1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-16 10:08:36 +03:00
occt/src/Approx/Approx_CurveOnSurface.cxx
ski 9775fa6110 0026937: Eliminate NO_CXX_EXCEPTION macro support
Macro NO_CXX_EXCEPTION was removed from code.
Method Raise() was replaced by explicit throw statement.
Method Standard_Failure::Caught() was replaced by normal C++mechanism of exception transfer.
Method Standard_Failure::Caught() is deprecated now.
Eliminated empty constructors.
Updated samples.
Eliminate empty method ChangeValue from NCollection_Map class.
Removed not operable methods from NCollection classes.
2017-02-02 16:35:54 +03:00

446 lines
13 KiB
C++

// Created on: 1997-10-06
// Created by: Roman BORISOV
// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Adaptor2d_HCurve2d.hxx>
#include <Adaptor3d_CurveOnSurface.hxx>
#include <Adaptor3d_HCurve.hxx>
#include <Adaptor3d_HCurveOnSurface.hxx>
#include <Adaptor3d_HSurface.hxx>
#include <AdvApprox_ApproxAFunction.hxx>
#include <AdvApprox_DichoCutting.hxx>
#include <AdvApprox_PrefAndRec.hxx>
#include <Approx_CurveOnSurface.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2dAdaptor_HCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <GeomAdaptor_HCurve.hxx>
#include <GeomAdaptor_HSurface.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Precision.hxx>
#include <Standard_ConstructionError.hxx>
#include <Standard_OutOfRange.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_HArray1OfReal.hxx>
//=======================================================================
//class : Approx_CurveOnSurface_Eval
//purpose: evaluator class for approximation of both 2d and 3d curves
//=======================================================================
class Approx_CurveOnSurface_Eval : public AdvApprox_EvaluatorFunction
{
public:
Approx_CurveOnSurface_Eval (const Handle(Adaptor3d_HCurve)& theFunc,
const Handle(Adaptor2d_HCurve2d)& theFunc2d,
Standard_Real First, Standard_Real Last)
: fonct(theFunc), fonct2d(theFunc2d)
{ StartEndSav[0] = First; StartEndSav[1] = Last; }
virtual void Evaluate (Standard_Integer *Dimension,
Standard_Real StartEnd[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result, // [Dimension]
Standard_Integer *ErrorCode);
private:
Handle(Adaptor3d_HCurve) fonct;
Handle(Adaptor2d_HCurve2d) fonct2d;
Standard_Real StartEndSav[2];
};
void Approx_CurveOnSurface_Eval::Evaluate (Standard_Integer *Dimension,
Standard_Real StartEnd[2],
Standard_Real *Param, // Parameter at which evaluation
Standard_Integer *Order, // Derivative Request
Standard_Real *Result,// [Dimension]
Standard_Integer *ErrorCode)
{
*ErrorCode = 0;
Standard_Real par = *Param;
// Dimension is incorrect
if (*Dimension != 5) {
*ErrorCode = 1;
}
// Parameter is incorrect
if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1])
{
fonct = fonct->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion());
fonct2d = fonct2d->Trim(StartEnd[0],StartEnd[1],
Precision::PConfusion());
StartEndSav[0]=StartEnd[0];
StartEndSav[1]=StartEnd[1];
}
gp_Pnt pnt;
gp_Pnt2d pnt2d;
switch (*Order) {
case 0:
{
fonct2d->D0(par, pnt2d);
fonct->D0(par, pnt);
Result[0] = pnt2d.X();
Result[1] = pnt2d.Y();
Result[2] = pnt.X();
Result[3] = pnt.Y();
Result[4] = pnt.Z();
break;
}
case 1:
{
gp_Vec v1;
gp_Vec2d v21;
fonct2d->D1(par, pnt2d, v21);
fonct->D1(par,pnt, v1);
Result[0] = v21.X();
Result[1] = v21.Y();
Result[2] = v1.X();
Result[3] = v1.Y();
Result[4] = v1.Z();
break;
}
case 2:
{
gp_Vec v1, v2;
gp_Vec2d v21, v22;
fonct2d->D2(par, pnt2d, v21, v22);
fonct->D2(par, pnt, v1, v2);
Result[0] = v22.X();
Result[1] = v22.Y();
