mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-10 18:51:21 +03:00
326 lines
12 KiB
C++
326 lines
12 KiB
C++
// Copyright (c) 1991-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef _gp_Cone_HeaderFile
|
|
#define _gp_Cone_HeaderFile
|
|
|
|
#include <gp_Ax1.hxx>
|
|
#include <gp_Ax3.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
|
|
//! Defines an infinite conical surface.
|
|
//! A cone is defined by its half-angle (can be negative) at the apex and
|
|
//! positioned in space with a coordinate system (a gp_Ax3
|
|
//! object) and a "reference radius" where:
|
|
//! - the "main Axis" of the coordinate system is the axis of revolution of the cone,
|
|
//! - the plane defined by the origin, the "X Direction" and
|
|
//! the "Y Direction" of the coordinate system is the
|
|
//! reference plane of the cone; the intersection of the
|
|
//! cone with this reference plane is a circle of radius
|
|
//! equal to the reference radius,
|
|
//! if the half-angle is positive, the apex of the cone is on
|
|
//! the negative side of the "main Axis" of the coordinate
|
|
//! system. If the half-angle is negative, the apex is on the positive side.
|
|
//! This coordinate system is the "local coordinate system" of the cone.
|
|
//! Note: when a gp_Cone cone is converted into a
|
|
//! Geom_ConicalSurface cone, some implicit properties of
|
|
//! its local coordinate system are used explicitly:
|
|
//! - its origin, "X Direction", "Y Direction" and "main
|
|
//! Direction" are used directly to define the parametric
|
|
//! directions on the cone and the origin of the parameters,
|
|
//! - its implicit orientation (right-handed or left-handed)
|
|
//! gives the orientation (direct or indirect) of the
|
|
//! Geom_ConicalSurface cone.
|
|
//! See Also
|
|
//! gce_MakeCone which provides functions for more
|
|
//! complex cone constructions
|
|
//! Geom_ConicalSurface which provides additional
|
|
//! functions for constructing cones and works, in particular,
|
|
//! with the parametric equations of cones gp_Ax3
|
|
class gp_Cone
|
|
{
|
|
public:
|
|
|
|
DEFINE_STANDARD_ALLOC
|
|
|
|
//! Creates an indefinite Cone.
|
|
gp_Cone()
|
|
: radius (RealLast()),
|
|
semiAngle (M_PI * 0.25)
|
|
{}
|
|
|
|
//! Creates an infinite conical surface. theA3 locates the cone
|
|
//! in the space and defines the reference plane of the surface.
|
|
//! Ang is the conical surface semi-angle. Its absolute value is in range
|
|
//! ]0, PI/2[.
|
|
//! theRadius is the radius of the circle in the reference plane of
|
|
//! the cone.
|
|
//! theRaises ConstructionError
|
|
//! * if theRadius is lower than 0.0
|
|
//! * Abs(theAng) < Resolution from gp or Abs(theAng) >= (PI/2) - Resolution.
|
|
gp_Cone (const gp_Ax3& theA3, const Standard_Real theAng, const Standard_Real theRadius);
|
|
|
|
//! Changes the symmetry axis of the cone. Raises ConstructionError
|
|
//! the direction of theA1 is parallel to the "XDirection"
|
|
//! of the coordinate system of the cone.
|
|
void SetAxis (const gp_Ax1& theA1) { pos.SetAxis (theA1); }
|
|
|
|
//! Changes the location of the cone.
|
|
void SetLocation (const gp_Pnt& theLoc) { pos.SetLocation (theLoc); }
|
|
|
|
//! Changes the local coordinate system of the cone.
|
|
//! This coordinate system defines the reference plane of the cone.
|
|
void SetPosition (const gp_Ax3& theA3) { pos = theA3; }
|
|
|
|
//! Changes the radius of the cone in the reference plane of
|
|
//! the cone.
|
|
//! Raised if theR < 0.0
|
|
void SetRadius (const Standard_Real theR)
|
|
{
|
|
Standard_ConstructionError_Raise_if (theR < 0.0, "gp_Cone::SetRadius() - radius should be positive number");
|
|
radius = theR;
|
|
}
|
|
|
|
//! Changes the semi-angle of the cone.
|
|
//! Semi-angle can be negative. Its absolute value
|
|
//! Abs(theAng) is in range ]0,PI/2[.
|
|
//! Raises ConstructionError if Abs(theAng) < Resolution from gp or Abs(theAng) >= PI/2 - Resolution
|
|
void SetSemiAngle (const Standard_Real theAng);
|
|
|
|
//! Computes the cone's top. The Apex of the cone is on the
|
|
//! negative side of the symmetry axis of the cone.
