mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-06-10 11:34:06 +03:00
418 lines
13 KiB
C++
Executable File
418 lines
13 KiB
C++
Executable File
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2012 OPEN CASCADE SAS
|
|
//
|
|
// The content of this file is subject to the Open CASCADE Technology Public
|
|
// License Version 6.5 (the "License"). You may not use the content of this file
|
|
// except in compliance with the License. Please obtain a copy of the License
|
|
// at http://www.opencascade.org and read it completely before using this file.
|
|
//
|
|
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
|
|
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
|
|
//
|
|
// The Original Code and all software distributed under the License is
|
|
// distributed on an "AS IS" basis, without warranty of any kind, and the
|
|
// Initial Developer hereby disclaims all such warranties, including without
|
|
// limitation, any warranties of merchantability, fitness for a particular
|
|
// purpose or non-infringement. Please see the License for the specific terms
|
|
// and conditions governing the rights and limitations under the License.
|
|
|
|
|
|
#include <Extrema_ExtPElS.ixx>
|
|
#include <StdFail_NotDone.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <Standard_NotImplemented.hxx>
|
|
#include <ElSLib.hxx>
|
|
//=============================================================================
|
|
|
|
Extrema_ExtPElS::Extrema_ExtPElS () { myDone = Standard_False; }
|
|
//=============================================================================
|
|
|
|
Extrema_ExtPElS::Extrema_ExtPElS (const gp_Pnt& P,
|
|
const gp_Cylinder& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
|
|
Perform(P, S, Tol);
|
|
}
|
|
/*-----------------------------------------------------------------------------
|
|
Function:
|
|
Find 2 extreme distances between point P and cylinder S.
|
|
|
|
Method:
|
|
Let Pp be the projection of P in plane XOY of the cylinder;
|
|
2 cases are considered:
|
|
1- distance(Pp,O) < Tol:
|
|
There are infinite solutions; IsDone() = Standard_False.
|
|
2- distance(Pp,O) > Tol:
|
|
let V = OP.OZ,
|
|
U1 = angle(OX,OPp) with 0 < U1 < 2.*M_PI
|
|
U2 = U1 + M_PI with 0 < U2 < 2.*M_PI;
|
|
then (U1,V) corresponds to the min distance.
|
|
and (U2,V) corresponds to the max distance.
|
|
-----------------------------------------------------------------------------*/
|
|
|
|
void Extrema_ExtPElS::Perform(const gp_Pnt& P,
|
|
const gp_Cylinder& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
|
|
// Projection of point P in plane XOY of the cylinder ...
|
|
gp_Ax3 Pos = S.Position();
|
|
gp_Pnt O = Pos.Location();
|
|
gp_Vec OZ (Pos.Direction());
|
|
Standard_Real V = gp_Vec(O,P).Dot(OZ);
|
|
gp_Pnt Pp = P.Translated(OZ.Multiplied(-V));
|
|
|
|
// Calculation of extrema
|
|
gp_Vec OPp (O,Pp);
|
|
if (OPp.Magnitude() < Tol) { return; }
|
|
gp_Vec myZ = Pos.XDirection()^Pos.YDirection();
|
|
Standard_Real U1 = gp_Vec(Pos.XDirection()).AngleWithRef(OPp,myZ); //-M_PI<U1<M_PI
|
|
Standard_Real U2 = U1 + M_PI;
|
|
if (U1 < 0.) { U1 += 2. * M_PI; }
|
|
|
|
gp_Pnt Ps;
|
|
Ps = ElSLib::Value(U1,V,S);
|
|
mySqDist[0] = Ps.SquareDistance(P);
|
|
myPoint[0] = Extrema_POnSurf(U1,V,Ps);
|
|
Ps = ElSLib::Value(U2,V,S);
|
|
mySqDist[1] = Ps.SquareDistance(P);
|
|
myPoint[1] = Extrema_POnSurf(U2,V,Ps);
|
|
|
|
myNbExt = 2;
|
|
myDone = Standard_True;
|
|
}
|
|
//=============================================================================
|
|
|
|
Extrema_ExtPElS::Extrema_ExtPElS (const gp_Pnt& P,
|
|
const gp_Cone& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
Perform(P, S, Tol);
|
|
}
|
|
/*-----------------------------------------------------------------------------
|
|
Function:
|
|
Find 2 extreme distances between point P and cone S.
