mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-16 10:08:36 +03:00
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl": - WOK-generated header files from inc and sources from drv are moved to src - CDL files removed - All packages are converted to nocdlpack
227 lines
6.4 KiB
C++
227 lines
6.4 KiB
C++
// Created on: 1998-04-27
|
|
// Created by: Stephanie HUMEAU
|
|
// Copyright (c) 1998-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <Adaptor3d_HCurve.hxx>
|
|
#include <Adaptor3d_HSurface.hxx>
|
|
#include <GeomAdaptor_HCurve.hxx>
|
|
#include <GeomAdaptor_HSurface.hxx>
|
|
#include <GeomFill_FunctionDraft.hxx>
|
|
#include <GeomFill_Tensor.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <math_Matrix.hxx>
|
|
|
|
//#include <Precision.hxx>
|
|
//*******************************************************
|
|
// Calcul de la valeur de la fonction :
|
|
// G(w(t)) - S(u(t),v(t)) = 0
|
|
// ou G = generatrice et S = surface d'arret
|
|
// et de ses derivees
|
|
//*******************************************************
|
|
//*******************************************************
|
|
// Function : FunctionDraft
|
|
// Purpose : Initialisation de la section et de la surface d'arret
|
|
//*******************************************************
|
|
GeomFill_FunctionDraft::GeomFill_FunctionDraft
|
|
(const Handle(Adaptor3d_HSurface)& S, const Handle(Adaptor3d_HCurve)& C)
|
|
{
|
|
TheCurve = C ;
|
|
TheSurface = S;
|
|
}
|
|
|
|
//*******************************************************
|
|
// Function : NbVariables (t, u, v)
|
|
// Purpose :
|
|
//*******************************************************
|
|
Standard_Integer GeomFill_FunctionDraft::NbVariables()const
|
|
{
|
|
return 3;
|
|
}
|
|
|
|
//*******************************************************
|
|
// Function : NbEquations
|
|
// Purpose :
|
|
//*******************************************************
|
|
Standard_Integer GeomFill_FunctionDraft::NbEquations()const
|
|
{
|
|
return 3;
|
|
}
|
|
|
|
//*******************************************************
|
|
// Function : Value
|
|
// Purpose : calcul of the value of the function at <X>
|
|
//*******************************************************
|
|
Standard_Boolean GeomFill_FunctionDraft::Value(const math_Vector& X,
|
|
math_Vector& F)
|
|
{
|
|
gp_Pnt P,P1;
|
|
TheCurve->D0(X(1), P);
|
|
TheSurface->D0(X(2), X(3), P1);
|
|
|
|
F(1) = P.Coord(1) - P1.Coord(1);
|
|
F(2) = P.Coord(2) - P1.Coord(2);
|
|
F(3) = P.Coord(3) - P1.Coord(3);
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//*******************************************************
|
|
// Function : Derivatives
|
|
// Purpose :calcul of the derivative of the function
|
|
//*******************************************************
|
|
Standard_Boolean GeomFill_FunctionDraft::Derivatives(const math_Vector& X,
|
|
math_Matrix& D)
|
|
{
|
|
Standard_Integer i;
|
|
gp_Pnt P,P1;
|
|
gp_Vec DP,DP1U,DP1V;
|
|
TheCurve->D1(X(1),P,DP);
|
|
TheSurface->D1(X(2),X(3),P1,DP1U,DP1V);
|
|
|
|
for (i=1;i<=3;i++)
|
|
{
|
|
D(i,1) = DP.Coord(i);
|
|
D(i,2) = -DP1U.Coord(i);
|
|
D(i,3) = -DP1V.Coord(i);
|
|
}
|
|
return Standard_True;
|
|
}
|
|
|
|
//*******************************************************
|
|
// Function : Values
|
|
// Purpose : calcul of the value and the derivative of the function
|
|
