mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
Added initialization of fields that had not initialization Added default constructors to classes without constructors
735 lines
21 KiB
C++
735 lines
21 KiB
C++
// Created on: 1993-12-02
|
|
// Created by: Jacques GOUSSARD
|
|
// Copyright (c) 1993-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <Adaptor3d_HCurve.hxx>
|
|
#include <Adaptor3d_HSurface.hxx>
|
|
#include <Blend_Point.hxx>
|
|
#include <BlendFunc.hxx>
|
|
#include <BlendFunc_Ruled.hxx>
|
|
#include <gp_Ax1.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <gp_Vec2d.hxx>
|
|
#include <math_Gauss.hxx>
|
|
#include <math_Matrix.hxx>
|
|
#include <Precision.hxx>
|
|
#include <Standard_DomainError.hxx>
|
|
#include <Standard_NotImplemented.hxx>
|
|
|
|
BlendFunc_Ruled::BlendFunc_Ruled(const Handle(Adaptor3d_HSurface)& S1,
|
|
const Handle(Adaptor3d_HSurface)& S2,
|
|
const Handle(Adaptor3d_HCurve)& C) :
|
|
|
|
surf1(S1),surf2(S2),curv(C),
|
|
istangent(Standard_True),
|
|
normtg(0.0), theD(0.0),
|
|
distmin(RealLast())
|
|
{
|
|
}
|
|
|
|
Standard_Integer BlendFunc_Ruled::NbEquations () const
|
|
{
|
|
return 4;
|
|
}
|
|
|
|
void BlendFunc_Ruled::Set(const Standard_Real Param)
|
|
{
|
|
curv->D2(Param,ptgui,d1gui,d2gui);
|
|
normtg = d1gui.Magnitude();
|
|
nplan = d1gui.Normalized();
|
|
theD = - (nplan.XYZ().Dot(ptgui.XYZ()));
|
|
istangent = Standard_True;
|
|
}
|
|
|
|
void BlendFunc_Ruled::Set(const Standard_Real,
|
|
const Standard_Real)
|
|
{
|
|
throw Standard_NotImplemented("BlendFunc_Ruled::Set");
|
|
}
|
|
|
|
void BlendFunc_Ruled::GetTolerance(math_Vector& Tolerance,
|
|
const Standard_Real Tol) const
|
|
{
|
|
Tolerance(1) = surf1->UResolution(Tol);
|
|
Tolerance(2) = surf1->VResolution(Tol);
|
|
Tolerance(3) = surf2->UResolution(Tol);
|
|
Tolerance(4) = surf2->VResolution(Tol);
|
|
}
|
|
|
|
void BlendFunc_Ruled::GetBounds(math_Vector& InfBound,
|
|
math_Vector& SupBound) const
|
|
{
|
|
InfBound(1) = surf1->FirstUParameter();
|
|
InfBound(2) = surf1->FirstVParameter();
|
|
InfBound(3) = surf2->FirstUParameter();
|
|
InfBound(4) = surf2->FirstVParameter();
|
|
SupBound(1) = surf1->LastUParameter();
|
|
SupBound(2) = surf1->LastVParameter();
|
|
SupBound(3) = surf2->LastUParameter();
|
|
SupBound(4) = surf2->LastVParameter();
|
|
|
|
for(Standard_Integer i = 1; i <= 4; i++){
|
|
if(!Precision::IsInfinite(InfBound(i)) &&
|
|
!Precision::IsInfinite(SupBound(i))) {
|
|
const Standard_Real range = (SupBound(i) - InfBound(i));
|
|
InfBound(i) -= range;
|
|
SupBound(i) += range;
|
|
}
