mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
Added initialization of fields that had not initialization Added default constructors to classes without constructors
1825 lines
58 KiB
C++
1825 lines
58 KiB
C++
// Created on: 1994-03-10
|
|
// Created by: Yves FRICAUD
|
|
// Copyright (c) 1994-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <Bisector.hxx>
|
|
#include <Bisector_BisecCC.hxx>
|
|
#include <Bisector_BisecPC.hxx>
|
|
#include <Bisector_Curve.hxx>
|
|
#include <Bisector_FunctionH.hxx>
|
|
#include <Bisector_PointOnBis.hxx>
|
|
#include <Bisector_PolyBis.hxx>
|
|
#include <Geom2d_Circle.hxx>
|
|
#include <Geom2d_Curve.hxx>
|
|
#include <Geom2d_Geometry.hxx>
|
|
#include <Geom2d_Line.hxx>
|
|
#include <Geom2d_TrimmedCurve.hxx>
|
|
#include <Geom2dAdaptor_Curve.hxx>
|
|
#include <Geom2dAPI_ProjectPointOnCurve.hxx>
|
|
#include <Geom2dGcc.hxx>
|
|
#include <Geom2dGcc_Circ2d2TanRad.hxx>
|
|
#include <Geom2dGcc_QualifiedCurve.hxx>
|
|
#include <Geom2dInt_GInter.hxx>
|
|
#include <Geom2dLProp_CLProps2d.hxx>
|
|
#include <gp.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <gp_Trsf2d.hxx>
|
|
#include <gp_Vec2d.hxx>
|
|
#include <IntRes2d_IntersectionPoint.hxx>
|
|
#include <math_BissecNewton.hxx>
|
|
#include <math_FunctionRoot.hxx>
|
|
#include <math_FunctionRoots.hxx>
|
|
#include <Precision.hxx>
|
|
#include <Standard_DivideByZero.hxx>
|
|
#include <Standard_DomainError.hxx>
|
|
#include <Standard_NotImplemented.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <Standard_RangeError.hxx>
|
|
#include <Standard_Type.hxx>
|
|
|
|
IMPLEMENT_STANDARD_RTTIEXT(Bisector_BisecCC,Bisector_Curve)
|
|
|
|
static Standard_Boolean ProjOnCurve (const gp_Pnt2d& P,
|
|
const Handle(Geom2d_Curve)& C,
|
|
Standard_Real& theParam);
|
|
|
|
static Standard_Real Curvature (const Handle(Geom2d_Curve)& C,
|
|
Standard_Real U,
|
|
Standard_Real Tol) ;
|
|
|
|
static Standard_Boolean TestExtension (const Handle(Geom2d_Curve)& C1,
|
|
const Handle(Geom2d_Curve)& C2,
|
|
const Standard_Integer Start_End);
|
|
|
|
static Standard_Boolean DiscretPar(const Standard_Real DU,
|
|
const Standard_Real EpsMin,
|
|
const Standard_Real EpsMax,
|
|
const Standard_Integer NbMin,
|
|
const Standard_Integer NbMax,
|
|
Standard_Real& Eps,
|
|
Standard_Integer& Nb);
|
|
|
|
//=============================================================================
|
|
//function :
|
|
//purpose :
|
|
//=============================================================================
|
|
Bisector_BisecCC::Bisector_BisecCC()
|
|
: sign1(0.0),
|
|
sign2(0.0),
|
|
currentInterval(0),
|
|
shiftParameter(0.0),
|
|
distMax(0.0),
|
|
isEmpty(Standard_True),
|
|
isConvex1(Standard_False),
|
|
isConvex2(Standard_False),
|
|
extensionStart(Standard_False),
|
|
extensionEnd(Standard_False)
|
|
{
|
|
}
|
|
|
|
//=============================================================================
|
|
//function :
|
|
//purpose :
|
|
//=============================================================================
|
|
Bisector_BisecCC::Bisector_BisecCC(const Handle(Geom2d_Curve)& Cu1,
|
|
const Handle(Geom2d_Curve)& Cu2,
|
|
const Standard_Real Side1,
|
|
const Standard_Real Side2,
|
|
const gp_Pnt2d& Origin,
|
|
const Standard_Real DistMax)
|
|
{
|
|
Perform (Cu1,Cu2,Side1,Side2,Origin,DistMax);
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Perform
|
|
//purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::Perform(const Handle(Geom2d_Curve)& Cu1,
|
|
const Handle(Geom2d_Curve)& Cu2,
|
|
const Standard_Real Side1,
|
|
const Standard_Real Side2,
|
|
const gp_Pnt2d& Origin,
|
|
const Standard_Real DistMax)
|
|
{
|
|
isEmpty = Standard_False;
|
|
distMax = DistMax;
|
|
|
|
curve1 = Handle (Geom2d_Curve)::DownCast(Cu1->Copy());
|
|
curve2 = Handle (Geom2d_Curve)::DownCast(Cu2->Copy());
|
|
|
|
sign1 = Side1;
|
|
sign2 = Side2;
|
|
|
|
isConvex1 = Bisector::IsConvex(curve1,sign1);
|
|
isConvex2 = Bisector::IsConvex(curve2,sign2);
|
|
|
|
Standard_Real U,UC1,UC2,Dist,dU,USol;
|
|
gp_Pnt2d P;
|
|
Standard_Integer NbPnts = 21;
|
|
Standard_Real EpsMin = 10*Precision::Confusion();
|
|
Standard_Boolean YaPoly = Standard_True;
|
|
Standard_Boolean OriInPoly = Standard_False;
|
|
//---------------------------------------------
|
|
// Calculate first point of the polygon.
|
|
//---------------------------------------------
|
|
Standard_Boolean isProjDone = ProjOnCurve (Origin,curve1, U);
|
|
|
|
if(!isProjDone)
|
|
{
|
|
isEmpty = Standard_True;
|
|
return;
|
|
}
|
|
|
|
P = ValueByInt (U,UC1,UC2,Dist);
|
|
if(Dist < Precision::Confusion())
|
|
{
|
|
gp_Pnt2d aP1 = curve1->Value(UC1);
|
|
gp_Pnt2d aP2 = curve2->Value(UC2);
|
|
Standard_Real dp = (aP1.Distance(P)+aP2.Distance(P));
|
|
Standard_Real dorig = (aP1.Distance(Origin)+aP2.Distance(Origin));
|
|
if(dp < dorig)
|
|
{
|
|
isEmpty = Standard_True;
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (Dist < Precision::Infinite()) {
|
|
//----------------------------------------------------
|
|
// the parameter of the origin point gives a point
|
|
// on the polygon.
|
|
//----------------------------------------------------
|
|
myPolygon.Append(Bisector_PointOnBis(UC1,UC2,U,Dist,P));
|
|
startIntervals.Append(U);
|
|
if (P.IsEqual(Origin,Precision::Confusion())) {
|
|
//----------------------------------------
|
|
// test if the first point is the origin.
|
|
//----------------------------------------
|
|
OriInPoly = Standard_True;
|
|
}
|
|
}
|
|
else {
|
|
//-------------------------------------------------------
|
|
// The origin point is on the extension.
|
|
// Find the first point of the polygon by dichotomy.
|
|
//-------------------------------------------------------
|
|
dU = (curve1->LastParameter() - U)/(NbPnts - 1);
|
|
U += dU;
|
|
for (Standard_Integer i = 1; i <= NbPnts - 1; i++) {
|
|
P = ValueByInt(U,UC1,UC2,Dist);
|
|
if (Dist < Precision::Infinite()) {
|
|
USol = SearchBound(U - dU,U);
|
|
P = ValueByInt(USol,UC1,UC2,Dist);
|
|
startIntervals.Append(USol);
|
|
myPolygon.Append(Bisector_PointOnBis(UC1,UC2,USol,Dist,P));
|
|
break;
|
|
}
|
|
U += dU;
|
|
}
|
|
}
|
|
|
|
if ( myPolygon.Length() != 0 ) {
|
|
SupLastParameter();
|
|
//----------------------------------------------
|
|
// Construction of the polygon of the bissectrice.