//*******************************************************
|
|
Standard_Boolean GeomFill_FunctionDraft::Values(const math_Vector& X,
|
|
math_Vector& F,
|
|
math_Matrix& D)
|
|
{
|
|
Standard_Integer i;
|
|
gp_Pnt P,P1;
|
|
gp_Vec DP,DP1U,DP1V;
|
|
TheCurve->D1(X(1),P,DP); //derivee de la generatrice
|
|
TheSurface->D1(X(2),X(3),P1,DP1U,DP1V); //derivee de la new surface
|
|
|
|
for (i=1;i<=3;i++)
|
|
{
|
|
F(i) = P.Coord(i) - P1.Coord(i);
|
|
|
|
D(i,1) = DP.Coord(i);
|
|
D(i,2) = -DP1U.Coord(i);
|
|
D(i,3) = -DP1V.Coord(i);
|
|
}
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//*******************************************************
|
|
// Function : DerivT
|
|
// Purpose : calcul of the first derivative from t
|
|
//*******************************************************
|
|
Standard_Boolean GeomFill_FunctionDraft::DerivT(const Handle(Adaptor3d_HCurve)& C,
|
|
const Standard_Real Param,
|
|
const Standard_Real W,
|
|
const gp_Vec & dN,
|
|
const Standard_Real teta,
|
|
math_Vector& F)
|
|
|
|
{
|
|
gp_Pnt P;
|
|
gp_Vec DP;
|
|
|
|
C->D1(Param, P, DP); // derivee de la section
|
|
|
|
F(1) = DP.Coord(1) + W * dN.Coord(1) * Sin(teta);
|
|
F(2) = DP.Coord(2) + W * dN.Coord(2) * Sin(teta);
|
|
F(3) = DP.Coord(3) + W * dN.Coord(3) * Sin(teta);
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//*******************************************************
|
|
// Function : Deriv2T
|
|
// Purpose : calcul of the second derivatice from t
|
|
//*******************************************************
|
|
Standard_Boolean GeomFill_FunctionDraft::Deriv2T(const Handle(Adaptor3d_HCurve)& C,
|
|
const Standard_Real Param,
|
|
const Standard_Real W,
|
|
const gp_Vec & d2N,
|
|
const Standard_Real teta,
|
|
math_Vector& F)
|
|
{
|
|
gp_Pnt P;
|
|
gp_Vec DP,D2P;
|
|
|
|
C->D2(Param, P, DP, D2P); // derivee de la section
|
|
|
|
F(1) = D2P.Coord(1) + W * d2N.Coord(1) * Sin(teta);
|
|
F(2) = D2P.Coord(2) + W * d2N.Coord(2) * Sin(teta);
|
|
F(3) = D2P.Coord(3) + W * d2N.Coord(3) * Sin(teta);
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//*******************************************************
|
|
// Function : DerivTX
|
|
// Purpose : calcul of the second derivative from t and x
|
|
//*******************************************************
|
|
Standard_Boolean GeomFill_FunctionDraft::DerivTX(const gp_Vec & dN,
|
|
const Standard_Real teta,
|
|
math_Matrix& D)
|
|
{
|
|
// gp_Pnt P;
|
|
// gp_Vec DP,D2P;
|
|
|
|
Standard_Integer i;
|
|
for (i=1;i<=3;i++)
|
|
{
|
|
D(i,1) = dN.Coord(i)*Sin(teta); //derivee / W
|
|
D(i,2) = 0.; // derivee / U
|
|
D(i,3) = 0.; // derivee / V
|
|
}
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//*******************************************************
|
|
// Function : Deriv2X
|
|
// Purpose : calcul of the second derivative from x
|
|
//*******************************************************
|
|
Standard_Boolean GeomFill_FunctionDraft::Deriv2X(const math_Vector & X,
|
|
GeomFill_Tensor& T)
|
|
{
|
|
gp_Pnt P;
|
|
gp_Vec DPu,DPv;
|
|
gp_Vec D2Pu, D2Pv, D2Puv;
|
|
Standard_Integer i;
|
|
|
|
TheSurface->D2(X(2), X(3), P, DPu, DPv, D2Pu, D2Pv, D2Puv);
|
|
|
|
T.Init(0.); // tenseur
|
|
|
|
for (i=1;i<=3;i++)
|
|
{
|
|
T(i,2,2) = -D2Pu.Coord(i);
|
|
T(i,3,2) = T(i,2,3) = -D2Puv.Coord(i);
|
|
T(i,3,3) = -D2Pv.Coord(i);
|
|
}
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
|
|
|