|
|
|
|
Method:
|
|
Let M the top of the cone.
|
|
2 cases are considered:
|
|
1- distance(P,M) < Tol:
|
|
there is a minimum in M.
|
|
2- distance(P,M) > Tol:
|
|
Let Pp the projection of P in the plane XOY of the cone;
|
|
2 cases are considered:
|
|
1- distance(Pp,O) < Tol:
|
|
There is an infinite number of solutions; IsDone() = Standard_False.
|
|
2- distance(Pp,O) > Tol:
|
|
There exist 2 extrema:
|
|
Let Vm = value of v for point M,
|
|
Vp = value of v for point P,
|
|
U1 = angle(OX,OPp) if Vp > Vm )
|
|
-angle(OX,OPp) otherwise ) with 0. < U1 < 2*M_PI,
|
|
U2 = U1 + M_PI with 0. < U2 < 2*M_PI;
|
|
We are in plane PpOZ.
|
|
Let A the angle of the cone,
|
|
B = angle(MP,MO) with 0. < B < M_PI,
|
|
L = longueur(MP),
|
|
V1 = (L * cos(B-A)) + Vm,
|
|
V2 = (L * cos(B+A)) + Vm;
|
|
then (U1,V1) and (U2,V2) correspond to min distances.
|
|
-----------------------------------------------------------------------------*/
|
|
|
|
void Extrema_ExtPElS::Perform(const gp_Pnt& P,
|
|
const gp_Cone& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
|
|
gp_Pnt M = S.Apex();
|
|
gp_Ax3 Pos = S.Position();
|
|
gp_Pnt O = Pos.Location();
|
|
Standard_Real A = S.SemiAngle();
|
|
gp_Vec OZ (Pos.Direction());
|
|
gp_Vec myZ = Pos.XDirection()^Pos.YDirection();
|
|
gp_Vec MP (M,P);
|
|
|
|
Standard_Real L2 = MP.SquareMagnitude();
|
|
Standard_Real Vm = -(S.RefRadius() / Sin(A));
|
|
|
|
// Case when P is mixed with S ...
|
|
if (L2 < Tol * Tol) {
|
|
mySqDist[0] = L2;
|
|
myPoint[0] = Extrema_POnSurf(0.,Vm,M);
|
|
myNbExt = 1;
|
|
myDone = Standard_True;
|
|
return;
|
|
}
|
|
gp_Vec DirZ;
|
|
if (M.SquareDistance(O)<Tol * Tol)
|
|
{ DirZ=OZ;
|
|
if( A<0) DirZ.Multiplied(-1.);
|
|
}
|
|
else
|
|
DirZ=gp_Vec(M,O);
|
|
// Projection of P in the reference plane of the cone ...