|
|
}
|
|
}
|
|
|
|
Standard_Boolean BlendFunc_Ruled::IsSolution(const math_Vector& Sol,
|
|
const Standard_Real Tol)
|
|
{
|
|
math_Vector valsol(1,4),secmember(1,4);
|
|
math_Matrix gradsol(1,4,1,4);
|
|
|
|
gp_Vec dnplan,d1u1,d1v1,d1u2,d1v2,temp,ns,ncrossns;
|
|
Standard_Real norm,ndotns,grosterme;
|
|
|
|
Values(Sol,valsol,gradsol);
|
|
if (Abs(valsol(1)) <= Tol &&
|
|
Abs(valsol(2)) <= Tol &&
|
|
Abs(valsol(3)) <= Tol &&
|
|
Abs(valsol(4)) <= Tol) {
|
|
|
|
|
|
// Calcul des tangentes
|
|
|
|
surf1->D1(Sol(1),Sol(2),pts1,d1u1,d1v1);
|
|
surf2->D1(Sol(3),Sol(4),pts2,d1u2,d1v2);
|
|
dnplan.SetLinearForm(1./normtg,d2gui,
|
|
-1./normtg*(nplan.Dot(d2gui)),nplan);
|
|
|
|
secmember(1) = normtg - dnplan.Dot(gp_Vec(ptgui,pts1));
|
|
secmember(2) = normtg - dnplan.Dot(gp_Vec(ptgui,pts2));
|
|
|
|
ns = d1u1.Crossed(d1v1);
|
|
ncrossns = nplan.Crossed(ns);
|
|
ndotns = nplan.Dot(ns);
|
|
norm = ncrossns.Magnitude();
|
|
|
|
// Derivee de nor1 par rapport au parametre sur la ligne guide
|
|
grosterme = ncrossns.Dot(dnplan.Crossed(ns))/norm/norm;
|
|
temp.SetLinearForm((dnplan.Dot(ns)-grosterme*ndotns)/norm,nplan,
|
|
ndotns/norm,dnplan,
|
|
grosterme/norm,ns);
|
|
|
|
|
|
secmember(3) = -(temp.Dot(gp_Vec(pts1,pts2)));
|
|
|
|
ns = d1u2.Crossed(d1v2);
|
|
ncrossns = nplan.Crossed(ns);
|
|
ndotns = nplan.Dot(ns);
|
|
norm = ncrossns.Magnitude();
|
|
|
|
// Derivee de nor2 par rapport au parametre sur la ligne guide
|
|
grosterme = ncrossns.Dot(dnplan.Crossed(ns))/norm/norm;
|
|
temp.SetLinearForm((dnplan.Dot(ns)-grosterme*ndotns)/norm,nplan,
|
|
ndotns/norm,dnplan,
|
|
grosterme/norm,ns);
|
|
|
|
secmember(4) = -(temp.Dot(gp_Vec(pts1,pts2)));
|
|
|
|
math_Gauss Resol(gradsol);
|
|
if (Resol.IsDone()) {
|
|
|
|
Resol.Solve(secmember);
|
|
|
|
tg1.SetLinearForm(secmember(1),d1u1,secmember(2),d1v1);
|
|
tg2.SetLinearForm(secmember(3),d1u2,secmember(4),d1v2);
|
|
tg12d.SetCoord(secmember(1),secmember(2));
|
|
tg22d.SetCoord(secmember(3),secmember(4));
|
|
istangent = Standard_False;
|
|
}
|
|
else {
|
|
istangent = Standard_True;
|
|
}
|
|
return Standard_True;
|
|
}
|
|
istangent = Standard_True;
|
|
return Standard_False;
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : GetMinimalDistance
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Real BlendFunc_Ruled::GetMinimalDistance() const
|
|
{
|
|
return distmin;
|
|
}
|
|
|
|
Standard_Boolean BlendFunc_Ruled::Value(const math_Vector& X,
|
|
math_Vector& F)
|
|
{
|
|
gp_Vec d1u1,d1v1,d1u2,d1v2;
|
|
surf1->D1(X(1),X(2),pts1,d1u1,d1v1);
|
|
surf2->D1(X(3),X(4),pts2,d1u2,d1v2);
