1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/gp/gp_Trsf.hxx
mkrylova d5477f8c82 0032137: Coding Rules - merge redundant .lxx files into header files within Package gp
- merged .lxx files into header files within Package gp
- fixed code style
2021-06-03 18:02:58 +03:00

472 lines
18 KiB
C++

// Copyright (c) 1991-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _gp_Trsf_HeaderFile
#define _gp_Trsf_HeaderFile
#include <gp_TrsfForm.hxx>
#include <gp_Mat.hxx>
#include <gp_XYZ.hxx>
#include <NCollection_Mat4.hxx>
#include <Standard_ConstructionError.hxx>
#include <Standard_OStream.hxx>
#include <Standard_OutOfRange.hxx>
#include <Standard_SStream.hxx>
class gp_Pnt;
class gp_Trsf2d;
class gp_Ax1;
class gp_Ax2;
class gp_Quaternion;
class gp_Ax3;
class gp_Vec;
// Avoid possible conflict with SetForm macro defined by windows.h
#ifdef SetForm
#undef SetForm
#endif
//! Defines a non-persistent transformation in 3D space.
//! The following transformations are implemented :
//! . Translation, Rotation, Scale
//! . Symmetry with respect to a point, a line, a plane.
//! Complex transformations can be obtained by combining the
//! previous elementary transformations using the method
//! Multiply.
//! The transformations can be represented as follow :
//! @code
//! V1 V2 V3 T XYZ XYZ
//! | a11 a12 a13 a14 | | x | | x'|
//! | a21 a22 a23 a24 | | y | | y'|
//! | a31 a32 a33 a34 | | z | = | z'|
//! | 0 0 0 1 | | 1 | | 1 |
//! @endcode
//! where {V1, V2, V3} defines the vectorial part of the
//! transformation and T defines the translation part of the
//! transformation.
//! This transformation never change the nature of the objects.
class gp_Trsf
{
public:
DEFINE_STANDARD_ALLOC
//! Returns the identity transformation.
gp_Trsf();
//! Creates a 3D transformation from the 2D transformation theT.
//! The resulting transformation has a homogeneous
//! vectorial part, V3, and a translation part, T3, built from theT:
//! a11 a12
//! 0 a13
//! V3 = a21 a22 0 T3
//! = a23
//! 0 0 1.
//! 0
//! It also has the same scale factor as theT. This
//! guarantees (by projection) that the transformation
//! which would be performed by theT in a plane (2D space)
//! is performed by the resulting transformation in the xOy
//! plane of the 3D space, (i.e. in the plane defined by the
//! origin (0., 0., 0.) and the vectors DX (1., 0., 0.), and DY
//! (0., 1., 0.)). The scale factor is applied to the entire space.
Standard_EXPORT gp_Trsf (const gp_Trsf2d& theT);
//! Makes the transformation into a symmetrical transformation.
//! theP is the center of the symmetry.
void SetMirror (const gp_Pnt& theP);
//! Makes the transformation into a symmetrical transformation.
//! theA1 is the center of the axial symmetry.
Standard_EXPORT void SetMirror (const gp_Ax1& theA1);
//! Makes the transformation into a symmetrical transformation.
//! theA2 is the center of the planar symmetry
//! and defines the plane of symmetry by its origin, "X
//! Direction" and "Y Direction".
Standard_EXPORT void SetMirror (const gp_Ax2& theA2);
//! Changes the transformation into a rotation.
//! theA1 is the rotation axis and theAng is the angular value of the
//! rotation in radians.
Standard_EXPORT void SetRotation (const gp_Ax1& theA1, const Standard_Real theAng);
//! Changes the transformation into a rotation defined by quaternion.
//! Note that rotation is performed around origin, i.e.
//! no translation is involved.
Standard_EXPORT void SetRotation (const gp_Quaternion& theR);
//! Replaces the rotation part with specified quaternion.
Standard_EXPORT void SetRotationPart (const gp_Quaternion& theR);
//! Changes the transformation into a scale.
//! theP is the center of the scale and theS is the scaling value.
//! Raises ConstructionError If <theS> is null.
