1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-16 10:08:36 +03:00
occt/src/GeomFill/GeomFill_FunctionDraft.cxx
abv 42cf5bc1ca 0024002: Overall code and build procedure refactoring -- automatic
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl":
- WOK-generated header files from inc and sources from drv are moved to src
- CDL files removed
- All packages are converted to nocdlpack
2015-07-12 07:42:38 +03:00

227 lines
6.4 KiB
C++

// Created on: 1998-04-27
// Created by: Stephanie HUMEAU
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Adaptor3d_HCurve.hxx>
#include <Adaptor3d_HSurface.hxx>
#include <GeomAdaptor_HCurve.hxx>
#include <GeomAdaptor_HSurface.hxx>
#include <GeomFill_FunctionDraft.hxx>
#include <GeomFill_Tensor.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <math_Matrix.hxx>
//#include <Precision.hxx>
//*******************************************************
// Calcul de la valeur de la fonction :
// G(w(t)) - S(u(t),v(t)) = 0
// ou G = generatrice et S = surface d'arret
// et de ses derivees
//*******************************************************
//*******************************************************
// Function : FunctionDraft
// Purpose : Initialisation de la section et de la surface d'arret
//*******************************************************
GeomFill_FunctionDraft::GeomFill_FunctionDraft
(const Handle(Adaptor3d_HSurface)& S, const Handle(Adaptor3d_HCurve)& C)
{
TheCurve = C ;
TheSurface = S;
}
//*******************************************************
// Function : NbVariables (t, u, v)
// Purpose :
//*******************************************************
Standard_Integer GeomFill_FunctionDraft::NbVariables()const
{
return 3;
}
//*******************************************************
// Function : NbEquations
// Purpose :
//*******************************************************
Standard_Integer GeomFill_FunctionDraft::NbEquations()const
{
return 3;
}
//*******************************************************
// Function : Value
// Purpose : calcul of the value of the function at <X>
//*******************************************************
Standard_Boolean GeomFill_FunctionDraft::Value(const math_Vector& X,
math_Vector& F)
{
gp_Pnt P,P1;
TheCurve->D0(X(1), P);
TheSurface->D0(X(2), X(3), P1);
F(1) = P.Coord(1) - P1.Coord(1);
F(2) = P.Coord(2) - P1.Coord(2);
F(3) = P.Coord(3) - P1.Coord(3);
return Standard_True;
}
//*******************************************************
// Function : Derivatives
// Purpose :calcul of the derivative of the function
//*******************************************************
Standard_Boolean GeomFill_FunctionDraft::Derivatives(const math_Vector& X,
math_Matrix& D)
{
Standard_Integer i;
gp_Pnt P,P1;
gp_Vec DP,DP1U,DP1V;
TheCurve->D1(X(1),P,DP);
TheSurface->D1(X(2),X(3),P1,DP1U,DP1V);
for (i=1;i<=3;i++)
{
D(i,1) = DP.Coord(i);
D(i,2) = -DP1U.Coord(i);
D(i,3) = -DP1V.Coord(i);
}
return Standard_True;
}
//*******************************************************
// Function : Values
// Purpose : calcul of the value and the derivative of the function
//*******************************************************
Standard_Boolean GeomFill_FunctionDraft::Values(const math_Vector& X,
math_Vector& F,
math_Matrix& D)
{
Standard_Integer i;
gp_Pnt P,P1;
gp_Vec DP,DP1U,DP1V;
TheCurve->D1(X(1),P,DP); //derivee de la generatrice
TheSurface->D1(X(2),X(3),P1,DP1U,DP1V); //derivee de la new surface
for (i=1;i<=3;i++)
{
F(i) = P.Coord(i) - P1.Coord(i);
D(i,1) = DP.Coord(i);
D(i,2) = -DP1U.Coord(i);
D(i,3) = -DP1V.Coord(i);
}
return Standard_True;
}
//*******************************************************
// Function : DerivT
// Purpose : calcul of the first derivative from t
//*******************************************************
Standard_Boolean GeomFill_FunctionDraft::DerivT(const Handle(Adaptor3d_HCurve)& C,
const Standard_Real Param,
const Standard_Real W,
const gp_Vec & dN,
const Standard_Real teta,
math_Vector& F)
{
gp_Pnt P;
gp_Vec DP;
C->D1(Param, P, DP); // derivee de la section
F(1) = DP.Coord(1) + W * dN.Coord(1) * Sin(teta);
F(2) = DP.Coord(2) + W * dN.Coord(2) * Sin(teta);
F(3) = DP.Coord(3) + W * dN.Coord(3) * Sin(teta);
return Standard_True;
}
//*******************************************************
// Function : Deriv2T
// Purpose : calcul of the second derivatice from t
//*******************************************************
Standard_Boolean GeomFill_FunctionDraft::Deriv2T(const Handle(Adaptor3d_HCurve)& C,
const Standard_Real Param,
const Standard_Real W,
const gp_Vec & d2N,
const Standard_Real teta,
math_Vector& F)
{
gp_Pnt P;
gp_Vec DP,D2P;
C->D2(Param, P, DP, D2P); // derivee de la section
F(1) = D2P.Coord(1) + W * d2N.Coord(1) * Sin(teta);
F(2) = D2P.Coord(2) + W * d2N.Coord(2) * Sin(teta);
F(3) = D2P.Coord(3) + W * d2N.Coord(3) * Sin(teta);
return Standard_True;
}
//*******************************************************
// Function : DerivTX
// Purpose : calcul of the second derivative from t and x
//*******************************************************
Standard_Boolean GeomFill_FunctionDraft::DerivTX(const gp_Vec & dN,
const Standard_Real teta,
math_Matrix& D)
{
// gp_Pnt P;
// gp_Vec DP,D2P;
Standard_Integer i;
for (i=1;i<=3;i++)
{
D(i,1) = dN.Coord(i)*Sin(teta); //derivee / W
D(i,2) = 0.; // derivee / U
D(i,3) = 0.; // derivee / V
}
return Standard_True;
}
//*******************************************************
// Function : Deriv2X
// Purpose : calcul of the second derivative from x
//*******************************************************
Standard_Boolean GeomFill_FunctionDraft::Deriv2X(const math_Vector & X,
GeomFill_Tensor& T)
{
gp_Pnt P;
gp_Vec DPu,DPv;
gp_Vec D2Pu, D2Pv, D2Puv;
Standard_Integer i;
TheSurface->D2(X(2), X(3), P, DPu, DPv, D2Pu, D2Pv, D2Puv);
T.Init(0.); // tenseur
for (i=1;i<=3;i++)
{
T(i,2,2) = -D2Pu.Coord(i);
T(i,3,2) = T(i,2,3) = -D2Puv.Coord(i);
T(i,3,3) = -D2Pv.Coord(i);
}
return Standard_True;
}