of constante, 1 for U, 2 for V
Standard_Real * ConstParam,
// Value of constant parameter
Standard_Integer * NbParams,
// Number of parameters N
Standard_Real * Parameters,
// Values of parameters,
Standard_Integer * UOrder,
// Derivative Request in U
Standard_Integer * VOrder,
// Derivative Request in V
Standard_Real * Result,
// Result[Dimension,N]
Standard_Integer * ErrorCode) const
// Error Code
{
*ErrorCode = 0;
Standard_Integer idim,jpar;
Standard_Real Upar,Vpar;
// Dimension incorrecte
if (*Dimension!=3) {
*ErrorCode = 1;
}
// Parametres incorrects
if (*FavorIso==1) {
Upar = *ConstParam;
if (( Upar < UStartEnd[0] ) || ( Upar > UStartEnd[1] )) {
*ErrorCode = 2;
}
for (jpar=1;jpar<=*NbParams;jpar++) {
Vpar = Parameters[jpar-1];
if (( Vpar < VStartEnd[0] ) || ( Vpar > VStartEnd[1] )) {
*ErrorCode = 2;
}
}
}
else {
Vpar = *ConstParam;
if (( Vpar < VStartEnd[0] ) || ( Vpar > VStartEnd[1] )) {
*ErrorCode = 2;
}
for (jpar=1;jpar<=*NbParams;jpar++) {
Upar = Parameters[jpar-1];
if (( Upar < UStartEnd[0] ) || ( Upar > UStartEnd[1] )) {
*ErrorCode = 2;
}
}
}
// Initialisation
for (idim=1;idim<=*Dimension;idim++) {
for (jpar=1;jpar<=*NbParams;jpar++) {
Result[idim-1+(jpar-1)*(*Dimension)] = 0.;
}
}
Standard_Integer Order = *UOrder + *VOrder;
gp_Pnt pnt;
// gp_Vec vect, v1, v2, v3, v4, v5, v6, v7, v8, v9;
gp_Vec v1, v2, v3, v4, v5;
if (*FavorIso==1) {
Upar = *ConstParam;
switch (Order) {
case 0 :
for (jpar=1;jpar<=*NbParams;jpar++) {
Vpar = Parameters[jpar-1];
pnt = mySurf->Value (Upar, Vpar);
Result[(jpar-1)*(*Dimension)] = pnt.X();
Result[1+(jpar-1)*(*Dimension)] = pnt.Y();
Result[2+(jpar-1)*(*Dimension)] = pnt.Z();
}
break;
case 1 :
for (jpar=1;jpar<=*NbParams;jpar++) {
Vpar = Parameters[jpar-1];
mySurf->D1 (Upar, Vpar, pnt, v1, v2);
if (*UOrder==1) {
Result[(jpar-1)*(*Dimension)] = v1.X();
Result[1+(jpar-1)*(*Dimension)] = v1.Y();
Result[2+(jpar-1)*(*Dimension)] = v1.Z();
}
else {
Result[(jpar-1)*(*Dimension)] = v2.X();
Result[1+(jpar-1)*(*Dimension)] = v2.Y();
Result[2+(jpar-1)*(*Dimension)] = v2.Z();
}
}
break;
case 2 :
for (jpar=1;jpar<=*NbParams;jpar++) {
Vpar = Parameters[jpar-1];
mySurf->D2 (Upar, Vpar, pnt, v1, v2, v3, v4, v5);
if (*UOrder==2) {
Result[(jpar-1)*(*Dimension)] = v3.X();
Result[1+(jpar-1)*(*Dimension)] = v3.Y();
Result[2+(jpar-1)*(*Dimension)] = v3.Z();
}
else if (*UOrder==1) {
Result[(jpar-1)*(*Dimension)] = v5.X();
Result[1+(jpar-1)*(*Dimension)] = v5.Y();
Result[2+(jpar-1)*(*Dimension)] = v5.Z();
}
else if (*UOrder==0) {
Result[(jpar-1)*(*Dimension)] = v4.X();
Result[1+(jpar-1)*(*Dimension)] = v4.Y();
Result[2+(jpar-1)*(*Dimension)] = v4.Z();
}
}
break;
}
}
else {
Vpar = *ConstParam;
switch (Order) {
case 0 :
for (jpar=1;jpar<=*NbParams;jpar++) {
Upar = Parameters[jpar-1];
pnt = mySurf->Value (Upar, Vpar);
Result[(jpar-1)*(*Dimension)] = pnt.X();
Result[1+(jpar-1)*(*Dimension)] = pnt.Y();
Result[2+(jpar-1)*(*Dimension)] = pnt.Z();
}
break;
case 1 :
for (jpar=1;jpar<=*NbParams;jpar++) {
Upar = Parameters[jpar-1];
mySurf->D1 (Upar, Vpar, pnt, v1, v2);
if (*UOrder==1) {
Result[(jpar-1)*(*Dimension)] = v1.X();
Result[1+(jpar-1)*(*Dimension)] = v1.Y();
Result[2+(jpar-1)*(*Dimension)] = v1.Z();
}
else {
Result[(jpar-1)*(*Dimension)] = v2.X();
Result[1+(jpar-1)*(*Dimension)] = v2.Y();
Result[2+(jpar-1)*(*Dimension)] = v2.Z();
}
}
break;
case 2 :
for (jpar=1;jpar<=*NbParams;jpar++) {
Upar = Parameters[jpar-1];