|
|
//---------------------------------------------
|
|
U = FirstParameter();
|
|
Standard_Real DU = LastParameter() - U;
|
|
|
|
if (DU < EpsMin) {NbPnts = 3;}
|
|
dU = DU/(NbPnts - 1);
|
|
|
|
U += dU;
|
|
// modified by NIZHNY-EAP Fri Jan 21 09:33:20 2000 ___BEGIN___
|
|
// prevent addition of the same point
|
|
gp_Pnt2d prevPnt = P;
|
|
for (Standard_Integer i = 1; i <= NbPnts - 1; i++) {
|
|
P = ValueByInt(U,UC1,UC2,Dist);
|
|
if (Dist < Precision::Infinite()) {
|
|
if (P.Distance (prevPnt) > Precision::Confusion())
|
|
myPolygon.Append(Bisector_PointOnBis(UC1,UC2,U,Dist,P));
|
|
}
|
|
else {
|
|
USol = SearchBound(U - dU,U);
|
|
P = ValueByInt(USol,UC1,UC2,Dist);
|
|
endIntervals.SetValue(1,USol);
|
|
if (P.Distance (prevPnt) > Precision::Confusion())
|
|
myPolygon.Append(Bisector_PointOnBis(UC1,UC2,USol,Dist,P));
|
|
break;
|
|
}
|
|
U += dU;
|
|
prevPnt=P;
|
|
// modified by NIZHNY-EAP Fri Jan 21 09:33:24 2000 ___END___
|
|
}
|
|
}
|
|
else {
|
|
//----------------
|
|
// Empty Polygon.
|
|
//----------------
|
|
YaPoly = Standard_False;
|
|
}
|
|
|
|
extensionStart = Standard_False;
|
|
extensionEnd = Standard_False;
|
|
pointStart = Origin;
|
|
|
|
if (isConvex1 && isConvex2) {
|
|
if (YaPoly) pointEnd = myPolygon.Last().Point();
|
|
}
|
|
else {
|
|
//-----------------------------------------------------------------------------
|
|
// Extension : The curve is extended at the beginning and/or the end if
|
|
// - one of two curves is concave.
|
|
// - the curves have a common point at the beginning and/or the end
|
|
// - the angle of opening at the common point between two curves
|
|
// values M_PI.
|
|
// the extension at the beginning is taken into account if the origin is found above.
|
|
// ie : the origin is not the in the polygon.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
//---------------------------------
|
|
// Do the extensions exist ?
|
|
//---------------------------------
|
|
if (OriInPoly) {
|
|
extensionStart = Standard_False;
|
|
}
|
|
else {
|
|
extensionStart = TestExtension(curve1,curve2,1);
|
|
}
|
|
extensionEnd = TestExtension(curve1,curve2,2);
|
|
|
|
//-----------------
|
|
// Calculate pointEnd.
|
|
//-----------------
|
|
if (extensionEnd) {
|
|
pointEnd = curve1->Value(curve1->LastParameter());
|
|
}
|
|
else if (YaPoly) {
|
|
pointEnd = myPolygon.Last().Point();
|
|
}
|
|
else {
|
|
ComputePointEnd();
|
|
}
|
|
//------------------------------------------------------
|
|
// Update the Limits of intervals of definition.
|
|
//------------------------------------------------------
|
|
if (YaPoly) {
|
|
if (extensionStart) {
|
|
gp_Pnt2d P1 = myPolygon.First().Point();
|
|
Standard_Real UFirst = startIntervals.First() - pointStart.Distance(P1);
|
|
startIntervals.InsertBefore(1,UFirst);
|
|
endIntervals .InsertBefore(1,startIntervals.Value(2));
|
|
}
|
|
if (extensionEnd) {
|
|
gp_Pnt2d P1;
|
|
Standard_Real UFirst,ULast;
|
|
P1 = myPolygon.Last().Point();
|
|
UFirst = endIntervals.Last();
|
|
ULast = UFirst + pointEnd.Distance(P1);
|
|
startIntervals.Append(UFirst);
|
|
endIntervals .Append(ULast );
|
|
}
|
|
}
|
|
else {
|
|
//--------------------------------------------------
|
|
// No polygon => the bissectrice is a segment.
|
|
//--------------------------------------------------
|
|
startIntervals.Append(0.);
|
|
endIntervals .Append(pointEnd.Distance(pointStart));
|
|
}
|
|
}
|
|
if (!YaPoly && !extensionStart && !extensionEnd)
|
|
isEmpty = Standard_True;
|
|
// modified by NIZHNY-EAP Mon Jan 17 17:32:40 2000 ___BEGIN___
|
|
if (myPolygon.Length() <= 2)
|
|
isEmpty = Standard_True;
|
|
// modified by NIZHNY-EAP Mon Jan 17 17:32:42 2000 ___END___
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : IsExtendAtStart
|
|
//purpose :
|
|
//=============================================================================
|
|
Standard_Boolean Bisector_BisecCC::IsExtendAtStart() const
|
|
{
|
|
return extensionStart;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : IsExtendAtEnd
|
|
//purpose :
|
|
//=============================================================================
|
|
Standard_Boolean Bisector_BisecCC::IsExtendAtEnd() const
|
|
{
|
|
return extensionEnd;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : IsEmpty
|
|
//purpose :
|
|
//=============================================================================
|
|
Standard_Boolean Bisector_BisecCC::IsEmpty() const
|
|
{
|
|
return isEmpty;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Reverse
|
|
//purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::Reverse()
|
|
{
|
|
throw Standard_NotImplemented();
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : ReversedParameter
|
|
// purpose :
|
|
//=============================================================================
|
|
Standard_Real Bisector_BisecCC::ReversedParameter(const Standard_Real U) const
|
|
{
|
|
return LastParameter() + FirstParameter() - U;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Copy
|
|
//purpose :
|
|
//=============================================================================
|
|
Handle(Geom2d_Geometry) Bisector_BisecCC::Copy() const
|
|
{
|
|
Handle(Geom2d_Curve) CopyCurve1
|
|
= Handle(Geom2d_Curve)::DownCast(curve1->Copy());
|
|
Handle(Geom2d_Curve) CopyCurve2
|
|
= Handle(Geom2d_Curve)::DownCast(curve2->Copy());
|
|
|
|
Handle(Bisector_BisecCC) C = new Bisector_BisecCC();
|
|
|
|
C -> Curve (1, CopyCurve1) ; C -> Curve (2, CopyCurve2);
|
|
C -> Sign (1, sign1 ) ; C -> Sign (2, sign2 );
|
|
C -> IsConvex (1, isConvex1) ; C -> IsConvex (2, isConvex2);
|
|
C -> Polygon (myPolygon);
|
|
C -> IsEmpty (isEmpty) ;
|
|
C -> DistMax (distMax) ;
|
|
C -> StartIntervals (startIntervals); C -> EndIntervals (endIntervals);
|
|
C -> ExtensionStart (extensionStart); C -> ExtensionEnd (extensionEnd);
|
|
C -> PointStart (pointStart) ; C -> PointEnd (pointEnd) ;
|
|
|
|
return C;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : ChangeGuide
|
|
//purpose : Changet of the guideline for the parameters of the bissectrice
|
|
// ATTENTION : - This can invert the direction of parameterization.
|
|
// - This concerns only the part of the curve
|
|
// corresponding to the polygon.
|
|
//=============================================================================
|
|
Handle(Bisector_BisecCC) Bisector_BisecCC::ChangeGuide() const
|
|
{
|
|
Handle(Bisector_BisecCC) C = new Bisector_BisecCC();
|
|
|
|
C -> Curve (1, curve2) ; C -> Curve (2, curve1);
|
|
C -> Sign (1, sign2 ) ; C -> Sign (2, sign1 );
|
|
C -> IsConvex (1, isConvex2); C -> IsConvex (2, isConvex1);
|
|
|
|
//-------------------------------------------------------------------------
|
|
// Construction of the new polygon from the initial one.
|
|
// inversion of PointOnBis and Calculation of new parameters on the bissectrice.
|
|
//-------------------------------------------------------------------------
|
|
Bisector_PolyBis Poly;
|
|
if (sign1 == sign2 ) {
|
|
//---------------------------------------------------------------
|
|
// elements of the new polygon are ranked in the other direction.