Standard_EXPORT void SetScale (const gp_Pnt& theP, const Standard_Real theS);
//! Modifies this transformation so that it transforms the
//! coordinate system defined by theFromSystem1 into the
//! one defined by theToSystem2. After this modification, this
//! transformation transforms:
//! - the origin of theFromSystem1 into the origin of theToSystem2,
//! - the "X Direction" of theFromSystem1 into the "X
//! Direction" of theToSystem2,
//! - the "Y Direction" of theFromSystem1 into the "Y
//! Direction" of theToSystem2, and
//! - the "main Direction" of theFromSystem1 into the "main
//! Direction" of theToSystem2.
//! Warning
//! When you know the coordinates of a point in one
//! coordinate system and you want to express these
//! coordinates in another one, do not use the
//! transformation resulting from this function. Use the
//! transformation that results from SetTransformation instead.
//! SetDisplacement and SetTransformation create
//! related transformations: the vectorial part of one is the
//! inverse of the vectorial part of the other.
Standard_EXPORT void SetDisplacement (const gp_Ax3& theFromSystem1, const gp_Ax3& theToSystem2);
//! Modifies this transformation so that it transforms the
//! coordinates of any point, (x, y, z), relative to a source
//! coordinate system into the coordinates (x', y', z') which
//! are relative to a target coordinate system, but which
//! represent the same point
//! The transformation is from the coordinate
//! system "theFromSystem1" to the coordinate system "theToSystem2".
//! Example :
//! @code
//! gp_Ax3 theFromSystem1, theToSystem2;
//! double x1, y1, z1; // are the coordinates of a point in the local system theFromSystem1
//! double x2, y2, z2; // are the coordinates of a point in the local system theToSystem2
//! gp_Pnt P1 (x1, y1, z1)
//! gp_Trsf T;
//! T.SetTransformation (theFromSystem1, theToSystem2);
//! gp_Pnt P2 = P1.Transformed (T);
//! P2.Coord (x2, y2, z2);
//! @endcode
Standard_EXPORT void SetTransformation (const gp_Ax3& theFromSystem1, const gp_Ax3& theToSystem2);
//! Modifies this transformation so that it transforms the
//! coordinates of any point, (x, y, z), relative to a source
//! coordinate system into the coordinates (x', y', z') which
//! are relative to a target coordinate system, but which
//! represent the same point
//! The transformation is from the default coordinate system
//! @code
//! {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.), VZ (0., 0. ,1.) }
//! @endcode
//! to the local coordinate system defined with the Ax3 theToSystem.
//! Use in the same way as the previous method. FromSystem1 is
//! defaulted to the absolute coordinate system.
Standard_EXPORT void SetTransformation (const gp_Ax3& theToSystem);
//! Sets transformation by directly specified rotation and translation.
Standard_EXPORT void SetTransformation (const gp_Quaternion& R, const gp_Vec& theT);
//! Changes the transformation into a translation.
//! theV is the vector of the translation.
void SetTranslation (const gp_Vec& theV);
//! Makes the transformation into a translation where the translation vector
//! is the vector (theP1, theP2) defined from point theP1 to point theP2.
void SetTranslation (const gp_Pnt& theP1, const gp_Pnt& theP2);
//! Replaces the translation vector with the vector theV.
Standard_EXPORT void SetTranslationPart (const gp_Vec& theV);
//! Modifies the scale factor.
//! Raises ConstructionError If theS is null.
Standard_EXPORT void SetScaleFactor (const Standard_Real theS);
void SetForm (const gp_TrsfForm theP) { shape = theP; }
//! Sets the coefficients of the transformation. The
//! transformation of the point x,y,z is the point
//! x',y',z' with :
//! @code
//! x' = a11 x + a12 y + a13 z + a14
//! y' = a21 x + a22 y + a23 z + a24
//! z' = a31 x + a32 y + a33 z + a34
//! @endcode
//! The method Value(i,j) will return aij.
//! Raises ConstructionError if the determinant of the aij is null.
//! The matrix is orthogonalized before future using.
Standard_EXPORT void SetValues (const Standard_Real a11, const Standard_Real a12, const Standard_Real a13, const Standard_Real a14, const Standard_Real a21, const Standard_Real a22, const Standard_Real a23, const Standard_Real a24, const Standard_Real a31, const Standard_Real a32, const Standard_Real a33, const Standard_Real a34);
//! Returns true if the determinant of the vectorial part of
//! this transformation is negative.
Standard_Boolean IsNegative() const { return (scale < 0.0); }
//! Returns the nature of the transformation. It can be: an
//! identity transformation, a rotation, a translation, a mirror
//! transformation (relative to a point, an axis or a plane), a
//! scaling transformation, or a compound transformation.
gp_TrsfForm Form() const { return shape; }
//! Returns the scale factor.