|
|
gp_Pnt Apex() const
|
|
{
|
|
gp_XYZ aCoord = pos.Direction().XYZ();
|
|
aCoord.Multiply (-radius / Tan (semiAngle));
|
|
aCoord.Add (pos.Location().XYZ());
|
|
return gp_Pnt (aCoord);
|
|
}
|
|
|
|
//! Reverses the U parametrization of the cone
|
|
//! reversing the YAxis.
|
|
void UReverse() { pos.YReverse(); }
|
|
|
|
//! Reverses the V parametrization of the cone reversing the ZAxis.
|
|
void VReverse()
|
|
{
|
|
pos.ZReverse();
|
|
semiAngle = -semiAngle;
|
|
}
|
|
|
|
//! Returns true if the local coordinate system of this cone is right-handed.
|
|
Standard_Boolean Direct() const { return pos.Direct(); }
|
|
|
|
//! returns the symmetry axis of the cone.
|
|
const gp_Ax1& Axis() const { return pos.Axis(); }
|
|
|
|
//! Computes the coefficients of the implicit equation of the quadric
|
|
//! in the absolute cartesian coordinates system :
|
|
//! theA1.X**2 + theA2.Y**2 + theA3.Z**2 + 2.(theB1.X.Y + theB2.X.Z + theB3.Y.Z) +
|
|
//! 2.(theC1.X + theC2.Y + theC3.Z) + theD = 0.0
|
|
Standard_EXPORT void Coefficients (Standard_Real& theA1, Standard_Real& theA2, Standard_Real& theA3,
|
|
Standard_Real& theB1, Standard_Real& theB2, Standard_Real& theB3,
|
|
Standard_Real& theC1, Standard_Real& theC2, Standard_Real& theC3, Standard_Real& theD) const;
|
|
|
|
//! returns the "Location" point of the cone.
|
|
const gp_Pnt& Location() const { return pos.Location(); }
|
|
|
|
//! Returns the local coordinates system of the cone.
|
|
const gp_Ax3& Position() const { return pos; }
|
|
|
|
//! Returns the radius of the cone in the reference plane.
|
|
Standard_Real RefRadius() const { return radius; }
|
|
|
|
//! Returns the half-angle at the apex of this cone.
|
|
//! Attention! Semi-angle can be negative.
|
|
Standard_Real SemiAngle() const { return semiAngle; }
|
|
|
|
//! Returns the XAxis of the reference plane.
|
|
gp_Ax1 XAxis() const { return gp_Ax1 (pos.Location(), pos.XDirection()); }
|
|
|
|
//! Returns the YAxis of the reference plane.
|
|
gp_Ax1 YAxis() const { return gp_Ax1 (pos.Location(), pos.YDirection()); }
|
|
|
|
Standard_EXPORT void Mirror (const gp_Pnt& theP);
|
|
|
|
//! Performs the symmetrical transformation of a cone
|
|
//! with respect to the point theP which is the center of the
|
|
//! symmetry.
|
|
Standard_NODISCARD Standard_EXPORT gp_Cone Mirrored (const gp_Pnt& theP) const;
|
|
|
|
Standard_EXPORT void Mirror (const gp_Ax1& theA1);
|
|
|
|
//! Performs the symmetrical transformation of a cone with
|
|
//! respect to an axis placement which is the axis of the
|
|
//! symmetry.
|
|
Standard_NODISCARD Standard_EXPORT gp_Cone Mirrored (const gp_Ax1& theA1) const;
|
|
|
|
Standard_EXPORT void Mirror (const gp_Ax2& theA2);
|
|
|
|
//! Performs the symmetrical transformation of a cone with respect
|
|
//! to a plane. The axis placement theA2 locates the plane of the
|
|
//! of the symmetry : (Location, XDirection, YDirection).
|
|
Standard_NODISCARD Standard_EXPORT gp_Cone Mirrored (const gp_Ax2& theA2) const;
|
|
|
|
void Rotate (const gp_Ax1& theA1, const Standard_Real theAng) { pos.Rotate (theA1, theAng); }
|
|
|
|
//! Rotates a cone. theA1 is the axis of the rotation.
|
|
//! Ang is the angular value of the rotation in radians.
|
|
Standard_NODISCARD gp_Cone Rotated (const gp_Ax1& theA1, const Standard_Real theAng) const
|
|
{
|
|
gp_Cone aCone = *this;
|
|
aCone.pos.Rotate (theA1, theAng);
|
|
return aCone;
|
|
}
|
|
|
|
void Scale (const gp_Pnt& theP, const Standard_Real theS);
|
|
|
|
//! Scales a cone. theS is the scaling value.
|
|
//! The absolute value of theS is used to scale the cone
|
|
Standard_NODISCARD gp_Cone Scaled (const gp_Pnt& theP, const Standard_Real theS) const;
|
|
|
|
void Transform (const gp_Trsf& theT);
|
|
|
|
//! Transforms a cone with the transformation theT from class Trsf.