|
|
//---------------------------------------------------------------
|
|
for (Standard_Integer i = myPolygon.Length(); i >=1; i--) {
|
|
Bisector_PointOnBis P = myPolygon.Value(i);
|
|
Bisector_PointOnBis NewP (P.ParamOnC2(), P.ParamOnC1(),
|
|
P.ParamOnC2(), P.Distance (),
|
|
P.Point());
|
|
Poly.Append (NewP);
|
|
}
|
|
}
|
|
else {
|
|
for (Standard_Integer i = 1; i <= myPolygon.Length(); i ++) {
|
|
Bisector_PointOnBis P = myPolygon.Value(i);
|
|
Bisector_PointOnBis NewP (P.ParamOnC2(), P.ParamOnC1(),
|
|
P.ParamOnC2(), P.Distance (),
|
|
P.Point());
|
|
Poly.Append (NewP);
|
|
}
|
|
}
|
|
C -> Polygon (Poly);
|
|
C -> FirstParameter (Poly.First().ParamOnBis());
|
|
C -> LastParameter (Poly.Last() .ParamOnBis());
|
|
|
|
return C;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Transform
|
|
//purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::Transform (const gp_Trsf2d& T)
|
|
{
|
|
curve1 ->Transform(T);
|
|
curve2 ->Transform(T);
|
|
myPolygon . Transform(T);
|
|
pointStart. Transform(T);
|
|
pointEnd . Transform(T);
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : IsCN
|
|
//purpose :
|
|
//=============================================================================
|
|
Standard_Boolean Bisector_BisecCC::IsCN (const Standard_Integer N) const
|
|
{
|
|
return (curve1->IsCN(N+1) && curve2->IsCN(N+1));
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : FirstParameter
|
|
//purpose :
|
|
//=============================================================================
|
|
Standard_Real Bisector_BisecCC::FirstParameter() const
|
|
{
|
|
return startIntervals.First();
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : LastParameter
|
|
//purpose :
|
|
//=============================================================================
|
|
Standard_Real Bisector_BisecCC::LastParameter() const
|
|
{
|
|
return endIntervals.Last();
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Continuity
|
|
//purpose :
|
|
//=============================================================================
|
|
GeomAbs_Shape Bisector_BisecCC::Continuity() const
|
|
{
|
|
GeomAbs_Shape Cont = curve1->Continuity();
|
|
switch (Cont) {
|
|
case GeomAbs_C1 : return GeomAbs_C0;
|
|
case GeomAbs_C2 : return GeomAbs_C1;
|
|
case GeomAbs_C3 : return GeomAbs_C2;
|
|
case GeomAbs_CN : return GeomAbs_CN;
|
|
default: break;
|
|
}
|
|
return GeomAbs_C0;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : NbIntervals
|
|
//purpose :
|
|
//=============================================================================
|
|
Standard_Integer Bisector_BisecCC::NbIntervals() const
|
|
{
|
|
return startIntervals.Length();
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : IntervalFirst
|
|
//purpose :
|
|
//=============================================================================
|
|
Standard_Real Bisector_BisecCC::IntervalFirst(const Standard_Integer Index) const
|
|
{
|
|
return startIntervals.Value(Index);
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : IntervalLast
|
|
//purpose :
|
|
//=============================================================================
|
|
Standard_Real Bisector_BisecCC::IntervalLast(const Standard_Integer Index) const
|
|
{
|
|
return endIntervals.Value(Index);
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : IntervalContinuity
|
|
//purpose :
|
|
//=============================================================================
|
|
GeomAbs_Shape Bisector_BisecCC::IntervalContinuity() const
|
|
{
|
|
GeomAbs_Shape Cont = curve1->Continuity();
|
|
switch (Cont) {
|
|
case GeomAbs_C1 : return GeomAbs_C0;
|
|
case GeomAbs_C2 : return GeomAbs_C1;
|
|
case GeomAbs_C3 : return GeomAbs_C2;
|
|
case GeomAbs_CN : return GeomAbs_CN;
|
|
default: break;
|
|
}
|
|
return GeomAbs_C0;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : IsClosed
|
|
//purpose :
|
|
//=============================================================================
|
|
Standard_Boolean Bisector_BisecCC::IsClosed() const
|
|
{
|
|
if (curve1->IsClosed()) {
|
|
if (startIntervals.First() == curve1->FirstParameter() &&
|
|
endIntervals .Last () == curve1->LastParameter () )
|
|
return Standard_True;
|
|
}
|
|
return Standard_False;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : IsPeriodic
|
|
//purpose :
|
|
//=============================================================================
|
|
Standard_Boolean Bisector_BisecCC::IsPeriodic() const
|
|
{
|
|
return Standard_False;
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
//function : Curvature
|
|
//purpose :
|
|
//=============================================================================
|
|
static Standard_Real Curvature (const Handle(Geom2d_Curve)& C,
|
|
Standard_Real U,
|
|
Standard_Real Tol)
|
|
{
|
|
Standard_Real K1;
|
|
gp_Vec2d D1,D2;
|
|
gp_Pnt2d P;
|
|
C->D2(U,P,D1,D2);
|
|
Standard_Real Norm2 = D1.SquareMagnitude();
|
|
if (Norm2 < Tol) {
|
|
K1 = 0.0;
|
|
}
|
|
else {
|
|
K1 = (D1^D2)/(Norm2*sqrt(Norm2));
|
|
}
|
|
return K1;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Value
|
|
//purpose : CALCULATE THE CURRENT POINT BY ITERATIVE METHOD.
|
|
// ----------------------------------------------
|
|
// Calculate the current point, the distance from the current point to
|
|
// both curves, the parameters on each curve of the projection
|
|
// of the current point.
|
|
//
|
|
//method : - Find start parameter by using <myPolygon>.
|
|
// - Calculate parameter U2 on curve C2 solution of H(U,V)= 0
|
|
// - P(U) = F(U,U2)
|
|
//
|
|
// or :
|
|
// ||P2(v0)P1(u)||**2
|
|
// F(u,v) = P1(u) - 1/2 *----------------* N(u)
|
|
// (N(u).P2(v0)P1(u))
|
|
//
|
|
// H(u,v) = (Tu.P1(u)P2(v))**2||Tv||**2 - (Tv.P1(u)P2(v))**2||Tu||**2
|
|
//
|
|
//=============================================================================
|
|
gp_Pnt2d Bisector_BisecCC::ValueAndDist (const Standard_Real U,
|
|
Standard_Real& U1,
|
|
Standard_Real& U2,
|
|
Standard_Real& Dist) const
|
|
{
|
|
gp_Vec2d T;
|
|
|
|
//-----------------------------------------------
|
|
// is the polygon reduced to a point or empty?
|
|
//-----------------------------------------------
|
|
if (myPolygon.Length() <= 1) {
|
|
return Extension(U,U1,U2,Dist,T);
|
|
}
|
|
|
|
//-----------------------------------------------
|
|
// test U out of the limits of the polygon.
|
|
//-----------------------------------------------
|
|
if (U < myPolygon.First().ParamOnBis()) {
|
|
return Extension(U,U1,U2,Dist,T);
|
|
}
|
|
if (U > myPolygon.Last().ParamOnBis()) {
|
|
return Extension(U,U1,U2,Dist,T);
|
|
}
|
|
|
|
//-------------------------------------------------------
|
|
// Find start parameter by using <myPolygon>.
|
|
//-------------------------------------------------------
|
|
Standard_Integer IntervalIndex = myPolygon.Interval(U);
|
|
Standard_Real UMin = myPolygon.Value(IntervalIndex ).ParamOnBis();
|
|
Standard_Real UMax = myPolygon.Value(IntervalIndex + 1).ParamOnBis();
|
|
Standard_Real VMin = myPolygon.Value(IntervalIndex ).ParamOnC2();
|
|
Standard_Real VMax = myPolygon.Value(IntervalIndex + 1).ParamOnC2();
|
|
Standard_Real Alpha,VInit;
|
|
|
|
if (Abs(UMax - UMin) < gp::Resolution()) {
|
|
VInit = VMin;
|
|
}
|
|
else {
|
|
Alpha = (U - UMin)/(UMax - UMin);
|
|
VInit = VMin + Alpha*(VMax - VMin);
|
|
}
|
|
|
|
U1 = LinkBisCurve(U);
|
|
Standard_Real VTemp = Min(VMin,VMax);
|
|
VMax = Max(VMin,VMax); VMin = VTemp;
|
|
Standard_Boolean Valid = Standard_True;
|
|
//---------------------------------------------------------------
|
|
// Calculate parameter U2 on curve C2 solution of H(u,v)=0
|
|
//---------------------------------------------------------------
|
|
gp_Pnt2d P1;
|
|
gp_Vec2d T1;
|
|
Standard_Real EpsH = 1.E-9;
|
|
Standard_Real EpsH100 = 1.E-7;
|
|
curve1->D1 (U1,P1,T1);
|
|
gp_Vec2d N1(T1.Y(), - T1.X());
|
|
|
|
if ((VMax - VMin) < Precision::PConfusion()) {
|
|
U2 = VInit;
|
|
}
|
|
else {
|
|
Bisector_FunctionH H (curve2,P1,sign1*sign2*T1);
|
|
Standard_Real FInit;
|
|
H.Value(VInit,FInit);
|
|
if (Abs(FInit) < EpsH) {
|
|
U2 = VInit;
|
|
}
|
|
else
|
|
{
|
|
math_BissecNewton aNewSolution(EpsH);
|
|
aNewSolution.Perform(H, VMin - EpsH100, VMax + EpsH100, 10);
|
|
|
|
if (aNewSolution.IsDone())
|
|
{
|
|
U2 = aNewSolution.Root();
|
|
}
|
|
else
|
|
{
|
|
math_FunctionRoot SolRoot (H,VInit,EpsH,VMin - EpsH100,VMax + EpsH100);
|
|
|
|
if (SolRoot.IsDone())
|
|
U2 = SolRoot.Root();
|
|
else
|
|
Valid = Standard_False;
|
|
}
|
|
}
|
|
}
|
|
|
|
gp_Pnt2d PBis = pointStart;
|
|
//----------------
|
|
// P(U) = F(U1,U2)
|
|
//----------------
|
|
if (Valid) {
|
|
gp_Pnt2d P2 = curve2->Value(U2);
|
|
gp_Vec2d P2P1(P1.X() - P2.X(),P1.Y() - P2.Y());
|
|
Standard_Real SquareP2P1 = P2P1.SquareMagnitude();
|
|
Standard_Real N1P2P1 = N1.Dot(P2P1);
|
|
const Standard_Real anEps = Epsilon(1);
|
|
|
|
if (P1.IsEqual(P2,Precision::Confusion())) {
|
|
PBis = P1 ;
|
|
Dist = 0.0;
|
|
}
|
|
else if (N1P2P1*sign1 < anEps) {
|
|
Valid = Standard_False;
|
|
}
|
|
else {
|
|
PBis = P1.Translated(- (0.5*SquareP2P1/N1P2P1)*N1);
|
|
Dist = P1.SquareDistance(PBis);
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------
|
|
// If the point is not valid
|
|
// calculate by intersection.