|
|
|
|
const gp_Vec temp(pts1,pts2);
|
|
|
|
gp_Vec ns1 = d1u1.Crossed(d1v1);
|
|
gp_Vec ns2 = d1u2.Crossed(d1v2);
|
|
|
|
const Standard_Real norm1 = nplan.Crossed(ns1).Magnitude();
|
|
const Standard_Real norm2 = nplan.Crossed(ns2).Magnitude();
|
|
ns1.SetLinearForm(nplan.Dot(ns1)/norm1,nplan, -1./norm1,ns1);
|
|
ns2.SetLinearForm(nplan.Dot(ns2)/norm2,nplan, -1./norm2,ns2);
|
|
|
|
F(1) = (nplan.XYZ().Dot(pts1.XYZ())) + theD;
|
|
F(2) = (nplan.XYZ().Dot(pts2.XYZ())) + theD;
|
|
|
|
F(3) = temp.Dot(ns1);
|
|
F(4) = temp.Dot(ns2);
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
Standard_Boolean BlendFunc_Ruled::Derivatives(const math_Vector& X,
|
|
math_Matrix& D)
|
|
{
|
|
gp_Vec d1u1,d1v1,d1u2,d1v2;
|
|
gp_Vec d2u1,d2v1,d2uv1,d2u2,d2v2,d2uv2;
|
|
gp_Vec nor1,nor2,p1p2;
|
|
gp_Vec ns1,ns2,ncrossns1,ncrossns2,resul,temp;
|
|
|
|
Standard_Real norm1,norm2,ndotns1,ndotns2,grosterme;
|
|
|
|
surf1->D2(X(1),X(2),pts1,d1u1,d1v1,d2u1,d2v1,d2uv1);
|
|
surf2->D2(X(3),X(4),pts2,d1u2,d1v2,d2u2,d2v2,d2uv2);
|
|
|
|
D(1,1) = nplan.Dot(d1u1);
|
|
D(1,2) = nplan.Dot(d1v1);
|
|
D(1,3) = 0.;
|
|
D(1,4) = 0.;
|
|
|
|
D(2,1) = 0.;
|
|
D(2,2) = 0.;
|
|
D(2,3) = nplan.Dot(d1u2);
|
|
D(2,4) = nplan.Dot(d1v2);
|
|
|
|
ns1 = d1u1.Crossed(d1v1);
|
|
ns2 = d1u2.Crossed(d1v2);
|
|
ncrossns1 = nplan.Crossed(ns1);
|
|
ncrossns2 = nplan.Crossed(ns2);
|
|
norm1 = ncrossns1.Magnitude();
|
|
norm2 = ncrossns2.Magnitude();
|
|
|
|
ndotns1 = nplan.Dot(ns1);
|
|
ndotns2 = nplan.Dot(ns2);
|
|
|
|
nor1.SetLinearForm(ndotns1/norm1,nplan, -1./norm1,ns1);
|
|
nor2.SetLinearForm(ndotns2/norm2,nplan, -1./norm2,ns2);
|
|
|
|
p1p2 = gp_Vec(pts1,pts2);
|
|
|
|
// Derivee de nor1 par rapport a u1
|
|
temp = d2u1.Crossed(d1v1).Added(d1u1.Crossed(d2uv1));
|
|
grosterme = ncrossns1.Dot(nplan.Crossed(temp))/norm1/norm1;
|
|
resul.SetLinearForm(-(grosterme*ndotns1-nplan.Dot(temp))/norm1,nplan,
|
|
grosterme/norm1,ns1,
|
|
-1./norm1,temp);
|
|
|
|
D(3,1) = -(d1u1.Dot(nor1)) + p1p2.Dot(resul);
|
|
|
|
// Derivee par rapport a v1
|
|
temp = d2uv1.Crossed(d1v1).Added(d1u1.Crossed(d2v1));
|
|
grosterme = ncrossns1.Dot(nplan.Crossed(temp))/norm1/norm1;
|
|
resul.SetLinearForm(-(grosterme*ndotns1-nplan.Dot(temp))/norm1,nplan,
|
|
grosterme/norm1,ns1,
|
|
-1./norm1,temp);
|
|
|
|
D(3,2) = -(d1v1.Dot(nor1)) + p1p2.Dot(resul);
|
|
|
|
D(3,3) = d1u2.Dot(nor1);
|
|
D(3,4) = d1v2.Dot(nor1);
|
|
|
|
|
|
D(4,1) = -(d1u1.Dot(nor2));
|
|
D(4,2) = -(d1v1.Dot(nor2));
|
|
|
|
// Derivee de nor2 par rapport a u2
|
|
temp = d2u2.Crossed(d1v2).Added(d1u2.Crossed(d2uv2));
