mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-08-29 14:00:49 +03:00
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast Wrong license statements corrected in several files. Copyright and license statements added in XSD and GLSL files. Copyright year updated in some files. Obsolete documentation files removed from DrawResources.
163 lines
6.1 KiB
C++
163 lines
6.1 KiB
C++
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <GccAna_Circ2dTanOnRad.jxx>
|
|
|
|
#include <ElCLib.hxx>
|
|
#include <math_DirectPolynomialRoots.hxx>
|
|
#include <Standard_NegativeValue.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <gp_Dir2d.hxx>
|
|
|
|
//=========================================================================
|
|
// typedef of handled objects : +
|
|
//=========================================================================
|
|
|
|
typedef math_DirectPolynomialRoots Roots;
|
|
|
|
//=========================================================================
|
|
// Circle tangent to a point Point1. +
|
|
// center on straight line OnLine. +
|
|
// radius Radius. +
|
|
// +
|
|
// Initialize the table of solutions cirsol and all fields. +
|
|
// Eliminate cases not being the solution. +
|
|
// Solve the equation of second degree showing that the found center point +
|
|
// (xc,yc) is at distance Radius from point Point1 and on the straight line OnLine. +
|
|
// The solutions are represented by circles : +
|
|
// - of center Pntcen(xc,yc) +
|
|
// - of radius Radius. +
|
|
//=========================================================================
|
|
|
|
GccAna_Circ2dTanOnRad::
|
|
GccAna_Circ2dTanOnRad (const gp_Pnt2d& Point1 ,
|
|
const gp_Lin2d& OnLine ,
|
|
const Standard_Real Radius ,
|
|
const Standard_Real Tolerance ):
|
|
cirsol(1,2) ,
|
|
qualifier1(1,2) ,
|
|
TheSame1(1,2) ,
|
|
pnttg1sol(1,2),
|
|
pntcen3(1,2) ,
|
|
par1sol(1,2) ,
|
|
pararg1(1,2) ,
|
|
parcen3(1,2)
|
|
{
|
|
|
|
gp_Dir2d dirx(1.0,0.0);
|
|
Standard_Real Tol = Abs(Tolerance);
|
|
WellDone = Standard_False;
|
|
NbrSol = 0;
|
|
Standard_Real dp1lin = OnLine.Distance(Point1);
|
|
|
|
if (Radius < 0.0) { Standard_NegativeValue::Raise(); }
|
|
else {
|
|
if (dp1lin > Radius+Tol) { WellDone = Standard_True; }
|
|
Standard_Real xc;
|
|
Standard_Real yc;
|
|
Standard_Real x1 = Point1.X();
|
|
Standard_Real y1 = Point1.Y();
|
|
Standard_Real xbid = 0;
|
|
Standard_Real xdir = (OnLine.Direction()).X();
|
|
Standard_Real ydir = (OnLine.Direction()).Y();
|
|
Standard_Real lxloc = (OnLine.Location()).X();
|
|
Standard_Real lyloc = (OnLine.Location()).Y();
|
|
if (Abs(dp1lin-Radius) < Tol) {
|
|
WellDone = Standard_True;
|
|
NbrSol = 1;
|
|
if (-ydir*(x1-lxloc)+xdir*(y1-lyloc)<0.0) {
|
|
gp_Ax2d axe(gp_Pnt2d(x1-ydir*dp1lin,y1+xdir*dp1lin),dirx);
|
|
cirsol(NbrSol) = gp_Circ2d(axe,Radius);
|
|
// ======================================
|
|
qualifier1(NbrSol) = GccEnt_noqualifier;
|
|
}
|
|
else {
|
|
gp_Ax2d axe(gp_Pnt2d(x1+ydir*dp1lin,y1-xdir*dp1lin),dirx);
|
|
cirsol(NbrSol) = gp_Circ2d(axe,Radius);
|
|
// ======================================
|
|
qualifier1(NbrSol) = GccEnt_noqualifier;
|
|
}
|
|
TheSame1(NbrSol) = 0;
|
|
pnttg1sol(NbrSol) = Point1;
|
|
pntcen3(NbrSol) = cirsol(NbrSol).Location();
|
|
pararg1(NbrSol) = 0.0;
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),pnttg1sol(NbrSol));
|
|
parcen3(NbrSol)=ElCLib::Parameter(OnLine,pntcen3(NbrSol));
|
|
}
|
|
else if (dp1lin < Tol) {
|
|
pntcen3(1) = gp_Pnt2d(Point1.X()+Radius*xdir,Point1.Y()+Radius*ydir);
|
|
pntcen3(2) = gp_Pnt2d(Point1.X()-Radius*xdir,Point1.Y()-Radius*ydir);
|
|
pntcen3(1) = ElCLib::Value(ElCLib::Parameter(OnLine,pntcen3(1)),OnLine);
|
|
pntcen3(2) = ElCLib::Value(ElCLib::Parameter(OnLine,pntcen3(2)),OnLine);
|
|
gp_Ax2d axe(pntcen3(1),OnLine.Direction());
|
|
cirsol(1) = gp_Circ2d(axe,Radius);
|
|
axe = gp_Ax2d(pntcen3(2),OnLine.Direction());
|
|
cirsol(2) = gp_Circ2d(axe,Radius);
|
|
TheSame1(1) = 0;
|
|
pnttg1sol(1) = Point1;
|
|
pararg1(1) = 0.0;
|
|
par1sol(1)=ElCLib::Parameter(cirsol(1),pnttg1sol(1));
|
|
parcen3(1)=ElCLib::Parameter(OnLine,pntcen3(1));
|
|
TheSame1(2) = 0;
|
|
pnttg1sol(2) = Point1;
|
|
pararg1(2) = 0.0;
|
|
par1sol(2)=ElCLib::Parameter(cirsol(2),pnttg1sol(2));
|
|
parcen3(2)=ElCLib::Parameter(OnLine,pntcen3(2));
|
|
NbrSol = 2;
|
|
}
|
|
else {
|
|
Standard_Real A,B,C;
|
|
OnLine.Coefficients(A,B,C);
|
|
Standard_Real D = A;
|
|
if (A == 0.0) {
|
|
A = B;
|
|
B = D;
|
|
xbid = x1;
|
|
x1 = y1;
|
|
y1 = xbid;
|
|
}
|
|
if (A != 0.0) {
|
|
Roots Sol((B*B+A*A)/(A*A),
|
|
2.0*(B*C/(A*A)+(B/A)*x1-y1),
|
|
x1*x1+y1*y1+C*C/(A*A)-Radius*Radius+2.0*C*x1/A);
|
|
if (Sol.IsDone()) {
|
|
for (Standard_Integer i = 1 ; i <= Sol.NbSolutions() ; i++) {
|
|
if (D != 0.0) {
|
|
yc = Sol.Value(i);
|
|
xc = -(B/A)*yc-C/A;
|
|
}
|
|
else {
|
|
xc = Sol.Value(i);
|
|
yc = -(B/A)*xc-C/A;
|
|
}
|
|
NbrSol++;
|
|
gp_Pnt2d Center(xc,yc);
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
|
|
// =======================================================
|
|
qualifier1(NbrSol) = GccEnt_noqualifier;
|
|
TheSame1(NbrSol) = 0;
|
|
pnttg1sol(NbrSol) = Point1;
|
|
pntcen3(NbrSol) = cirsol(NbrSol).Location();
|
|
pararg1(NbrSol) = 0.0;
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg1sol(NbrSol));
|
|
parcen3(NbrSol)=ElCLib::Parameter(OnLine,pntcen3(NbrSol));
|
|
}
|
|
WellDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|