|
|
Standard_Real Zp = gp_Vec(O, P).Dot(OZ);
|
|
|
|
gp_Pnt Pp = P.Translated(OZ.Multiplied(-Zp));
|
|
gp_Vec OPp(O, Pp);
|
|
if (OPp.SquareMagnitude() < Tol * Tol) return;
|
|
Standard_Real B, U1, V1, U2, V2;
|
|
Standard_Boolean Same = DirZ.Dot(MP) >= 0.0;
|
|
U1 = gp_Vec(Pos.XDirection()).AngleWithRef(OPp,myZ); //-M_PI<U1<M_PI
|
|
B = MP.Angle(DirZ);
|
|
if (!Same) { U1 += M_PI; }
|
|
U2 = U1 + M_PI;
|
|
if (U1 < 0.) { U1 += 2. * M_PI; }
|
|
if (U2 > 2.*M_PI) { U2 -= 2. * M_PI; }
|
|
B = MP.Angle(DirZ);
|
|
A = Abs(A);
|
|
Standard_Real L = sqrt(L2);
|
|
if (!Same) {
|
|
B = M_PI-B;
|
|
V1 = -L*cos(B-A);
|
|
V2 = -L*cos(B+A);
|
|
}
|
|
else {
|
|
V1 = L * cos(B-A);
|
|
V2 = L * cos(B+A);
|
|
}
|
|
Standard_Real Sense = OZ.Dot(gp_Dir(DirZ));
|
|
V1 *= Sense; V2 *= Sense;
|
|
V1 += Vm; V2 += Vm;
|
|
|
|
gp_Pnt Ps;
|
|
Ps = ElSLib::Value(U1,V1,S);
|
|
mySqDist[0] = Ps.SquareDistance(P);
|
|
myPoint[0] = Extrema_POnSurf(U1,V1,Ps);
|
|
Ps = ElSLib::Value(U2,V2,S);
|
|
mySqDist[1] = Ps.SquareDistance(P);
|
|
myPoint[1] = Extrema_POnSurf(U2,V2,Ps);
|
|
|
|
myNbExt = 2;
|
|
myDone = Standard_True;
|
|
}
|
|
//=============================================================================
|
|
|
|
Extrema_ExtPElS::Extrema_ExtPElS (const gp_Pnt& P,
|
|
const gp_Sphere& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
Perform(P, S, Tol);
|
|
}
|
|
/*-----------------------------------------------------------------------------
|
|
Function:
|
|
Find 2 extreme distances between point P and sphere S.
|
|
|
|
Method:
|
|
Let O be the origin of the sphere.
|
|
2 cases are considered:
|
|
1- distance(P,O) < Tol:
|
|
There is an infinite number of solutions; IsDone() = Standard_False
|
|
2- distance(P,O) > Tol:
|
|
Let Pp be the projection of point P in the plane XOY of the sphere;
|
|
2 cases are considered:
|
|
1- distance(Pp,O) < Tol:
|
|
2 solutions are: (0,-M_PI/2.) and (0.,M_PI/2.)
|
|
2- distance(Pp,O) > Tol:
|
|
Let U1 = angle(OX,OPp) with 0. < U1 < 2.*M_PI,
|
|
U2 = U1 + M_PI avec 0. < U2 < 2*M_PI,
|
|
V1 = angle(OPp,OP) with -M_PI/2. < V1 < M_PI/2. ,
|
|
then (U1, V1) corresponds to the min distance
|
|
and (U2,-V1) corresponds to the max distance.
|
|
-----------------------------------------------------------------------------*/
|
|
|
|
void Extrema_ExtPElS::Perform(const gp_Pnt& P,
|
|
const gp_Sphere& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
|
|
gp_Ax3 Pos = S.Position();
|
|
gp_Vec OP (Pos.Location(),P);
|
|
|
|
// Case when P is mixed with O ...
|
|
if (OP.SquareMagnitude() < Tol * Tol) { return; }
|
|
|
|
// Projection if P in plane XOY of the sphere ...
|
|
gp_Pnt O = Pos.Location();
|
|
gp_Vec OZ (Pos.Direction());
|
|
Standard_Real Zp = OP.Dot(OZ);
|
|
gp_Pnt Pp = P.Translated(OZ.Multiplied(-Zp));
|
|
|
|
// Calculation of extrema ...