|
|
grosterme = ncrossns2.Dot(nplan.Crossed(temp))/norm2/norm2;
|
|
resul.SetLinearForm(-(grosterme*ndotns2-nplan.Dot(temp))/norm2,nplan,
|
|
grosterme/norm2,ns2,
|
|
-1./norm2,temp);
|
|
|
|
D(4,3) = d1u2.Dot(nor2) + p1p2.Dot(resul);
|
|
|
|
// Derivee par rapport a v2
|
|
temp = d2uv2.Crossed(d1v2).Added(d1u2.Crossed(d2v2));
|
|
grosterme = ncrossns2.Dot(nplan.Crossed(temp))/norm2/norm2;
|
|
resul.SetLinearForm(-(grosterme*ndotns2-nplan.Dot(temp))/norm2,nplan,
|
|
grosterme/norm2,ns2,
|
|
-1./norm2,temp);
|
|
|
|
D(4,4) = d1v2.Dot(nor2) + p1p2.Dot(resul);
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
|
|
Standard_Boolean BlendFunc_Ruled::Values(const math_Vector& X,
|
|
math_Vector& F,
|
|
math_Matrix& D)
|
|
{
|
|
gp_Vec d1u1,d1v1,d1u2,d1v2;
|
|
gp_Vec d2u1,d2v1,d2uv1,d2u2,d2v2,d2uv2;
|
|
gp_Vec nor1,nor2,p1p2;
|
|
gp_Vec ns1,ns2,ncrossns1,ncrossns2,resul,temp;
|
|
|
|
Standard_Real norm1,norm2,ndotns1,ndotns2,grosterme;
|
|
|
|
surf1->D2(X(1),X(2),pts1,d1u1,d1v1,d2u1,d2v1,d2uv1);
|
|
surf2->D2(X(3),X(4),pts2,d1u2,d1v2,d2u2,d2v2,d2uv2);
|
|
|
|
p1p2 = gp_Vec(pts1,pts2);
|
|
|
|
ns1 = d1u1.Crossed(d1v1);
|
|
ns2 = d1u2.Crossed(d1v2);
|
|
ncrossns1 = nplan.Crossed(ns1);
|
|
ncrossns2 = nplan.Crossed(ns2);
|
|
norm1 = ncrossns1.Magnitude();
|
|
norm2 = ncrossns2.Magnitude();
|
|
|
|
ndotns1 = nplan.Dot(ns1);
|
|
ndotns2 = nplan.Dot(ns2);
|
|
|
|
nor1.SetLinearForm(ndotns1/norm1,nplan,-1./norm1,ns1);
|
|
nor2.SetLinearForm(ndotns2/norm2,nplan,-1./norm2,ns2);
|
|
|
|
F(1) = (nplan.XYZ().Dot(pts1.XYZ())) + theD;
|
|
F(2) = (nplan.XYZ().Dot(pts2.XYZ())) + theD;
|
|
F(3) = p1p2.Dot(nor1);
|
|
F(4) = p1p2.Dot(nor2);
|
|
|
|
D(1,1) = nplan.Dot(d1u1);
|
|
D(1,2) = nplan.Dot(d1v1);
|
|
D(1,3) = 0.;
|
|
D(1,4) = 0.;
|
|
|
|
D(2,1) = 0.;
|
|
D(2,2) = 0.;
|
|
D(2,3) = nplan.Dot(d1u2);
|
|
D(2,4) = nplan.Dot(d1v2);
|
|
|
|
|
|
// Derivee de nor1 par rapport a u1
|
|
temp = d2u1.Crossed(d1v1).Added(d1u1.Crossed(d2uv1));
|
|
grosterme = ncrossns1.Dot(nplan.Crossed(temp))/norm1/norm1;
|
|
resul.SetLinearForm(-(grosterme*ndotns1-nplan.Dot(temp))/norm1,nplan,
|
|
grosterme/norm1,ns1,
|
|
-1./norm1,temp);
|
|
|
|
D(3,1) = -(d1u1.Dot(nor1)) + p1p2.Dot(resul);
|
|
|
|
// Derivee par rapport a v1
|
|
temp = d2uv1.Crossed(d1v1).Added(d1u1.Crossed(d2v1));
|
|
grosterme = ncrossns1.Dot(nplan.Crossed(temp))/norm1/norm1;
|
|
resul.SetLinearForm(-(grosterme*ndotns1-nplan.Dot(temp))/norm1,nplan,
|
|
grosterme/norm1,ns1,
|
|
-1./norm1,temp);
|
|
|
|
D(3,2) = -(d1v1.Dot(nor1)) + p1p2.Dot(resul);
|
|
|
|
D(3,3) = d1u2.Dot(nor1);
|
|