|
|
//----------------------------------------------------------------
|
|
if (!Valid) {
|
|
//--------------------------------------------------------------------
|
|
// Construction of the bisectrice point curve and of the straight line passing
|
|
// by P1 and carried by the normal. curve2 is limited by VMin and VMax.
|
|
//--------------------------------------------------------------------
|
|
Standard_Real DMin = Precision::Infinite();
|
|
gp_Pnt2d P;
|
|
Handle(Bisector_BisecPC) BisPC
|
|
= new Bisector_BisecPC(curve2, P1, sign2, VMin, VMax);
|
|
Handle(Geom2d_Line) NorLi = new Geom2d_Line (P1,N1);
|
|
|
|
Geom2dAdaptor_Curve ABisPC(BisPC);
|
|
Geom2dAdaptor_Curve ANorLi(NorLi);
|
|
//-------------------------------------------------------------------------
|
|
Geom2dInt_GInter Intersect(ABisPC,ANorLi,
|
|
Precision::Confusion(),Precision::Confusion());
|
|
//-------------------------------------------------------------------------
|
|
|
|
if (Intersect.IsDone() && !Intersect.IsEmpty()) {
|
|
for (Standard_Integer i = 1; i <= Intersect.NbPoints(); i++) {
|
|
if (Intersect.Point(i).ParamOnSecond()*sign1 < Precision::PConfusion()) {
|
|
P = Intersect.Point(i).Value();
|
|
if (P.SquareDistance(P1) < DMin) {
|
|
DMin = P.SquareDistance(P1);
|
|
PBis = P;
|
|
U2 = BisPC->LinkBisCurve(Intersect.Point(i).ParamOnFirst());
|
|
Dist = DMin;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return PBis;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : ValueByInt
|
|
//purpose : CALCULATE THE CURRENT POINT BY INTERSECTION.
|
|
// -------------------------------------------
|
|
// Calculate the current point, the distance from the current point
|
|
// to two curves, the parameters on each curve of the projection of the
|
|
// current point.
|
|
// the current point with parameter U is the intersection of the
|
|
// bissectrice point curve (P1,curve2) and of the straight line
|
|
// passing through P1 of director vector N1.
|
|
// P1 is the current point of parameter U on curve1 and N1 the
|
|
// normal at this point.
|
|
//=============================================================================
|
|
gp_Pnt2d Bisector_BisecCC::ValueByInt (const Standard_Real U,
|
|
Standard_Real& U1,
|
|
Standard_Real& U2,
|
|
Standard_Real& Dist) const
|
|
{
|
|
//------------------------------------------------------------------
|
|
// Return point, tangent, normal on C1 at parameter U.
|
|
//-------------------------------------------------------------------
|
|
U1 = LinkBisCurve(U);
|
|
|
|
gp_Pnt2d P1,P2,P,PSol;
|
|
gp_Vec2d Tan1,Tan2;
|
|
curve1->D1(U1,P1,Tan1);
|
|
gp_Vec2d N1( Tan1.Y(), - Tan1.X());
|
|
|
|
//--------------------------------------------------------------------------
|
|
// test confusion of P1 with extremity of curve2.
|
|
//--------------------------------------------------------------------------
|
|
if (P1.Distance(curve2->Value(curve2->FirstParameter())) < Precision::Confusion()) {
|
|
U2 = curve2->FirstParameter();
|
|
curve2->D1(U2,P2,Tan2);
|
|
if ( isConvex1 && isConvex2 ) {
|
|
Dist = 0.;
|
|
return P1;
|
|
}
|
|
if (! Tan1.IsParallel(Tan2,Precision::Angular())) {
|
|
Dist = 0.;
|
|
return P1;
|
|
}
|
|
}
|
|
if (P1.Distance(curve2->Value(curve2->LastParameter())) < Precision::Confusion()) {
|
|
U2 = curve2->LastParameter();
|
|
curve2->D1(U2,P2,Tan2);
|
|
if ( isConvex1 && isConvex2 ) {
|
|
Dist = 0.;
|
|
return P1;
|
|
}
|
|
if (! Tan1.IsParallel(Tan2,Precision::Angular())) {
|
|
Dist = 0.;
|
|
return P1;
|
|
}
|
|
}
|
|
|
|
Standard_Boolean YaSol = Standard_False;
|
|
Standard_Real DMin = Precision::Infinite();
|
|
Standard_Real USol;
|
|
Standard_Real EpsMax = 1.E-6;
|
|
Standard_Real EpsX;
|
|
Standard_Real EpsH = 1.E-8;
|
|
Standard_Real DistPP1;
|
|
Standard_Integer NbSamples =20;
|
|
Standard_Real UFirstOnC2 = curve2->FirstParameter();
|
|
Standard_Real ULastOnC2 = curve2->LastParameter();
|
|
|
|
if (!myPolygon.IsEmpty()){
|
|
if (sign1 == sign2) { ULastOnC2 = myPolygon.Last().ParamOnC2();}
|
|
else { UFirstOnC2 = myPolygon.Last().ParamOnC2();}
|
|
}
|
|
|
|
if (Abs(ULastOnC2 - UFirstOnC2) < Precision::PConfusion()/100.) {
|
|
Dist = Precision::Infinite();
|
|
return P1;
|
|
}
|
|
|
|
DiscretPar(Abs(ULastOnC2 - UFirstOnC2),EpsH,EpsMax,2,20,EpsX,NbSamples);
|
|
|
|
Bisector_FunctionH H (curve2,P1,sign1*sign2*Tan1);
|
|
math_FunctionRoots SolRoot (H,
|
|
UFirstOnC2,
|
|
ULastOnC2 ,
|
|
NbSamples,
|
|
EpsX,EpsH,EpsH);
|
|
if (SolRoot.IsDone()) {
|
|
for (Standard_Integer j = 1; j <= SolRoot.NbSolutions(); j++) {
|
|
USol = SolRoot.Value(j);
|
|
gp_Pnt2d P2Curve2 = curve2->Value(USol);
|
|
gp_Vec2d P2P1(P1.X() - P2Curve2.X(),P1.Y() - P2Curve2.Y());
|
|
Standard_Real SquareP2P1 = P2P1.SquareMagnitude();
|
|
Standard_Real N1P2P1 = N1.Dot(P2P1);
|
|
|
|
// Test if the solution is at the proper side of the curves.
|
|
if (N1P2P1*sign1 > 0 ) {
|
|
P = P1.Translated(- (0.5*SquareP2P1/N1P2P1)*N1);
|
|
DistPP1 = P1.SquareDistance(P);
|
|
if (DistPP1 < DMin) {
|
|
DMin = DistPP1;
|
|
PSol = P;
|
|
U2 = USol;
|
|
YaSol = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
if (!YaSol) {
|
|
//--------------------------------------------------------------------
|
|
// Construction de la bisectrice point courbe et de la droite passant
|
|
// par P1 et portee par la normale.
|
|
//--------------------------------------------------------------------
|
|
Handle(Bisector_BisecPC) BisPC
|
|
= new Bisector_BisecPC(curve2,P1,sign2,2*distMax);
|
|
//-------------------------------
|
|
// Test si la bissectrice existe.