mySurf->D2 (Upar, Vpar, pnt, v1, v2, v3, v4, v5);
if (*UOrder==2) {
Result[(jpar-1)*(*Dimension)] = v3.X();
Result[1+(jpar-1)*(*Dimension)] = v3.Y();
Result[2+(jpar-1)*(*Dimension)] = v3.Z();
}
else if (*UOrder==1) {
Result[(jpar-1)*(*Dimension)] = v5.X();
Result[1+(jpar-1)*(*Dimension)] = v5.Y();
Result[2+(jpar-1)*(*Dimension)] = v5.Z();
}
else if (*UOrder==0) {
Result[(jpar-1)*(*Dimension)] = v4.X();
Result[1+(jpar-1)*(*Dimension)] = v4.Y();
Result[2+(jpar-1)*(*Dimension)] = v4.Z();
}
}
break;
}
}
}
//=======================================================================
//function : GeomPlate_MakeApprox
//purpose :
//=======================================================================
GeomPlate_MakeApprox::GeomPlate_MakeApprox(const Handle(GeomPlate_Surface)& SurfPlate,
const AdvApp2Var_Criterion& PlateCrit,
const Standard_Real Tol3d,
const Standard_Integer Nbmax,
const Standard_Integer dgmax,
const GeomAbs_Shape Continuity,
const Standard_Real EnlargeCoeff)
{
myPlate = SurfPlate;
Standard_Real U0=0., U1=0., V0=0., V1=0.;
myPlate->RealBounds(U0, U1, V0, V1);
U0 = EnlargeCoeff * U0;
U1 = EnlargeCoeff * U1;
V0 = EnlargeCoeff * V0;
V1 = EnlargeCoeff * V1;
Standard_Integer nb1 = 0, nb2 = 0, nb3 = 1;
Handle(TColStd_HArray1OfReal) nul1 =
new TColStd_HArray1OfReal(1,1);
nul1->Init(0.);
Handle(TColStd_HArray2OfReal) nul2 =
new TColStd_HArray2OfReal(1,1,1,4);
nul2->Init(0.);
Handle(TColStd_HArray1OfReal) eps3D =
new TColStd_HArray1OfReal(1,1);
eps3D->Init(Tol3d);
Handle(TColStd_HArray2OfReal) epsfr =
new TColStd_HArray2OfReal(1,1,1,4);
epsfr->Init(Tol3d);
GeomAbs_IsoType myType = GeomAbs_IsoV;
Standard_Integer myPrec = 0;
AdvApprox_DichoCutting myDec;
//POP pour WNT
GeomPlate_MakeApprox_Eval ev (myPlate);
AdvApp2Var_ApproxAFunc2Var AppPlate(nb1, nb2, nb3,
nul1,nul1,eps3D,
nul2,nul2,epsfr,
U0,U1,V0,V1,
myType,
Continuity, Continuity,
myPrec,
dgmax,dgmax,Nbmax,ev,
// dgmax,dgmax,Nbmax,myPlateSurfEval,
PlateCrit,myDec,myDec);
mySurface = AppPlate.Surface(1);
myAppError = AppPlate.MaxError(3,1);
myCritError = AppPlate.CritError(3,1);
#if PLATE_DEB
cout<<"Approximation results"<<endl;
cout<<" Approximation error : "<<myAppError<<endl;
cout<<" Criterium error : "<<myCritError<<endl;
#endif
}
//=======================================================================
//function : GeomPlate_MakeApprox
//purpose :
//=======================================================================
GeomPlate_MakeApprox::GeomPlate_MakeApprox(const Handle(GeomPlate_Surface)& SurfPlate,
const Standard_Real Tol3d,
const Standard_Integer Nbmax,
const Standard_Integer dgmax,
const Standard_Real dmax,
const Standard_Integer CritOrder,
const GeomAbs_Shape Continuity,
const Standard_Real EnlargeCoeff)
{
myPlate = SurfPlate;
TColgp_SequenceOfXY Seq2d;
TColgp_SequenceOfXYZ Seq3d;
if (CritOrder>=0) {
// contraintes 2d d'ordre 0
myPlate->Constraints(Seq2d);
// contraintes 3d correspondantes sur plate
Standard_Integer i,nbp=Seq2d.Length();
for(i=1;i<=nbp;i++){
gp_XY P2d=Seq2d.Value(i);
gp_Pnt PP;
gp_Vec v1h,v2h,v3h;
if (CritOrder==0) {
// a l'ordre 0
myPlate->D0 (P2d.X(), P2d.Y(), PP);
gp_XYZ P3d(PP.X(),PP.Y(),PP.Z());
Seq3d.Append(P3d);
}
else {
// a l'ordre 1
myPlate->D1 (P2d.X(), P2d.Y(), PP, v1h, v2h);
v3h=v1h^v2h;
gp_XYZ P3d(v3h.X(),v3h.Y(),v3h.Z());
Seq3d.Append(P3d);
}
}
}
Standard_Real U0=0., U1=0., V0=0., V1=0.;
myPlate->RealBounds(U0, U1, V0, V1);
U0 = EnlargeCoeff * U0;
U1 = EnlargeCoeff * U1;