D(3,4) = d1v2.Dot(nor1);
|
|
|
|
D(4,1) = -(d1u1.Dot(nor2));
|
|
D(4,2) = -(d1v1.Dot(nor2));
|
|
|
|
// Derivee de nor2 par rapport a u2
|
|
temp = d2u2.Crossed(d1v2).Added(d1u2.Crossed(d2uv2));
|
|
grosterme = ncrossns2.Dot(nplan.Crossed(temp))/norm2/norm2;
|
|
resul.SetLinearForm(-(grosterme*ndotns2-nplan.Dot(temp))/norm2,nplan,
|
|
grosterme/norm2,ns2,
|
|
-1./norm2,temp);
|
|
|
|
D(4,3) = d1u2.Dot(nor2) + p1p2.Dot(resul);
|
|
|
|
// Derivee par rapport a v2
|
|
temp = d2uv2.Crossed(d1v2).Added(d1u2.Crossed(d2v2));
|
|
grosterme = ncrossns2.Dot(nplan.Crossed(temp))/norm2/norm2;
|
|
resul.SetLinearForm(-(grosterme*ndotns2-nplan.Dot(temp))/norm2,nplan,
|
|
grosterme/norm2,ns2,
|
|
-1./norm2,temp);
|
|
|
|
D(4,4) = d1v2.Dot(nor2) + p1p2.Dot(resul);
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
|
|
void BlendFunc_Ruled::Tangent(const Standard_Real U1,
|
|
const Standard_Real V1,
|
|
const Standard_Real U2,
|
|
const Standard_Real V2,
|
|
gp_Vec& TgF,
|
|
gp_Vec& TgL,
|
|
gp_Vec& NmF,
|
|
gp_Vec& NmL) const
|
|
{
|
|
gp_Pnt bid;
|
|
gp_Vec d1u,d1v;
|
|
gp_Vec ns1;
|
|
|
|
surf2->D1(U2,V2,bid,d1u,d1v);
|
|
NmL = d1u.Crossed(d1v);
|
|
|
|
surf1->D1(U1,V1,bid,d1u,d1v);
|
|
NmF = ns1 = d1u.Crossed(d1v);
|
|
|
|
TgF = TgL = gp_Vec(pts1,pts2);
|
|
}
|
|
|
|
const gp_Pnt& BlendFunc_Ruled::PointOnS1 () const
|
|
{
|
|
return pts1;
|
|
}
|
|
|
|
const gp_Pnt& BlendFunc_Ruled::PointOnS2 () const
|
|
{
|
|
return pts2;
|
|
}
|
|
|
|
Standard_Boolean BlendFunc_Ruled::IsTangencyPoint () const
|
|
{
|
|
return istangent;
|
|
}
|
|
|
|
const gp_Vec& BlendFunc_Ruled::TangentOnS1 () const
|
|
{
|
|
if (istangent)
|
|
throw Standard_DomainError("BlendFunc_Ruled::TangentOnS1");
|
|
return tg1;
|
|
}
|
|
|
|
const gp_Vec& BlendFunc_Ruled::TangentOnS2 () const
|
|
{
|
|
if (istangent)
|
|
throw Standard_DomainError("BlendFunc_Ruled::TangentOnS2");
|
|
return tg2;
|
|
}
|
|
const gp_Vec2d& BlendFunc_Ruled::Tangent2dOnS1 () const
|
|
{
|
|
if (istangent)
|
|
throw Standard_DomainError("BlendFunc_Ruled::Tangent2dOnS1");
|
|
return tg12d;
|
|
}
|
|
|
|
const gp_Vec2d& BlendFunc_Ruled::Tangent2dOnS2 () const
|
|
{
|
|
if (istangent)
|
|
throw Standard_DomainError("BlendFunc_Ruled::Tangent2dOnS2");
|
|
return tg22d;
|
|
}
|
|
|
|
Standard_Boolean BlendFunc_Ruled::GetSection(const Standard_Real Param,
|
|
const Standard_Real U1,
|
|
const Standard_Real V1,
|
|
const Standard_Real U2,
|
|
const Standard_Real V2,
|
|
TColgp_Array1OfPnt& tabP,
|
|
TColgp_Array1OfVec& tabV)
|
|
|
|
{
|
|
Standard_Integer NbPoint=tabP.Length();
|
|