|
|
Standard_NODISCARD gp_Cone Transformed (const gp_Trsf& theT) const;
|
|
|
|
void Translate (const gp_Vec& theV) { pos.Translate (theV); }
|
|
|
|
//! Translates a cone in the direction of the vector theV.
|
|
//! The magnitude of the translation is the vector's magnitude.
|
|
Standard_NODISCARD gp_Cone Translated (const gp_Vec& theV) const
|
|
{
|
|
gp_Cone aCone = *this;
|
|
aCone.pos.Translate (theV);
|
|
return aCone;
|
|
}
|
|
|
|
void Translate (const gp_Pnt& theP1, const gp_Pnt& theP2) { pos.Translate (theP1, theP2); }
|
|
|
|
//! Translates a cone from the point P1 to the point P2.
|
|
Standard_NODISCARD gp_Cone Translated (const gp_Pnt& theP1, const gp_Pnt& theP2) const
|
|
{
|
|
gp_Cone aCone = *this;
|
|
aCone.pos.Translate (theP1, theP2);
|
|
return aCone;
|
|
}
|
|
|
|
private:
|
|
|
|
gp_Ax3 pos;
|
|
Standard_Real radius;
|
|
Standard_Real semiAngle;
|
|
|
|
};
|
|
|
|
// =======================================================================
|
|
// function : gp_Cone
|
|
// purpose :
|
|
// =======================================================================
|
|
inline gp_Cone::gp_Cone (const gp_Ax3& theA3,
|
|
const Standard_Real theAng,
|
|
const Standard_Real theRadius)
|
|
: pos (theA3),
|
|
radius (theRadius),
|
|
semiAngle (theAng)
|
|
{
|
|
Standard_Real aVal = theAng;
|
|
if (aVal < 0)
|
|
{
|
|
aVal = -aVal;
|
|
}
|
|
Standard_ConstructionError_Raise_if (theRadius < 0. || aVal <= gp::Resolution() || M_PI * 0.5 - aVal <= gp::Resolution(),
|
|
"gp_Cone() - invalid construction parameters");
|
|
}
|
|
|
|
// =======================================================================
|
|
// function : SetSemiAngle
|
|
// purpose :
|
|
// =======================================================================
|
|
inline void gp_Cone::SetSemiAngle (const Standard_Real theAng)
|
|
{
|
|
Standard_Real aVal = theAng;
|
|
if (aVal < 0)
|
|
{
|
|
aVal = -aVal;
|
|
}
|
|
Standard_ConstructionError_Raise_if (aVal <= gp::Resolution() || M_PI * 0.5 - aVal <= gp::Resolution(),
|
|
"gp_Cone::SetSemiAngle() - invalid angle range");
|
|
semiAngle = theAng;
|
|
}
|
|
|
|
// =======================================================================
|
|
// function : Scale
|
|
// purpose :
|
|
// =======================================================================
|
|
inline void gp_Cone::Scale (const gp_Pnt& theP,
|
|
const Standard_Real theS)
|
|
{
|
|
pos.Scale (theP, theS);
|
|
radius *= theS;
|
|
if (radius < 0)
|
|
{
|
|
radius = -radius;
|
|
}
|
|
}
|
|
|
|
// =======================================================================
|
|
// function : Scaled
|
|
// purpose :
|
|
// =======================================================================
|
|
inline gp_Cone gp_Cone::Scaled (const gp_Pnt& theP,
|
|
const Standard_Real theS) const
|
|
{
|
|
gp_Cone aC = *this;
|
|
aC.pos.Scale (theP, theS);
|
|
aC.radius *= theS;
|
|
if (aC.radius < 0)
|
|
{
|
|
aC.radius = -aC.radius;
|
|
}
|
|
return aC;
|
|
}
|
|
|
|
// =======================================================================
|
|
// function : Transform
|
|
// purpose :
|
|
// =======================================================================
|
|
inline void gp_Cone::Transform (const gp_Trsf& theT)
|
|
{
|
|
pos.Transform (theT);
|
|
radius *= theT.ScaleFactor();
|
|
if (radius < 0)
|
|
{
|
|
radius = -radius;
|
|
}
|
|
}
|
|
|
|
// =======================================================================
|
|
// function : Transformed
|
|
// purpose :
|
|
// =======================================================================
|
|
inline gp_Cone gp_Cone::Transformed (const gp_Trsf& theT) const
|
|
{
|
|
gp_Cone aC = *this;
|
|
aC.pos.Transform (theT);
|
|
aC.radius *= theT.ScaleFactor();
|
|
if (aC.radius < 0)
|
|
{
|
|
aC.radius = -aC.radius;
|
|
}
|
|
return aC;
|
|
}
|
|
|
|
#endif // _gp_Cone_HeaderFile
|