|
|
//-------------------------------
|
|
if (BisPC->IsEmpty()) {
|
|
Dist = Precision::Infinite();
|
|
PSol = P1;
|
|
return PSol;
|
|
}
|
|
|
|
Handle(Geom2d_Line) NorLi = new Geom2d_Line (P1,N1);
|
|
Geom2dAdaptor_Curve NorLiAd;
|
|
if (sign1 < 0.) {NorLiAd.Load(NorLi,0. ,distMax);}
|
|
else {NorLiAd.Load(NorLi,- distMax,0. );}
|
|
|
|
//-------------------------------------------------------------------------
|
|
Geom2dInt_GInter Intersect(BisPC,NorLiAd,
|
|
Precision::Confusion(),Precision::Confusion());
|
|
//-------------------------------------------------------------------------
|
|
if (Intersect.IsDone() && !Intersect.IsEmpty()) {
|
|
for (Standard_Integer i = 1; i <= Intersect.NbPoints(); i++) {
|
|
if (Intersect.Point(i).ParamOnSecond()*sign1< Precision::PConfusion()) {
|
|
P = Intersect.Point(i).Value();
|
|
DistPP1 = P.SquareDistance(P1);
|
|
if (DistPP1 < DMin) {
|
|
DMin = DistPP1;
|
|
PSol = P;
|
|
U2 = Intersect.Point(i).ParamOnFirst();
|
|
YaSol = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
|
|
if (YaSol) {
|
|
Dist = DMin;
|
|
//--------------------------------------------------------------
|
|
// Point found => Test curve distance + Angular Test
|
|
//---------------------------------------------------------------
|
|
P2 = curve2->Value(U2);
|
|
gp_Vec2d PP1(P1.X() - PSol.X(),P1.Y() - PSol.Y());
|
|
gp_Vec2d PP2(P2.X() - PSol.X(),P2.Y() - PSol.Y());
|
|
|
|
//-----------------------------------------------
|
|
// Dist = product of norms = distance at the square.
|
|
//-----------------------------------------------
|
|
if (PP1.Dot(PP2) > (1. - Precision::Angular())*Dist) {
|
|
YaSol = Standard_False;
|
|
}
|
|
else {
|
|
if ( !isConvex1 ) {
|
|
Standard_Real K1 = Curvature(curve1,U1,Precision::Confusion());
|
|
if (K1 != 0.) {
|
|
if (Dist > 1/(K1*K1)) YaSol = Standard_False;
|
|
}
|
|
}
|
|
if (YaSol) {
|
|
if ( !isConvex2 ) {
|
|
Standard_Real K2 = Curvature(curve2,U2,Precision::Confusion());
|
|
if (K2 != 0.) {
|
|
if (Dist > 1/(K2*K2)) YaSol = Standard_False;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!YaSol) {
|
|
Dist = Precision::Infinite();
|
|
PSol = P1;
|
|
}
|
|
return PSol;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : D0
|
|
//purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::D0(const Standard_Real U,
|
|
gp_Pnt2d& P) const
|
|
{
|
|
Standard_Real U1,U2,Dist;
|
|
|
|
P = ValueAndDist(U,U1,U2,Dist);
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : D1
|
|
//purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::D1(const Standard_Real U,
|
|
gp_Pnt2d& P,
|
|
gp_Vec2d& V ) const
|
|
{
|
|
V.SetCoord(0.,0.);
|
|
gp_Vec2d V2,V3;
|
|
Values(U,1,P,V,V2,V3);
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : D2
|
|
//purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::D2(const Standard_Real U,
|
|
gp_Pnt2d& P,
|
|
gp_Vec2d& V1,
|
|
gp_Vec2d& V2) const
|
|
{
|
|
V1.SetCoord(0.,0.);
|
|
V2.SetCoord(0.,0.);
|
|
gp_Vec2d V3;
|
|
Values(U,2,P,V1,V2,V3);
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : D3
|
|
//purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::D3(const Standard_Real U,
|
|
gp_Pnt2d& P,
|
|
gp_Vec2d& V1,
|
|
gp_Vec2d& V2,
|
|
gp_Vec2d& V3) const
|
|
{
|
|
V1.SetCoord(0.,0.);
|
|
V2.SetCoord(0.,0.);
|
|
V3.SetCoord(0.,0.);
|
|
Values(U,3,P,V1,V2,V3);
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : DN
|
|
//purpose :
|
|
//=============================================================================
|
|
gp_Vec2d Bisector_BisecCC::DN(const Standard_Real U,
|
|
const Standard_Integer N) const
|
|
{
|
|
gp_Pnt2d P;
|
|
gp_Vec2d V1(0.,0.);
|
|
gp_Vec2d V2(0.,0.);
|
|
gp_Vec2d V3(0.,0.);
|
|
Values (U,N,P,V1,V2,V3);
|
|
switch (N) {
|
|
case 1 : return V1;
|
|
case 2 : return V2;
|
|
case 3 : return V3;
|
|
default: {
|
|
throw Standard_NotImplemented();
|
|
}
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Values
|
|
// purpose : the curve can be described by the following equations:
|
|
//
|
|
// B(u) = F(u,v0)
|
|
// where v0 = Phi(u) is given by H (u,v) = 0.
|
|
//
|
|
// with :
|
|
// ||P2(v0)P1(u)||**2
|
|
// F(u,v) = P1(u) - 1/2 *----------------* N(u)
|
|
// (N(u).P2(v0)P1(u))
|
|
//
|
|
// H(u,v) = (Tu.P1(u)P2(v))**2||Tv||**2 - (Tv.P1(u)P2(v))**2||Tu||**2
|
|
//
|
|
// => dB(u)/du = dF/du + dF/dv(- dH/du:dH/dv)
|
|
//
|
|
// Note : tangent to the bisectrice is bissectrice at
|
|
// tangents T1(u) and T2(v0)
|
|
//
|
|
//=============================================================================
|
|
void Bisector_BisecCC::Values (const Standard_Real U,
|
|
const Standard_Integer N,
|
|
gp_Pnt2d& P,
|
|
gp_Vec2d& V1,
|
|
gp_Vec2d& V2,
|
|
gp_Vec2d& V3) const
|
|
{
|
|
V1 = gp_Vec2d(0.,0.);
|
|
V2 = gp_Vec2d(0.,0.);
|
|
V3 = gp_Vec2d(0.,0.);
|
|
//-------------------------------------------------------------------------
|
|
// Calculate the current point on the bisectrice and the parameters on each
|
|
// curve.
|
|
//-------------------------------------------------------------------------
|
|
Standard_Real U0,V0,Dist;
|
|
|
|
//-----------------------------------------------
|
|
// is the polygon reduced to a point or empty?
|
|
//-----------------------------------------------
|
|
if (myPolygon.Length() <= 1) {
|
|
P = Extension(U,U0,V0,Dist,V1);
|
|
}
|
|
if (U < myPolygon.First().ParamOnBis()) {
|
|
P = Extension(U,U0,V0,Dist,V1);
|
|
return;
|
|
}
|
|
if (U > myPolygon.Last().ParamOnBis()) {
|
|
P = Extension(U,U0,V0,Dist,V1);
|
|
return;
|
|
}
|
|
P = ValueAndDist(U,U0,V0,Dist);
|
|
|
|
if (N == 0) return;
|
|
//------------------------------------------------------------------
|
|
// Return point, tangent, normal to C1 by parameter U0.
|
|
//-------------------------------------------------------------------
|
|
gp_Pnt2d P1 ; // point on C1.
|
|
gp_Vec2d Tu ; // tangent to C1 by U0.
|
|
gp_Vec2d Tuu ; // second derivative to C1 by U0.
|
|
curve1->D2(U0,P1,Tu,Tuu);
|
|
gp_Vec2d Nor( - Tu .Y() , Tu .X()); // Normal by U0.
|
|
gp_Vec2d Nu ( - Tuu.Y() , Tuu.X()); // derivative of the normal by U0.
|
|
|
|
//-------------------------------------------------------------------
|
|
// Return point, tangent, normale to C2 by parameter V0.
|
|
//-------------------------------------------------------------------
|
|
gp_Pnt2d P2 ; // point on C2.
|
|
gp_Vec2d Tv ; // tangent to C2 by V.
|
|
gp_Vec2d Tvv ; // second derivative to C2 by V.
|
|
curve2->D2(V0,P2,Tv,Tvv);
|
|
|
|
gp_Vec2d PuPv(P2.X() - P1.X(), P2.Y() - P1.Y());
|
|
|
|
//-----------------------------
|
|
// Calculate dH/du and dH/dv.