if (NbPoint != tabV.Length() || NbPoint < 2) {throw Standard_RangeError();}
|
|
|
|
Standard_Integer i, lowp = tabP.Lower(), lowv = tabV.Lower();
|
|
|
|
|
|
gp_Vec dnplan,d1u1,d1v1,d1u2,d1v2,temp,ns,ncrossns;
|
|
Standard_Real norm,ndotns,grosterme,lambda;
|
|
|
|
math_Vector sol(1,4),valsol(1,4),secmember(1,4);
|
|
math_Matrix gradsol(1,4,1,4);
|
|
|
|
curv->D2(Param,ptgui,d1gui,d2gui);
|
|
normtg = d1gui.Magnitude();
|
|
nplan = d1gui.Normalized();
|
|
theD = - (nplan.XYZ().Dot(ptgui.XYZ()));
|
|
|
|
sol(1) = U1; sol(2) = V1; sol(3) = U2; sol(4) = V2;
|
|
|
|
Values(sol,valsol,gradsol);
|
|
|
|
surf1->D1(sol(1),sol(2),pts1,d1u1,d1v1);
|
|
surf2->D1(sol(3),sol(4),pts2,d1u2,d1v2);
|
|
dnplan.SetLinearForm(1./normtg,d2gui,
|
|
-1./normtg*(nplan.Dot(d2gui)),nplan);
|
|
|
|
secmember(1) = normtg - dnplan.Dot(gp_Vec(ptgui,pts1));
|
|
secmember(2) = normtg - dnplan.Dot(gp_Vec(ptgui,pts2));
|
|
|
|
ns = d1u1.Crossed(d1v1);
|
|
ncrossns = nplan.Crossed(ns);
|
|
ndotns = nplan.Dot(ns);
|
|
norm = ncrossns.Magnitude();
|
|
|
|
// Derivee de nor1 par rapport au parametre sur la ligne guide
|
|
grosterme = ncrossns.Dot(dnplan.Crossed(ns))/norm/norm;
|
|
temp.SetLinearForm((dnplan.Dot(ns)-grosterme*ndotns)/norm,nplan,
|
|
ndotns/norm,dnplan,
|
|
grosterme/norm,ns);
|
|
|
|
|
|
secmember(3) = -(temp.Dot(gp_Vec(pts1,pts2)));
|
|
|
|
ns = d1u2.Crossed(d1v2);
|
|
ncrossns = nplan.Crossed(ns);
|
|
ndotns = nplan.Dot(ns);
|
|
norm = ncrossns.Magnitude();
|
|
|
|
// Derivee de nor2 par rapport au parametre sur la ligne guide
|
|
grosterme = ncrossns.Dot(dnplan.Crossed(ns))/norm/norm;
|
|
temp.SetLinearForm((dnplan.Dot(ns)-grosterme*ndotns)/norm,nplan,
|
|
ndotns/norm,dnplan,
|
|
grosterme/norm,ns);
|
|
|
|
secmember(4) = -(temp.Dot(gp_Vec(pts1,pts2)));
|
|
|
|
math_Gauss Resol(gradsol);
|
|
if (Resol.IsDone()) {
|
|
|
|
Resol.Solve(secmember);
|
|
|
|
tg1.SetLinearForm(secmember(1),d1u1,secmember(2),d1v1);
|
|
tg2.SetLinearForm(secmember(3),d1u2,secmember(4),d1v2);
|
|
|
|
tabP(lowp) = pts1;
|
|
tabP(lowp+NbPoint-1) = pts2;
|
|
|
|
tabV(lowv) = tg1;
|
|
tabV(lowv+NbPoint-1) = tg2;
|
|
|
|
for (i=2; i <= NbPoint-1; i++) {
|
|
|
|
lambda = (Standard_Real)(i-1)/(Standard_Real)(NbPoint-1);
|
|
tabP(lowp+i-1).SetXYZ((1.-lambda)*pts1.XYZ() + lambda*pts2.XYZ());
|
|
tabV(lowv+i-1).SetLinearForm(1.-lambda,tg1,lambda,tg2);
|
|
}
|
|
return Standard_True;
|
|
}
|
|
return Standard_False;
|
|
|
|
}
|
|
//=======================================================================
|
|
//function : IsRationnal