|
|
gp_Vec OPp (O,Pp);
|
|
Standard_Real U1, U2, V;
|
|
if (OPp.SquareMagnitude() < Tol * Tol) {
|
|
U1 = 0.;
|
|
U2 = 0.;
|
|
if (Zp < 0.) { V = -M_PI / 2.; }
|
|
else { V = M_PI / 2.; }
|
|
}
|
|
else {
|
|
gp_Vec myZ = Pos.XDirection()^Pos.YDirection();
|
|
U1 = gp_Vec(Pos.XDirection()).AngleWithRef(OPp,myZ);
|
|
U2 = U1 + M_PI;
|
|
if (U1 < 0.) { U1 += 2. * M_PI; }
|
|
V = OP.Angle(OPp);
|
|
if (Zp < 0.) { V = -V; }
|
|
}
|
|
|
|
gp_Pnt Ps;
|
|
Ps = ElSLib::Value(U1,V,S);
|
|
mySqDist[0] = Ps.SquareDistance(P);
|
|
myPoint[0] = Extrema_POnSurf(U1,V,Ps);
|
|
Ps = ElSLib::Value(U2,-V,S);
|
|
mySqDist[1] = Ps.SquareDistance(P);
|
|
myPoint[1] = Extrema_POnSurf(U2,-V,Ps);
|
|
|
|
myNbExt = 2;
|
|
myDone = Standard_True;
|
|
}
|
|
//=============================================================================
|
|
|
|
Extrema_ExtPElS::Extrema_ExtPElS (const gp_Pnt& P,
|
|
const gp_Torus& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
Perform(P, S, Tol);
|
|
}
|
|
/*-----------------------------------------------------------------------------
|
|
Function:
|
|
Find 2 extreme distances between point P and torus S.
|
|
|
|
Method:
|
|
Let Pp be the projection of point P in plane XOY of the torus;
|
|
2 cases are consideres:
|
|
1- distance(Pp,O) < Tol:
|
|
There is an infinite number of solutions; IsDone() = Standard_False.
|
|
2- distance(Pp,O) > Tol:
|
|
One is located in plane PpOZ;
|
|
Let V1 = angle(OX,OPp) with 0. < V1 < 2.*M_PI,
|
|
V2 = V1 + M_PI with 0. < V2 < 2.*M_PI,
|
|
O1 and O2 centers of circles (O1 on coord. posit.)
|
|
U1 = angle(OPp,O1P),
|
|
U2 = angle(OPp,PO2);
|
|
then (U1,V1) corresponds to the min distance
|
|
and (U2,V2) corresponds to the max distance.
|
|
-----------------------------------------------------------------------------*/
|
|
void Extrema_ExtPElS::Perform(const gp_Pnt& P,
|
|
const gp_Torus& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
|
|
// Projection of P in plane XOY ...
|
|
gp_Ax3 Pos = S.Position();
|
|
gp_Pnt O = Pos.Location();
|
|
gp_Vec OZ (Pos.Direction());
|
|
gp_Pnt Pp = P.Translated(OZ.Multiplied(-(gp_Vec(O,P).Dot(Pos.Direction()))));
|
|
|
|
// Calculation of extrema ...