|
|
//-----------------------------
|
|
Standard_Real TuTu,TvTv,TuTv;
|
|
Standard_Real TuPuPv,TvPuPv ;
|
|
Standard_Real TuuPuPv,TuTuu ;
|
|
Standard_Real TvvPuPv,TvTvv ;
|
|
|
|
TuTu = Tu.Dot(Tu) ; TvTv = Tv.Dot(Tv) ; TuTv = Tu.Dot(Tv);
|
|
TuPuPv = Tu.Dot(PuPv) ; TvPuPv = Tv.Dot(PuPv);
|
|
TuuPuPv = Tuu.Dot(PuPv) ; TuTuu = Tu.Dot(Tuu) ;
|
|
TvvPuPv = Tvv.Dot(PuPv) ; TvTvv = Tv.Dot(Tvv) ;
|
|
|
|
Standard_Real dHdu = 2*(TuPuPv*(TuuPuPv - TuTu)*TvTv +
|
|
TvPuPv*TuTv*TuTu -TuTuu*TvPuPv*TvPuPv);
|
|
Standard_Real dHdv = 2*(TuPuPv*TuTv*TvTv + TvTvv*TuPuPv*TuPuPv -
|
|
TvPuPv*(TvvPuPv + TvTv)*TuTu);
|
|
|
|
//-----------------------------
|
|
// Calculate dF/du and dF/dv.
|
|
//-----------------------------
|
|
Standard_Real NorPuPv,NuPuPv,NorTv;
|
|
Standard_Real A,B,dAdu,dAdv,dBdu,dBdv,BB;
|
|
|
|
NorPuPv = Nor.Dot(PuPv);
|
|
NuPuPv = Nu .Dot(PuPv);
|
|
NorTv = Nor.Dot(Tv) ;
|
|
|
|
A = 0.5*PuPv.SquareMagnitude();
|
|
B = - NorPuPv;
|
|
BB = B*B;
|
|
dAdu = - TuPuPv;
|
|
dBdu = - NuPuPv ;
|
|
dAdv = TvPuPv;
|
|
dBdv = - NorTv;
|
|
|
|
//---------------------------------------
|
|
// F(u,v) = Pu - (A(u,v)/B(u,v))*Nor(u)
|
|
//----------------------------------------
|
|
if (BB < gp::Resolution()) {
|
|
V1 = Tu.Normalized() + Tv.Normalized();
|
|
V1 = 0.5*Tu.SquareMagnitude()*V1;
|
|
}
|
|
else {
|
|
gp_Vec2d dFdu = Tu - (dAdu/B - dBdu*A/BB)*Nor - (A/B)*Nu;
|
|
gp_Vec2d dFdv = ( - dAdv/B + dBdv*A/BB)*Nor ;
|
|
|
|
if (Abs(dHdv) > gp::Resolution()) {
|
|
V1 = dFdu + dFdv*( - dHdu / dHdv );
|
|
}
|
|
else {
|
|
V1 = Tu;
|
|
}
|
|
}
|
|
if (N == 1) return;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Extension
|
|
// purpose : Calculate the current point on the extensions
|
|
// by tangence of the curve.
|
|
//============================================================================
|
|
gp_Pnt2d Bisector_BisecCC::Extension (const Standard_Real U,
|
|
Standard_Real& U1,
|
|
Standard_Real& U2,
|
|
Standard_Real& Dist,
|
|
gp_Vec2d& T ) const
|
|
{
|
|
Bisector_PointOnBis PRef;
|
|
gp_Pnt2d P,P1,P2,PBis;
|
|
gp_Vec2d T1,Tang;
|
|
Standard_Real dU = 0.;
|
|
Standard_Boolean ExtensionTangent = Standard_False;
|
|
|
|
if (myPolygon.Length() == 0) {
|
|
//---------------------------------------------
|
|
// Empty Polygon => segment (pointStart,pointEnd)
|
|
//---------------------------------------------
|
|
dU = U - startIntervals.First();
|
|
P = pointStart;
|
|
P1 = pointEnd;
|
|
U1 = curve1->LastParameter();
|
|
if (sign1 == sign2) { U2 = curve2->FirstParameter();}
|
|
else { U2 = curve2->LastParameter() ;}
|
|
Tang.SetCoord(P1.X() - P.X(),P1.Y() - P.Y());
|
|
}
|
|
else if (U < myPolygon.First().ParamOnBis()) {
|
|
PRef = myPolygon.First();
|
|
P = PRef.Point();
|
|
dU = U - PRef.ParamOnBis();
|
|
if (extensionStart) {
|
|
//------------------------------------------------------------
|
|
// extension = segment (pointstart, first point of the polygon.)
|
|
//------------------------------------------------------------
|
|
P1 = pointStart;
|
|
U1 = curve1->FirstParameter();
|
|
if (sign1 == sign2) { U2 = curve2->LastParameter();}
|
|
else { U2 = curve2->FirstParameter();}
|
|
Tang.SetCoord(P.X() - P1.X(),P.Y() - P1.Y());
|
|
}
|
|
else {
|
|
ExtensionTangent = Standard_True;
|
|
}
|
|
}
|
|
else if (U > myPolygon.Last().ParamOnBis()) {
|
|
PRef = myPolygon.Last();
|
|
P = PRef.Point();
|
|
dU = U - PRef.ParamOnBis();
|
|
if (extensionEnd) {
|
|
//------------------------------------------------------------
|
|
// extension = segment (last point of the polygon.pointEnd)
|
|
//------------------------------------------------------------
|
|
P1 = pointEnd;
|
|
U1 = curve1->LastParameter();
|
|
if (sign1 == sign2) { U2 = curve2->LastParameter();}
|
|
else { U2 = curve2->FirstParameter();}
|
|
Tang.SetCoord(P1.X() - P.X(),P1.Y() - P.Y());
|
|
}
|
|
else {
|
|
ExtensionTangent = Standard_True;
|
|
}
|
|
}
|
|
|
|
if (ExtensionTangent) {
|
|
//-----------------------------------------------------------
|
|
// If the la curve has no a extension, it is extended by tangency
|
|
//------------------------------------------------------------
|
|
U1 = PRef.ParamOnC1();
|
|
U2 = PRef.ParamOnC2();
|
|
P2 = curve2->Value(U2);
|
|
curve1->D1(U1,P1,T1);
|
|
Tang.SetCoord(2*P.X() - P1.X() - P2.X(), 2*P.Y() - P1.Y() - P2.Y());
|
|
if (Tang.Magnitude() < Precision::Confusion()) {
|
|
Tang = T1;
|
|
}
|
|
if (T1.Dot(Tang) < 0.) Tang = - Tang;
|
|
}
|
|
|
|
T = Tang.Normalized();
|
|
PBis.SetCoord(P.X() + dU*T.X(),P.Y() + dU*T.Y());
|
|
Dist = P1.Distance(PBis);
|
|
return PBis;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : PointByInt
|
|
// purpose :
|
|
//=============================================================================
|
|
static Standard_Boolean PointByInt(const Handle(Geom2d_Curve)& CA,
|
|
const Handle(Geom2d_Curve)& CB,
|
|
const Standard_Real SignA,
|
|
const Standard_Real SignB,
|
|
const Standard_Real UOnA,
|
|
Standard_Real& UOnB,
|
|
Standard_Real& Dist)
|
|
{
|
|
//------------------------------------------------------------------
|
|
// Return point,tangent, normal on CA with parameter UOnA.
|
|
//-------------------------------------------------------------------
|
|
gp_Pnt2d P1,P2,P,PSol;
|
|
gp_Vec2d Tan1,Tan2;
|
|
Standard_Boolean IsConvexA = Bisector::IsConvex(CA,SignA);
|
|
Standard_Boolean IsConvexB = Bisector::IsConvex(CB,SignB);
|
|
|
|
CA->D1(UOnA,P1,Tan1);
|
|
gp_Vec2d N1(Tan1.Y(), - Tan1.X());
|
|
|
|
//--------------------------------------------------------------------------
|
|
// test of confusion of P1 with extremity of curve2.
|
|
//--------------------------------------------------------------------------
|
|
if (P1.Distance(CB->Value(CB->FirstParameter())) < Precision::Confusion()) {
|
|
UOnB = CB->FirstParameter();
|
|
CB->D1(UOnB,P2,Tan2);
|
|
if ( IsConvexA && IsConvexB ) {
|
|
Dist = 0.;
|
|
return Standard_True;
|
|
}
|
|
if (! Tan1.IsParallel(Tan2,Precision::Angular())) {
|
|
Dist = 0.;
|
|
return Standard_False;
|
|
}
|
|
}
|
|
if (P1.Distance(CB->Value(CB->LastParameter())) < Precision::Confusion()) {
|
|
UOnB = CB->LastParameter();
|
|
CB->D1(UOnB,P2,Tan2);
|
|
if ( IsConvexA && IsConvexB ) {
|
|
Dist = 0.;
|
|
return Standard_True;
|
|
}
|
|
if (! Tan1.IsParallel(Tan2,Precision::Angular())) {
|
|
Dist = 0.;
|
|
return Standard_False;
|
|
}
|
|
}
|
|
|
|
Standard_Real DMin = Precision::Infinite();
|
|
Standard_Real UPC;
|
|
Standard_Boolean YaSol = Standard_False;
|
|
//--------------------------------------------------------------------
|
|
// Construction of the bisectrice point curve and of the straight line passing
|
|
// through P1 and carried by the normal.
