1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/gp/gp_Cone.hxx
mkrylova d5477f8c82 0032137: Coding Rules - merge redundant .lxx files into header files within Package gp
- merged .lxx files into header files within Package gp
- fixed code style
2021-06-03 18:02:58 +03:00

326 lines
12 KiB
C++

// Copyright (c) 1991-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _gp_Cone_HeaderFile
#define _gp_Cone_HeaderFile
#include <gp_Ax1.hxx>
#include <gp_Ax3.hxx>
#include <gp_Pnt.hxx>
//! Defines an infinite conical surface.
//! A cone is defined by its half-angle (can be negative) at the apex and
//! positioned in space with a coordinate system (a gp_Ax3
//! object) and a "reference radius" where:
//! - the "main Axis" of the coordinate system is the axis of revolution of the cone,
//! - the plane defined by the origin, the "X Direction" and
//! the "Y Direction" of the coordinate system is the
//! reference plane of the cone; the intersection of the
//! cone with this reference plane is a circle of radius
//! equal to the reference radius,
//! if the half-angle is positive, the apex of the cone is on
//! the negative side of the "main Axis" of the coordinate
//! system. If the half-angle is negative, the apex is on the positive side.
//! This coordinate system is the "local coordinate system" of the cone.
//! Note: when a gp_Cone cone is converted into a
//! Geom_ConicalSurface cone, some implicit properties of
//! its local coordinate system are used explicitly:
//! - its origin, "X Direction", "Y Direction" and "main
//! Direction" are used directly to define the parametric
//! directions on the cone and the origin of the parameters,
//! - its implicit orientation (right-handed or left-handed)
//! gives the orientation (direct or indirect) of the
//! Geom_ConicalSurface cone.
//! See Also
//! gce_MakeCone which provides functions for more
//! complex cone constructions
//! Geom_ConicalSurface which provides additional
//! functions for constructing cones and works, in particular,
//! with the parametric equations of cones gp_Ax3
class gp_Cone
{
public:
DEFINE_STANDARD_ALLOC
//! Creates an indefinite Cone.
gp_Cone()
: radius (RealLast()),
semiAngle (M_PI * 0.25)
{}
//! Creates an infinite conical surface. theA3 locates the cone
//! in the space and defines the reference plane of the surface.
//! Ang is the conical surface semi-angle. Its absolute value is in range
//! ]0, PI/2[.
//! theRadius is the radius of the circle in the reference plane of
//! the cone.
//! theRaises ConstructionError
//! * if theRadius is lower than 0.0
//! * Abs(theAng) < Resolution from gp or Abs(theAng) >= (PI/2) - Resolution.
gp_Cone (const gp_Ax3& theA3, const Standard_Real theAng, const Standard_Real theRadius);
//! Changes the symmetry axis of the cone. Raises ConstructionError
//! the direction of theA1 is parallel to the "XDirection"
//! of the coordinate system of the cone.
void SetAxis (const gp_Ax1& theA1) { pos.SetAxis (theA1); }
//! Changes the location of the cone.
void SetLocation (const gp_Pnt& theLoc) { pos.SetLocation (theLoc); }
//! Changes the local coordinate system of the cone.
//! This coordinate system defines the reference plane of the cone.
void SetPosition (const gp_Ax3& theA3) { pos = theA3; }
//! Changes the radius of the cone in the reference plane of
//! the cone.
//! Raised if theR < 0.0
void SetRadius (const Standard_Real theR)
{
Standard_ConstructionError_Raise_if (theR < 0.0, "gp_Cone::SetRadius() - radius should be positive number");
radius = theR;
}
//! Changes the semi-angle of the cone.
//! Semi-angle can be negative. Its absolute value
//! Abs(theAng) is in range ]0,PI/2[.
//! Raises ConstructionError if Abs(theAng) < Resolution from gp or Abs(theAng) >= PI/2 - Resolution
void SetSemiAngle (const Standard_Real theAng);
//! Computes the cone's top. The Apex of the cone is on the
//! negative side of the symmetry axis of the cone.
gp_Pnt Apex() const
{
gp_XYZ aCoord = pos.Direction().XYZ();
aCoord.Multiply (-radius / Tan (semiAngle));
aCoord.Add (pos.Location().XYZ());
return gp_Pnt (aCoord);
}
//! Reverses the U parametrization of the cone
//! reversing the YAxis.
void UReverse() { pos.YReverse(); }
//! Reverses the V parametrization of the cone reversing the ZAxis.
void VReverse()
{
pos.ZReverse();
semiAngle = -semiAngle;
}
//! Returns true if the local coordinate system of this cone is right-handed.
Standard_Boolean Direct() const { return pos.Direct(); }
//! returns the symmetry axis of the cone.
const gp_Ax1& Axis() const { return pos.Axis(); }
//! Computes the coefficients of the implicit equation of the quadric
//! in the absolute cartesian coordinates system :
//! theA1.X**2 + theA2.Y**2 + theA3.Z**2 + 2.(theB1.X.Y + theB2.X.Z + theB3.Y.Z) +
//! 2.(theC1.X + theC2.Y + theC3.Z) + theD = 0.0
Standard_EXPORT void Coefficients (Standard_Real& theA1, Standard_Real& theA2, Standard_Real& theA3,
Standard_Real& theB1, Standard_Real& theB2, Standard_Real& theB3,
Standard_Real& theC1, Standard_Real& theC2, Standard_Real& theC3, Standard_Real& theD) const;
//! returns the "Location" point of the cone.
const gp_Pnt& Location() const { return pos.Location(); }
//! Returns the local coordinates system of the cone.
const gp_Ax3& Position() const { return pos; }
//! Returns the radius of the cone in the reference plane.