Standard_Real ScaleFactor() const { return scale; }
//! Returns the translation part of the transformation's matrix
const gp_XYZ& TranslationPart() const { return loc; }
//! Returns the boolean True if there is non-zero rotation.
//! In the presence of rotation, the output parameters store the axis
//! and the angle of rotation. The method always returns positive
//! value "theAngle", i.e., 0. < theAngle <= PI.
//! Note that this rotation is defined only by the vectorial part of
//! the transformation; generally you would need to check also the
//! translational part to obtain the axis (gp_Ax1) of rotation.
Standard_EXPORT Standard_Boolean GetRotation (gp_XYZ& theAxis, Standard_Real& theAngle) const;
//! Returns quaternion representing rotational part of the transformation.
Standard_EXPORT gp_Quaternion GetRotation() const;
//! Returns the vectorial part of the transformation. It is
//! a 3*3 matrix which includes the scale factor.
Standard_EXPORT gp_Mat VectorialPart() const;
//! Computes the homogeneous vectorial part of the transformation.
//! It is a 3*3 matrix which doesn't include the scale factor.
//! In other words, the vectorial part of this transformation is equal
//! to its homogeneous vectorial part, multiplied by the scale factor.
//! The coefficients of this matrix must be multiplied by the
//! scale factor to obtain the coefficients of the transformation.
const gp_Mat& HVectorialPart() const { return matrix; }
//! Returns the coefficients of the transformation's matrix.
//! It is a 3 rows * 4 columns matrix.
//! This coefficient includes the scale factor.
//! Raises OutOfRanged if theRow < 1 or theRow > 3 or theCol < 1 or theCol > 4
Standard_Real Value (const Standard_Integer theRow, const Standard_Integer theCol) const;
Standard_EXPORT void Invert();
//! Computes the reverse transformation
//! Raises an exception if the matrix of the transformation
//! is not inversible, it means that the scale factor is lower
//! or equal to Resolution from package gp.
//! Computes the transformation composed with T and <me>.
//! In a C++ implementation you can also write Tcomposed = <me> * T.
//! Example :
//! @code
//! gp_Trsf T1, T2, Tcomp; ...............
//! Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1)
//! gp_Pnt P1(10.,3.,4.);
//! gp_Pnt P2 = P1.Transformed(Tcomp); // using Tcomp
//! gp_Pnt P3 = P1.Transformed(T1); // using T1 then T2
//! P3.Transform(T2); // P3 = P2 !!!
//! @endcode
Standard_NODISCARD gp_Trsf Inverted() const
{
gp_Trsf aT = *this;
aT.Invert();
return aT;
}
Standard_NODISCARD gp_Trsf Multiplied (const gp_Trsf& theT) const
{
gp_Trsf aTresult (*this);
aTresult.Multiply (theT);
return aTresult;
}
Standard_NODISCARD gp_Trsf operator * (const gp_Trsf& theT) const { return Multiplied (theT); }
//! Computes the transformation composed with <me> and theT.
//! <me> = <me> * theT
Standard_EXPORT void Multiply (const gp_Trsf& theT);
void operator *= (const gp_Trsf& theT) { Multiply (theT); }
//! Computes the transformation composed with <me> and T.
//! <me> = theT * <me>
Standard_EXPORT void PreMultiply (const gp_Trsf& theT);
Standard_EXPORT void Power (const Standard_Integer theN);
//! Computes the following composition of transformations
//! <me> * <me> * .......* <me>, theN time.
//! if theN = 0 <me> = Identity
//! if theN < 0 <me> = <me>.Inverse() *...........* <me>.Inverse().
//!
//! Raises if theN < 0 and if the matrix of the transformation not
//! inversible.