|
|
//--------------------------------------------------------------------
|
|
Handle(Bisector_BisecPC) BisPC
|
|
= new Bisector_BisecPC(CB,P1,SignB );
|
|
//-------------------------------
|
|
// Test if the bissectrice exists.
|
|
//-------------------------------
|
|
if (BisPC->IsEmpty()) {
|
|
Dist = Precision::Infinite();
|
|
PSol = P1;
|
|
return Standard_False;
|
|
}
|
|
|
|
Handle(Geom2d_Line) NorLi = new Geom2d_Line (P1,N1);
|
|
|
|
Geom2dAdaptor_Curve ABisPC(BisPC);
|
|
Geom2dAdaptor_Curve ANorLi(NorLi);
|
|
//-------------------------------------------------------------------------
|
|
Geom2dInt_GInter Intersect(ABisPC,ANorLi,
|
|
Precision::Confusion(),Precision::Confusion());
|
|
//-------------------------------------------------------------------------
|
|
|
|
if (Intersect.IsDone() && !Intersect.IsEmpty()) {
|
|
for (Standard_Integer i = 1; i <= Intersect.NbPoints(); i++) {
|
|
if (Intersect.Point(i).ParamOnSecond()*SignA < Precision::PConfusion()) {
|
|
P = Intersect.Point(i).Value();
|
|
if (P.SquareDistance(P1) < DMin) {
|
|
DMin = P.SquareDistance(P1);
|
|
PSol = P;
|
|
UPC = Intersect.Point(i).ParamOnFirst();
|
|
UOnB = BisPC->LinkBisCurve(UPC);
|
|
Dist = DMin;
|
|
YaSol = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (YaSol) {
|
|
//--------------------------------------------------------------
|
|
// Point found => Test distance curvature + Angular test
|
|
//---------------------------------------------------------------
|
|
P2 = CB->Value(UOnB);
|
|
if(P1.SquareDistance(PSol) < 1.e-32)
|
|
{
|
|
YaSol = Standard_False;
|
|
return YaSol;
|
|
}
|
|
if(P2.SquareDistance(PSol) < 1.e-32)
|
|
{
|
|
YaSol = Standard_False;
|
|
return YaSol;
|
|
}
|
|
|
|
gp_Dir2d PP1Unit(P1.X() - PSol.X(),P1.Y() - PSol.Y());
|
|
gp_Dir2d PP2Unit(P2.X() - PSol.X(),P2.Y() - PSol.Y());
|
|
|
|
if (PP1Unit*PP2Unit > 1. - Precision::Angular()) {
|
|
YaSol = Standard_False;
|
|
}
|
|
else {
|
|
Dist = sqrt(Dist);
|
|
if ( !IsConvexA ) {
|
|
Standard_Real K1 = Curvature(CA,UOnA,Precision::Confusion());
|
|
if (K1 != 0.) {
|
|
if (Dist > Abs(1/K1)) YaSol = Standard_False;
|
|
}
|
|
}
|
|
if (YaSol) {
|
|
if ( !IsConvexB ) {
|
|
Standard_Real K2 = Curvature(CB,UOnB,Precision::Confusion());
|
|
if (K2 != 0.) {
|
|
if (Dist > Abs(1/K2)) YaSol = Standard_False;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return YaSol;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : SupLastParameter
|
|
// purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::SupLastParameter()
|
|
{
|
|
endIntervals.Append(curve1->LastParameter());
|
|
// ----------------------------------------------------------------------
|
|
// Calculate parameter on curve1 associated to one or the other of the extremities
|
|
// of curve2 following the values of sign1 and sign2.
|
|
// the bissectrice is limited by the obtained parameters.
|
|
//------------------------------------------------------------------------
|
|
Standard_Real UOnC1,UOnC2,Dist;
|
|
if (sign1 == sign2) {
|
|
UOnC2 = curve2->FirstParameter();
|
|
}
|
|
else {
|
|
UOnC2 = curve2->LastParameter();
|
|
}
|
|
Standard_Boolean YaSol = PointByInt(curve2,curve1,sign2,sign1,UOnC2,UOnC1,Dist);
|
|
if (YaSol) {
|
|
if (UOnC1 > startIntervals.First() && UOnC1 < endIntervals.Last()) {
|
|
endIntervals.SetValue(1,UOnC1);
|
|
}
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Curve
|
|
// purpose :
|
|
//=============================================================================
|
|
Handle(Geom2d_Curve) Bisector_BisecCC::Curve(const Standard_Integer I) const
|
|
{
|
|
if (I == 1) return curve1;
|
|
else if (I == 2) return curve2;
|
|
else throw Standard_OutOfRange();
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : LinkBisCurve
|
|
//purpose :
|
|
//=============================================================================
|
|
Standard_Real Bisector_BisecCC::LinkBisCurve(const Standard_Real U) const
|
|
{
|
|
return (U - shiftParameter);
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : LinkCurveBis
|
|
//purpose :
|
|
//=============================================================================
|
|
Standard_Real Bisector_BisecCC::LinkCurveBis(const Standard_Real U) const
|
|
{
|
|
return (U + shiftParameter);
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Indent
|
|
//purpose :
|
|
//=============================================================================
|
|
static void Indent(const Standard_Integer Offset) {
|
|
if (Offset > 0) {
|
|
for (Standard_Integer i = 0; i < Offset; i++) {std::cout << " ";}
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Polygon
|
|
// purpose :
|
|
//=============================================================================
|
|
const Bisector_PolyBis& Bisector_BisecCC::Polygon() const
|
|
{
|
|
return myPolygon;
|
|
}
|
|
|
|
//==========================================================================
|
|
//function : Parameter
|
|
//purpose :
|
|
//==========================================================================
|
|
Standard_Real Bisector_BisecCC::Parameter(const gp_Pnt2d& P) const
|
|
{
|
|
Standard_Real UOnCurve;
|
|
|
|
if (P.IsEqual(Value(FirstParameter()),Precision::Confusion())) {
|
|
UOnCurve = FirstParameter();
|
|
}
|
|
else if (P.IsEqual(Value(LastParameter()),Precision::Confusion())) {
|
|
UOnCurve = LastParameter();
|
|
}
|
|
else
|
|
{
|
|
ProjOnCurve(P, curve1, UOnCurve);
|
|
}
|
|
|
|
return UOnCurve;
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
//function : Dump
|
|
// purpose :
|
|
//=============================================================================
|
|
//void Bisector_BisecCC::Dump(const Standard_Integer Deep,
|
|
void Bisector_BisecCC::Dump(const Standard_Integer ,
|
|
const Standard_Integer Offset) const
|
|
{
|
|
Indent (Offset);
|
|
std::cout <<"Bisector_BisecCC :"<<std::endl;
|
|
Indent (Offset);
|
|
// std::cout <<"Curve1 :"<<curve1<<std::endl;
|
|
// std::cout <<"Curve2 :"<<curve2<<std::endl;
|
|
std::cout <<"Sign1 :"<<sign1<<std::endl;
|
|
std::cout <<"Sign2 :"<<sign2<<std::endl;
|
|
|
|
std::cout <<"Number Of Intervals :"<<startIntervals.Length()<<std::endl;
|
|
for (Standard_Integer i = 1; i <= startIntervals.Length(); i++) {
|
|
std::cout <<"Interval number :"<<i<<"Start :"<<startIntervals.Value(i)
|
|
<<" end :"<< endIntervals.Value(i)<<std::endl ;
|
|
}
|
|
std::cout <<"Index Current Interval :"<<currentInterval<<std::endl;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Curve
|
|
// purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::Curve(const Standard_Integer I,
|
|
const Handle(Geom2d_Curve)& C)
|
|
{
|
|
if (I == 1) curve1 = C;
|
|
else if (I == 2) curve2 = C;
|
|
else throw Standard_OutOfRange();
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Sign
|
|
// purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::Sign(const Standard_Integer I,
|
|
const Standard_Real S)
|
|
{
|
|
if (I == 1) sign1 = S;
|
|
else if (I == 2) sign2 = S;
|
|
else throw Standard_OutOfRange();
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Polygon
|
|
// purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::Polygon(const Bisector_PolyBis& P)
|
|
{
|
|
myPolygon = P;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : DistMax
|
|
// purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::DistMax(const Standard_Real D)
|
|
{
|
|
distMax = D;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : IsConvex