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Boolean BlendFunc_Ruled::IsRational () const
|
|
{
|
|
return Standard_False;
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : GetSectionSize
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Real BlendFunc_Ruled::GetSectionSize() const
|
|
{
|
|
throw Standard_NotImplemented("BlendFunc_Ruled::GetSectionSize()");
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : GetMinimalWeight
|
|
//purpose :
|
|
//=======================================================================
|
|
void BlendFunc_Ruled::GetMinimalWeight(TColStd_Array1OfReal& Weigths) const
|
|
{
|
|
Weigths.Init(1);
|
|
}
|
|
//=======================================================================
|
|
//function : NbIntervals
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Integer BlendFunc_Ruled::NbIntervals (const GeomAbs_Shape S) const
|
|
{
|
|
return curv->NbIntervals(BlendFunc::NextShape(S));
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : Intervals
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void BlendFunc_Ruled::Intervals (TColStd_Array1OfReal& T,
|
|
const GeomAbs_Shape S) const
|
|
{
|
|
curv->Intervals(T, BlendFunc::NextShape(S));
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : GetShape
|
|
//purpose :
|
|
//=======================================================================
|
|
void BlendFunc_Ruled::GetShape(Standard_Integer& NbPoles,
|
|
Standard_Integer& NbKnots,
|
|
Standard_Integer& Degree,
|
|
Standard_Integer& NbPoles2d)
|
|
{
|
|
NbPoles = 2;
|
|
NbKnots = 2;
|
|
Degree = 1;
|
|
NbPoles2d = 2;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : GetTolerance
|
|
//purpose : Determine les Tolerance a utiliser dans les approximations.
|
|
//=======================================================================
|
|
void BlendFunc_Ruled::GetTolerance(const Standard_Real BoundTol,
|
|
const Standard_Real,
|
|
const Standard_Real,
|
|
math_Vector& Tol3d,
|
|
math_Vector&) const
|
|
{
|
|
Tol3d.Init(BoundTol);
|
|
}
|
|
|
|
void BlendFunc_Ruled::Knots(TColStd_Array1OfReal& TKnots)
|
|
{
|
|
TKnots(TKnots.Lower()) = 0.;
|
|
TKnots(TKnots.Upper()) = 1.;
|
|
}
|
|
|
|
void BlendFunc_Ruled::Mults(TColStd_Array1OfInteger& TMults)
|
|
{
|
|
TMults(TMults.Lower()) = TMults(TMults.Upper()) = 2;
|
|
}
|
|
|
|
Standard_Boolean BlendFunc_Ruled::Section(const Blend_Point& /*P*/,
|
|
TColgp_Array1OfPnt& /*Poles*/,
|
|
TColgp_Array1OfVec& /*DPoles*/,
|
|
TColgp_Array1OfVec& /*D2Poles*/,
|
|
TColgp_Array1OfPnt2d& /*Poles2d*/,
|
|
TColgp_Array1OfVec2d& /*DPoles2d*/,
|
|
TColgp_Array1OfVec2d& /*D2Poles2d*/,