Standard_NODISCARD gp_Trsf Powered (const Standard_Integer theN) const
{
gp_Trsf aT = *this;
aT.Power (theN);
return aT;
}
void Transforms (Standard_Real& theX, Standard_Real& theY, Standard_Real& theZ) const;
//! Transformation of a triplet XYZ with a Trsf
void Transforms (gp_XYZ& theCoord) const;
//! Convert transformation to 4x4 matrix.
template<class T>
void GetMat4 (NCollection_Mat4<T>& theMat) const
{
if (shape == gp_Identity)
{
theMat.InitIdentity();
return;
}
theMat.SetValue (0, 0, static_cast<T> (Value (1, 1)));
theMat.SetValue (0, 1, static_cast<T> (Value (1, 2)));
theMat.SetValue (0, 2, static_cast<T> (Value (1, 3)));
theMat.SetValue (0, 3, static_cast<T> (Value (1, 4)));
theMat.SetValue (1, 0, static_cast<T> (Value (2, 1)));
theMat.SetValue (1, 1, static_cast<T> (Value (2, 2)));
theMat.SetValue (1, 2, static_cast<T> (Value (2, 3)));
theMat.SetValue (1, 3, static_cast<T> (Value (2, 4)));
theMat.SetValue (2, 0, static_cast<T> (Value (3, 1)));
theMat.SetValue (2, 1, static_cast<T> (Value (3, 2)));
theMat.SetValue (2, 2, static_cast<T> (Value (3, 3)));
theMat.SetValue (2, 3, static_cast<T> (Value (3, 4)));
theMat.SetValue (3, 0, static_cast<T> (0));
theMat.SetValue (3, 1, static_cast<T> (0));
theMat.SetValue (3, 2, static_cast<T> (0));
theMat.SetValue (3, 3, static_cast<T> (1));
}
//! Dumps the content of me into the stream
Standard_EXPORT void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const;
//! Inits the content of me from the stream
Standard_EXPORT Standard_Boolean InitFromJson (const Standard_SStream& theSStream, Standard_Integer& theStreamPos);
friend class gp_GTrsf;
protected:
//! Makes orthogonalization of "matrix"
Standard_EXPORT void Orthogonalize();
private:
Standard_Real scale;
gp_TrsfForm shape;
gp_Mat matrix;
gp_XYZ loc;
};
#include <gp_Trsf2d.hxx>
#include <gp_Vec.hxx>
#include <gp_Pnt.hxx>
//=======================================================================
//function : gp_Trsf
// purpose :
//=======================================================================
inline gp_Trsf::gp_Trsf ()
: scale (1.0),
shape (gp_Identity),
matrix (1, 0, 0, 0, 1, 0, 0, 0, 1),
loc (0.0, 0.0, 0.0)
{}
//=======================================================================
//function : SetMirror
// purpose :
//=======================================================================
inline void gp_Trsf::SetMirror (const gp_Pnt& theP)
{
shape = gp_PntMirror;
scale = -1.0;
loc = theP.XYZ();
matrix.SetIdentity();
loc.Multiply (2.0);
}
//=======================================================================
//function : SetTranslation
// purpose :
//=======================================================================
inline void gp_Trsf::SetTranslation (const gp_Vec& theV)
{
shape = gp_Translation;
scale = 1.;
matrix.SetIdentity();
loc = theV.XYZ();
}
//=======================================================================
//function : SetTranslation
// purpose :
//=======================================================================
inline void gp_Trsf::SetTranslation (const gp_Pnt& theP1,
const gp_Pnt& theP2)
{
shape = gp_Translation;
scale = 1.0;
matrix.SetIdentity();
loc = (theP2.XYZ()).Subtracted (theP1.XYZ());
}
//=======================================================================
//function : Value
// purpose :
//=======================================================================
inline Standard_Real gp_Trsf::Value (const Standard_Integer theRow, const Standard_Integer theCol) const
{
Standard_OutOfRange_Raise_if (theRow < 1 || theRow > 3 || theCol < 1 || theCol > 4, " ");
if (theCol < 4)
{
return scale * matrix.Value (theRow, theCol);
}
else
{
return loc.Coord (theRow);
}
}
//=======================================================================
//function : Transforms
// purpose :
//=======================================================================
inline void gp_Trsf::Transforms (Standard_Real& theX,
Standard_Real& theY,
Standard_Real& theZ) const
{
gp_XYZ aTriplet (theX, theY, theZ);
aTriplet.Multiply (matrix);
if (scale != 1.0)
{
aTriplet.Multiply (scale);
}
aTriplet.Add (loc);
theX = aTriplet.X();
theY = aTriplet.Y();
theZ = aTriplet.Z();
}
//=======================================================================
//function : Transforms
// purpose :
//=======================================================================
inline void gp_Trsf::Transforms (gp_XYZ& theCoord) const
{
theCoord.Multiply (matrix);
if (scale != 1.0)
{
theCoord.Multiply (scale);
}
theCoord.Add (loc);
}
#endif // _gp_Trsf_HeaderFile