|
|
gp_Vec OPp (O,Pp);
|
|
Standard_Real R2 = OPp.SquareMagnitude();
|
|
if (R2 < Tol * Tol) { return; }
|
|
|
|
gp_Vec myZ = Pos.XDirection()^Pos.YDirection();
|
|
Standard_Real U1 = gp_Vec(Pos.XDirection()).AngleWithRef(OPp,myZ);
|
|
Standard_Real U2 = U1 + M_PI;
|
|
if (U1 < 0.) { U1 += 2. * M_PI; }
|
|
Standard_Real R = sqrt(R2);
|
|
gp_Vec OO1 = OPp.Divided(R).Multiplied(S.MajorRadius());
|
|
gp_Vec OO2 = OO1.Multiplied(-1.);
|
|
gp_Pnt O1 = O.Translated(OO1);
|
|
gp_Pnt O2 = O.Translated(OO2);
|
|
|
|
if(O1.SquareDistance(P) < Tol) { return; }
|
|
if(O2.SquareDistance(P) < Tol) { return; }
|
|
|
|
Standard_Real V1 = OO1.AngleWithRef(gp_Vec(O1,P),OO1.Crossed(OZ));
|
|
Standard_Real V2 = OO2.AngleWithRef(gp_Vec(P,O2),OO2.Crossed(OZ));
|
|
if (V1 < 0.) { V1 += 2. * M_PI; }
|
|
if (V2 < 0.) { V2 += 2. * M_PI; }
|
|
|
|
gp_Pnt Ps;
|
|
Ps = ElSLib::Value(U1,V1,S);
|
|
mySqDist[0] = Ps.SquareDistance(P);
|
|
myPoint[0] = Extrema_POnSurf(U1,V1,Ps);
|
|
|
|
Ps = ElSLib::Value(U1,V1+M_PI,S);
|
|
mySqDist[1] = Ps.SquareDistance(P);
|
|
myPoint[1] = Extrema_POnSurf(U1,V1+M_PI,Ps);
|
|
|
|
Ps = ElSLib::Value(U2,V2,S);
|
|
mySqDist[2] = Ps.SquareDistance(P);
|
|
myPoint[2] = Extrema_POnSurf(U2,V2,Ps);
|
|
|
|
Ps = ElSLib::Value(U2,V2+M_PI,S);
|
|
mySqDist[3] = Ps.SquareDistance(P);
|
|
myPoint[3] = Extrema_POnSurf(U2,V2+M_PI,Ps);
|
|
|
|
myNbExt = 4;
|
|
myDone = Standard_True;
|
|
}
|
|
|
|
|
|
Extrema_ExtPElS::Extrema_ExtPElS (const gp_Pnt& P,
|
|
const gp_Pln& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
Perform(P, S, Tol);
|
|
}
|
|
|
|
void Extrema_ExtPElS::Perform (const gp_Pnt& P,
|
|
const gp_Pln& S,
|
|
// const Standard_Real Tol)
|
|
const Standard_Real )
|
|
{
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
|
|
// Projection of point P in plane XOY of the cylinder ...
|
|
gp_Pnt O = S.Location();
|
|
gp_Vec OZ (S.Axis().Direction());
|
|
Standard_Real U, V = gp_Vec(O,P).Dot(OZ);
|
|
gp_Pnt Pp = P.Translated(OZ.Multiplied(-V));
|
|
|
|
ElSLib::Parameters(S, P, U, V);
|
|
mySqDist[0] = Pp.SquareDistance(P);
|
|
myPoint[0] = Extrema_POnSurf(U,V,Pp);
|
|
myNbExt = 1;
|
|
myDone = Standard_True;
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
|
|
Standard_Boolean Extrema_ExtPElS::IsDone () const { return myDone; }
|
|
//=============================================================================
|
|
|
|
Standard_Integer Extrema_ExtPElS::NbExt () const
|
|
{
|
|
if (!IsDone()) { StdFail_NotDone::Raise(); }
|
|
return myNbExt;
|
|
}
|
|
//=============================================================================
|
|
|
|
Standard_Real Extrema_ExtPElS::SquareDistance (const Standard_Integer N) const
|
|
{
|
|
if (!IsDone()) { StdFail_NotDone::Raise(); }
|
|
if ((N < 1) || (N > myNbExt)) { Standard_OutOfRange::Raise(); }
|
|
return mySqDist[N-1];
|
|
}
|
|
//=============================================================================
|
|
|
|
Extrema_POnSurf Extrema_ExtPElS::Point (const Standard_Integer N) const
|
|
{
|
|
if (!IsDone()) { StdFail_NotDone::Raise(); }
|
|
if ((N < 1) || (N > myNbExt)) { Standard_OutOfRange::Raise(); }
|
|
return myPoint[N-1];
|
|
}
|
|
//=============================================================================
|