|
|
TColStd_Array1OfReal& /*Weights*/,
|
|
TColStd_Array1OfReal& /*DWeights*/,
|
|
TColStd_Array1OfReal& /*D2Weights*/)
|
|
{
|
|
return Standard_False;
|
|
}
|
|
|
|
Standard_Boolean BlendFunc_Ruled::Section(const Blend_Point& P,
|
|
TColgp_Array1OfPnt& Poles,
|
|
TColgp_Array1OfVec& DPoles,
|
|
TColgp_Array1OfPnt2d& Poles2d,
|
|
TColgp_Array1OfVec2d& DPoles2d,
|
|
TColStd_Array1OfReal& Weights,
|
|
TColStd_Array1OfReal& DWeights)
|
|
{
|
|
Standard_Integer lowp = Poles.Lower(), lowp2d = Poles2d.Lower();
|
|
Standard_Real u,v;
|
|
|
|
Poles(lowp) = P.PointOnS1();
|
|
Poles(lowp+1) = P.PointOnS2();
|
|
|
|
P.ParametersOnS1(u,v);
|
|
Poles2d(lowp2d).SetCoord(u,v);
|
|
P.ParametersOnS2(u,v);
|
|
Poles2d(lowp2d+1).SetCoord(u,v);
|
|
|
|
Weights(lowp) = 1.;
|
|
Weights(lowp+1) = 1.;
|
|
|
|
if (!P.IsTangencyPoint()) {
|
|
|
|
DPoles(lowp)= P.TangentOnS1();
|
|
DPoles(lowp+1)= P.TangentOnS2();
|
|
|
|
DPoles2d(lowp2d)= P.Tangent2dOnS1();
|
|
DPoles2d(lowp2d+1)= P.Tangent2dOnS2();
|
|
|
|
DWeights(lowp) = 0.;
|
|
DWeights(lowp+1) = 0.;
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
return Standard_False;
|
|
}
|
|
|
|
|
|
void BlendFunc_Ruled::Section(const Blend_Point& P,
|
|
TColgp_Array1OfPnt& Poles,
|
|
TColgp_Array1OfPnt2d& Poles2d,
|
|
TColStd_Array1OfReal& Weights)
|
|
{
|
|
Standard_Integer lowp = Poles.Lower(), lowp2d = Poles2d.Lower();
|
|
Standard_Real u,v;
|
|
|
|
Poles(lowp) = P.PointOnS1();
|
|
Poles(lowp+1) = P.PointOnS2();
|
|
|
|
P.ParametersOnS1(u,v);
|
|
Poles2d(lowp2d).SetCoord(u,v);
|
|
P.ParametersOnS2(u,v);
|
|
Poles2d(lowp2d+1).SetCoord(u,v);
|
|
|
|
Weights(lowp) = 1.;
|
|
Weights(lowp+1) = 1.;
|
|
|
|
}
|
|
|
|
|
|
gp_Ax1 BlendFunc_Ruled::AxeRot (const Standard_Real Prm)
|
|
{
|
|
gp_Ax1 axrot;
|
|
gp_Vec dirax, dnplan;
|
|
gp_Pnt oriax;
|
|
|
|
curv->D2(Prm,ptgui,d1gui,d2gui);
|
|
|
|
normtg = d1gui.Magnitude();
|
|
nplan = d1gui.Normalized();
|
|
dnplan.SetLinearForm(1./normtg,d2gui,
|
|
-1./normtg*(nplan.Dot(d2gui)),nplan);
|
|
|
|
dirax = nplan.Crossed(dnplan);
|
|
axrot.SetDirection(dirax);
|
|
oriax.SetXYZ(ptgui.XYZ()+(normtg/dnplan.Magnitude())*dnplan.Normalized().XYZ());
|
|
axrot.SetLocation(oriax);
|
|
return axrot;
|
|
}
|
|
|
|
void BlendFunc_Ruled::Resolution(const Standard_Integer IC2d,
|
|
const Standard_Real Tol,
|
|
Standard_Real& TolU,
|
|
Standard_Real& TolV) const
|
|
{
|
|
if(IC2d == 1){
|
|
TolU = surf1->UResolution(Tol);
|
|
TolV = surf1->VResolution(Tol);
|
|
}
|
|
else {
|
|
TolU = surf2->UResolution(Tol);
|
|
TolV = surf2->VResolution(Tol);
|
|
}
|
|
}
|