|
|
// purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::IsConvex(const Standard_Integer I,
|
|
const Standard_Boolean IsConvex)
|
|
{
|
|
if (I == 1) isConvex1 = IsConvex;
|
|
else if (I == 2) isConvex2 = IsConvex;
|
|
else throw Standard_OutOfRange();
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : IsEmpty
|
|
// purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::IsEmpty ( const Standard_Boolean IsEmpty)
|
|
{
|
|
isEmpty = IsEmpty;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : ExtensionStart
|
|
// purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::ExtensionStart( const Standard_Boolean ExtensionStart)
|
|
{
|
|
extensionStart = ExtensionStart;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : ExtensionEnd
|
|
// purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::ExtensionEnd( const Standard_Boolean ExtensionEnd)
|
|
{
|
|
extensionEnd = ExtensionEnd;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : PointStart
|
|
// purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::PointStart( const gp_Pnt2d& Point)
|
|
{
|
|
pointStart = Point;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : PointEnd
|
|
// purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::PointEnd( const gp_Pnt2d& Point)
|
|
{
|
|
pointEnd = Point;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : StartIntervals
|
|
// purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::StartIntervals
|
|
(const TColStd_SequenceOfReal& StartIntervals)
|
|
{
|
|
startIntervals = StartIntervals;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : EndIntervals
|
|
// purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::EndIntervals
|
|
(const TColStd_SequenceOfReal& EndIntervals)
|
|
{
|
|
endIntervals = EndIntervals;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : FirstParameter
|
|
// purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::FirstParameter (const Standard_Real U)
|
|
{
|
|
startIntervals.Append(U);
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : LastParameter
|
|
// purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::LastParameter (const Standard_Real U)
|
|
{
|
|
endIntervals.Append(U);
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : SearchBound
|
|
// purpose :
|
|
//=============================================================================
|
|
Standard_Real Bisector_BisecCC::SearchBound (const Standard_Real U1,
|
|
const Standard_Real U2) const
|
|
{
|
|
Standard_Real UMid,Dist1,Dist2,DistMid,U11,U22;
|
|
Standard_Real UC1,UC2;
|
|
gp_Pnt2d PBis,PBisPrec;
|
|
Standard_Real TolPnt = Precision::Confusion();
|
|
Standard_Real TolPar = Precision::PConfusion();
|
|
U11 = U1; U22 = U2;
|
|
PBisPrec = ValueByInt(U11,UC1,UC2,Dist1);
|
|
PBis = ValueByInt(U22,UC1,UC2,Dist2);
|
|
|
|
while ((U22 - U11) > TolPar ||
|
|
((Dist1 < Precision::Infinite() &&
|
|
Dist2 < Precision::Infinite() &&
|
|
!PBis.IsEqual(PBisPrec,TolPnt)))) {
|
|
PBisPrec = PBis;
|
|
UMid = 0.5*( U22 + U11);
|
|
PBis = ValueByInt(UMid,UC1,UC2,DistMid);
|
|
if ((Dist1 < Precision::Infinite()) == (DistMid < Precision::Infinite())) {
|
|
U11 = UMid;
|
|
Dist1 = DistMid;
|
|
}
|
|
else {
|
|
U22 = UMid;
|
|
Dist2 = DistMid;
|
|
}
|
|
}
|
|
PBis = ValueByInt(U11,UC1,UC2,Dist1);
|
|
if (Dist1 < Precision::Infinite()) {
|
|
UMid = U11;
|
|
}
|
|
else {
|
|
UMid = U22;
|
|
}
|
|
return UMid;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : ProjOnCurve
|
|
// purpose :
|
|
//=============================================================================
|
|
static Standard_Boolean ProjOnCurve (const gp_Pnt2d& P,
|
|
const Handle(Geom2d_Curve)& C,
|
|
Standard_Real& theParam)
|
|
{
|
|
//Standard_Real UOnCurve =0.;
|
|
theParam = 0.0;
|
|
gp_Pnt2d PF,PL;
|
|
gp_Vec2d TF,TL;
|
|
|
|
C->D1(C->FirstParameter(),PF,TF);
|
|
C->D1(C->LastParameter() ,PL,TL);
|
|
|
|
if (P.IsEqual(PF ,Precision::Confusion()))
|
|
{
|
|
theParam = C->FirstParameter();
|
|
return Standard_True;
|
|
}
|
|
|
|
if (P.IsEqual(PL ,Precision::Confusion()))
|
|
{
|
|
theParam = C->LastParameter();
|
|
return Standard_True;
|
|
}
|
|
|
|
gp_Vec2d PPF(PF.X() - P.X(), PF.Y() - P.Y());
|
|
TF.Normalize();
|
|
|
|
if ( Abs (PPF.Dot(TF)) < Precision::Confusion())
|
|
{
|
|
theParam = C->FirstParameter();
|
|
return Standard_True;
|
|
}
|
|
gp_Vec2d PPL (PL.X() - P.X(), PL.Y() - P.Y());
|
|
TL.Normalize();
|
|
if ( Abs (PPL.Dot(TL)) < Precision::Confusion())
|
|
{
|
|
theParam = C->LastParameter();
|
|
return Standard_True;
|
|
}
|
|
Geom2dAPI_ProjectPointOnCurve Proj(P,C,
|
|
C->FirstParameter(),
|
|
C->LastParameter());
|
|
if (Proj.NbPoints() > 0) {
|
|
theParam = Proj.LowerDistanceParameter();
|
|
}
|
|
else {
|
|
return Standard_False;
|
|
}
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : TestExtension
|
|
// purpose :
|
|
//=============================================================================
|
|
static Standard_Boolean TestExtension (const Handle(Geom2d_Curve)& C1,
|
|
const Handle(Geom2d_Curve)& C2,
|
|
const Standard_Integer Start_End)
|
|
{
|
|
gp_Pnt2d P1,P2;
|
|
gp_Vec2d T1,T2;
|
|
Standard_Boolean Test = Standard_False;
|
|
if (Start_End == 1) {
|
|
C1->D1(C1->FirstParameter(),P1,T1);
|
|
}
|
|
else {
|
|
C1->D1(C1->LastParameter(),P1,T1);
|
|
}
|
|
C2->D1(C2->FirstParameter(),P2,T2);
|
|
if (P1.IsEqual(P2,Precision::Confusion())) {
|
|
T1.Normalize(); T2.Normalize();
|
|
if (T1.Dot(T2) > 1.0 - Precision::Confusion()) {
|
|
Test = Standard_True;
|
|
}
|
|
}
|
|
else {
|
|
C2->D1(C2->LastParameter(),P2,T2);
|
|
if (P1.IsEqual(P2,Precision::Confusion())) {
|
|
T2.Normalize();
|
|
if (T1.Dot(T2) > 1.0 - Precision::Confusion()) {
|
|
Test = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
return Test;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : ComputePointEnd
|
|
// purpose :
|
|
//=============================================================================
|
|
void Bisector_BisecCC::ComputePointEnd ()
|
|
{
|
|
Standard_Real U1,U2;
|
|
Standard_Real KC,RC;
|
|
U1 = curve1->FirstParameter();
|
|
if (sign1 == sign2) {
|
|
U2 = curve2->LastParameter();
|
|
}
|
|
else {
|
|
U2 = curve2->FirstParameter();
|
|
}
|
|
Standard_Real K1 = Curvature(curve1,U1,Precision::Confusion());
|
|
Standard_Real K2 = Curvature(curve2,U2,Precision::Confusion());
|
|
if (!isConvex1 && !isConvex2) {
|
|
if (K1 < K2) {KC = K1;} else {KC = K2;}
|
|
}
|
|
else if (!isConvex1) {KC = K1;}
|
|
else {KC = K2;}
|
|
|
|
gp_Pnt2d PF;
|
|
gp_Vec2d TF;
|
|
curve1->D1(U1,PF,TF);
|
|
TF.Normalize();
|
|
if (KC != 0.) { RC = Abs(1/KC);}
|
|
else { RC = Precision::Infinite();}
|
|
pointEnd.SetCoord(PF.X() - sign1*RC*TF.Y(), PF.Y() + sign1*RC*TF.X());
|
|
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : DiscretPar
|
|
// purpose :
|
|
//=============================================================================
|
|
static Standard_Boolean DiscretPar(const Standard_Real DU,
|
|
const Standard_Real EpsMin,
|
|
const Standard_Real EpsMax,
|
|
const Standard_Integer NbMin,
|
|
const Standard_Integer NbMax,
|
|
Standard_Real& Eps,
|
|
Standard_Integer& Nb)
|
|
{
|
|
if (DU <= NbMin*EpsMin) {
|
|
Eps = DU/(NbMin + 1) ;
|
|
Nb = NbMin;
|
|
return Standard_False;
|
|
}
|
|
|
|
Eps = Min (EpsMax,DU/NbMax);
|
|
|
|
if (Eps < EpsMin) {
|
|
Eps = EpsMin;
|
|
Nb = Standard_Integer(DU/EpsMin);
|
|
}
|
|
else { Nb = NbMax;}
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
|