Standard_Real RefRadius() const { return radius; }
//! Returns the half-angle at the apex of this cone.
//! Attention! Semi-angle can be negative.
Standard_Real SemiAngle() const { return semiAngle; }
//! Returns the XAxis of the reference plane.
gp_Ax1 XAxis() const { return gp_Ax1 (pos.Location(), pos.XDirection()); }
//! Returns the YAxis of the reference plane.
gp_Ax1 YAxis() const { return gp_Ax1 (pos.Location(), pos.YDirection()); }
Standard_EXPORT void Mirror (const gp_Pnt& theP);
//! Performs the symmetrical transformation of a cone
//! with respect to the point theP which is the center of the
//! symmetry.
Standard_NODISCARD Standard_EXPORT gp_Cone Mirrored (const gp_Pnt& theP) const;
Standard_EXPORT void Mirror (const gp_Ax1& theA1);
//! Performs the symmetrical transformation of a cone with
//! respect to an axis placement which is the axis of the
//! symmetry.
Standard_NODISCARD Standard_EXPORT gp_Cone Mirrored (const gp_Ax1& theA1) const;
Standard_EXPORT void Mirror (const gp_Ax2& theA2);
//! Performs the symmetrical transformation of a cone with respect
//! to a plane. The axis placement theA2 locates the plane of the
//! of the symmetry : (Location, XDirection, YDirection).
Standard_NODISCARD Standard_EXPORT gp_Cone Mirrored (const gp_Ax2& theA2) const;
void Rotate (const gp_Ax1& theA1, const Standard_Real theAng) { pos.Rotate (theA1, theAng); }
//! Rotates a cone. theA1 is the axis of the rotation.
//! Ang is the angular value of the rotation in radians.
Standard_NODISCARD gp_Cone Rotated (const gp_Ax1& theA1, const Standard_Real theAng) const
{
gp_Cone aCone = *this;
aCone.pos.Rotate (theA1, theAng);
return aCone;
}
void Scale (const gp_Pnt& theP, const Standard_Real theS);
//! Scales a cone. theS is the scaling value.
//! The absolute value of theS is used to scale the cone
Standard_NODISCARD gp_Cone Scaled (const gp_Pnt& theP, const Standard_Real theS) const;
void Transform (const gp_Trsf& theT);
//! Transforms a cone with the transformation theT from class Trsf.
Standard_NODISCARD gp_Cone Transformed (const gp_Trsf& theT) const;
void Translate (const gp_Vec& theV) { pos.Translate (theV); }
//! Translates a cone in the direction of the vector theV.
//! The magnitude of the translation is the vector's magnitude.
Standard_NODISCARD gp_Cone Translated (const gp_Vec& theV) const
{
gp_Cone aCone = *this;
aCone.pos.Translate (theV);
return aCone;
}
void Translate (const gp_Pnt& theP1, const gp_Pnt& theP2) { pos.Translate (theP1, theP2); }
//! Translates a cone from the point P1 to the point P2.
Standard_NODISCARD gp_Cone Translated (const gp_Pnt& theP1, const gp_Pnt& theP2) const
{
gp_Cone aCone = *this;
aCone.pos.Translate (theP1, theP2);
return aCone;
}
private:
gp_Ax3 pos;
Standard_Real radius;
Standard_Real semiAngle;
};
// =======================================================================
// function : gp_Cone
// purpose :
// =======================================================================
inline gp_Cone::gp_Cone (const gp_Ax3& theA3,
const Standard_Real theAng,
const Standard_Real theRadius)
: pos (theA3),
radius (theRadius),
semiAngle (theAng)
{
Standard_Real aVal = theAng;
if (aVal < 0)
{
aVal = -aVal;
}
Standard_ConstructionError_Raise_if (theRadius < 0. || aVal <= gp::Resolution() || M_PI * 0.5 - aVal <= gp::Resolution(),
"gp_Cone() - invalid construction parameters");
}
// =======================================================================
// function : SetSemiAngle
// purpose :
// =======================================================================
inline void gp_Cone::SetSemiAngle (const Standard_Real theAng)
{
Standard_Real aVal = theAng;
if (aVal < 0)
{
aVal = -aVal;
}
Standard_ConstructionError_Raise_if (aVal <= gp::Resolution() || M_PI * 0.5 - aVal <= gp::Resolution(),
"gp_Cone::SetSemiAngle() - invalid angle range");
semiAngle = theAng;
}
// =======================================================================
// function : Scale
// purpose :
// =======================================================================
inline void gp_Cone::Scale (const gp_Pnt& theP,
const Standard_Real theS)
{
pos.Scale (theP, theS);
radius *= theS;
if (radius < 0)
{
radius = -radius;
}
}
// =======================================================================
// function : Scaled
// purpose :
// =======================================================================
inline gp_Cone gp_Cone::Scaled (const gp_Pnt& theP,
const Standard_Real theS) const
{
gp_Cone aC = *this;
aC.pos.Scale (theP, theS);
aC.radius *= theS;
if (aC.radius < 0)
{
aC.radius = -aC.radius;
}
return aC;
}
// =======================================================================
// function : Transform
// purpose :
// =======================================================================
inline void gp_Cone::Transform (const gp_Trsf& theT)
{
pos.Transform (theT);
radius *= theT.ScaleFactor();
if (radius < 0)
{
radius = -radius;
}
}
// =======================================================================
// function : Transformed
// purpose :
// =======================================================================
inline gp_Cone gp_Cone::Transformed (const gp_Trsf& theT) const
{
gp_Cone aC = *this;
aC.pos.Transform (theT);
aC.radius *= theT.ScaleFactor();
if (aC.radius < 0)
{
aC.radius = -aC.radius;
}
return aC;
}
#endif // _gp_Cone_HeaderFile