V0 = EnlargeCoeff * V0;
V1 = EnlargeCoeff * V1;
Standard_Real seuil = Tol3d;
if (CritOrder==0&&Tol3d<10*dmax) {
seuil=10*dmax;
#if PLATE_DEB
cout<<"Seuil G0 choisi trop faible par rapport au contour. On prend "<<seuil<<endl;
#endif
}
if (CritOrder==1&&Tol3d<10*dmax) {
seuil=10*dmax;
#if PLATE_DEB
cout<<"Seuil G1 choisi trop faible par rapport au contour. On prend "<<seuil<<endl;
#endif
}
Standard_Integer nb1 = 0, nb2 = 0, nb3 = 1;
Handle(TColStd_HArray1OfReal) nul1 =
new TColStd_HArray1OfReal(1,1);
nul1->Init(0.);
Handle(TColStd_HArray2OfReal) nul2 =
new TColStd_HArray2OfReal(1,1,1,4);
nul2->Init(0.);
Handle(TColStd_HArray1OfReal) eps3D =
new TColStd_HArray1OfReal(1,1);
eps3D->Init(Tol3d);
Handle(TColStd_HArray2OfReal) epsfr =
new TColStd_HArray2OfReal(1,1,1,4);
epsfr->Init(Tol3d);
GeomAbs_IsoType myType = GeomAbs_IsoV;
Standard_Integer myPrec = 0;
AdvApprox_DichoCutting myDec;
if (CritOrder==-1) {
myPrec = 1;
// POP pour NT
GeomPlate_MakeApprox_Eval ev (myPlate);
AdvApp2Var_ApproxAFunc2Var AppPlate(nb1, nb2, nb3,
nul1,nul1,eps3D,
nul2,nul2,epsfr,
U0,U1,V0,V1,
myType,
Continuity, Continuity,
myPrec,
dgmax,dgmax,Nbmax,ev,
myDec,myDec);
mySurface = AppPlate.Surface(1);
myAppError = AppPlate.MaxError(3,1);
myCritError = 0.;
#if PLATE_DEB
cout<<"Approximation results"<<endl;
cout<<" Approximation error : "<<myAppError<<endl;
#endif
}
else if (CritOrder==0) {
GeomPlate_PlateG0Criterion Crit0(Seq2d,Seq3d,seuil);
// POP pour NT
GeomPlate_MakeApprox_Eval ev (myPlate);
AdvApp2Var_ApproxAFunc2Var AppPlate(nb1, nb2, nb3,
nul1,nul1,eps3D,
nul2,nul2,epsfr,
U0,U1,V0,V1,
myType,
Continuity, Continuity,
myPrec,
dgmax,dgmax,Nbmax,ev,
// dgmax,dgmax,Nbmax,myPlateSurfEval,
Crit0,myDec,myDec);
mySurface = AppPlate.Surface(1);
myAppError = AppPlate.MaxError(3,1);
myCritError = AppPlate.CritError(3,1);
#if PLATE_DEB
cout<<"Approximation results"<<endl;
cout<<" Approximation error : "<<myAppError<<endl;
cout<<" Criterium error : "<<myCritError<<endl;
#endif
}
else if (CritOrder==1) {
GeomPlate_PlateG1Criterion Crit1(Seq2d,Seq3d,seuil);
// POP pour NT
GeomPlate_MakeApprox_Eval ev (myPlate);
AdvApp2Var_ApproxAFunc2Var AppPlate(nb1, nb2, nb3,
nul1,nul1,eps3D,
nul2,nul2,epsfr,
U0,U1,V0,V1,
myType,
Continuity, Continuity,
myPrec,
dgmax,dgmax,Nbmax,ev,
// dgmax,dgmax,Nbmax,myPlateSurfEval,
Crit1,myDec,myDec);
mySurface = AppPlate.Surface(1);
myAppError = AppPlate.MaxError(3,1);
myCritError = AppPlate.CritError(3,1);
#if PLATE_DEB
cout<<"Approximation results"<<endl;
cout<<" Approximation error : "<<myAppError<<endl;
cout<<" Criterium error : "<<myCritError<<endl;
#endif
}
}
//=======================================================================
//function : Surface
//purpose :
//=======================================================================
Handle(Geom_BSplineSurface) GeomPlate_MakeApprox::Surface() const
{
return mySurface;
}
//=======================================================================
//function : ApproxError
//purpose :
//=======================================================================
Standard_Real GeomPlate_MakeApprox::ApproxError() const
{
return myAppError;
}
//=======================================================================
//function : CriterionError
//purpose :
//=======================================================================
Standard_Real GeomPlate_MakeApprox::CriterionError() const
{
return myCritError;
}