Result[2] = v2.X();
Result[3] = v2.Y();
Result[4] = v2.Z();
break;
}
default:
Result[0] = Result[1] = Result[2] = Result[3] = Result[4] = 0.;
*ErrorCode = 3;
break;
}
}
//=======================================================================
//class : Approx_CurveOnSurface_Eval3d
//purpose: evaluator class for approximation of 3d curve
//=======================================================================
class Approx_CurveOnSurface_Eval3d : public AdvApprox_EvaluatorFunction
{
public:
Approx_CurveOnSurface_Eval3d (const Handle(Adaptor3d_HCurve)& theFunc,
Standard_Real First, Standard_Real Last)
: fonct(theFunc) { StartEndSav[0] = First; StartEndSav[1] = Last; }
virtual void Evaluate (Standard_Integer *Dimension,
Standard_Real StartEnd[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result, // [Dimension]
Standard_Integer *ErrorCode);
private:
Handle(Adaptor3d_HCurve) fonct;
Standard_Real StartEndSav[2];
};
void Approx_CurveOnSurface_Eval3d::Evaluate (Standard_Integer *Dimension,
Standard_Real StartEnd[2],
Standard_Real *Param, // Parameter at which evaluation
Standard_Integer *Order, // Derivative Request
Standard_Real *Result,// [Dimension]
Standard_Integer *ErrorCode)
{
*ErrorCode = 0;
Standard_Real par = *Param;
// Dimension is incorrect
if (*Dimension != 3) {
*ErrorCode = 1;
}
// Parameter is incorrect
if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1])
{
fonct = fonct->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion());
StartEndSav[0]=StartEnd[0];
StartEndSav[1]=StartEnd[1];
}
gp_Pnt pnt;
switch (*Order) {
case 0:
pnt = fonct->Value(par);
Result[0] = pnt.X();
Result[1] = pnt.Y();
Result[2] = pnt.Z();
break;
case 1:
{
gp_Vec v1;
fonct->D1(par, pnt, v1);
Result[0] = v1.X();
Result[1] = v1.Y();
Result[2] = v1.Z();
break;
}
case 2:
{
gp_Vec v1, v2;
fonct->D2(par, pnt, v1, v2);
Result[0] = v2.X();
Result[1] = v2.Y();
Result[2] = v2.Z();
break;
}
default:
Result[0] = Result[1] = Result[2] = 0.;
*ErrorCode = 3;
break;
}
}
//=======================================================================
//class : Approx_CurveOnSurface_Eval2d
//purpose: evaluator class for approximation of 2d curve
//=======================================================================
class Approx_CurveOnSurface_Eval2d : public AdvApprox_EvaluatorFunction
{
public:
Approx_CurveOnSurface_Eval2d (const Handle(Adaptor2d_HCurve2d)& theFunc2d,
Standard_Real First, Standard_Real Last)
: fonct2d(theFunc2d) { StartEndSav[0] = First; StartEndSav[1] = Last; }
virtual void Evaluate (Standard_Integer *Dimension,
Standard_Real StartEnd[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result, // [Dimension]
Standard_Integer *ErrorCode);
private:
Handle(Adaptor2d_HCurve2d) fonct2d;
Standard_Real StartEndSav[2];
};
void Approx_CurveOnSurface_Eval2d::Evaluate (Standard_Integer *Dimension,
Standard_Real StartEnd[2],
Standard_Real *Param, // Parameter at which evaluation
Standard_Integer *Order, // Derivative Request
Standard_Real *Result,// [Dimension]
Standard_Integer *ErrorCode)
{
*ErrorCode = 0;
Standard_Real par = *Param;
// Dimension is incorrect
if (*Dimension != 2) {
*ErrorCode = 1;
}
// Parameter is incorrect
if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1])
{
fonct2d = fonct2d->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion());
StartEndSav[0]=StartEnd[0];
StartEndSav[1]=StartEnd[1];
}
gp_Pnt2d pnt;
switch (*Order) {
case 0:
{
pnt = fonct2d->Value(par);
Result[0] = pnt.X();
Result[1] = pnt.Y();
break;
}
case 1:
{
gp_Vec2d v1;
fonct2d->D1(par, pnt, v1);
Result[0] = v1.X();
Result[1] = v1.Y();
break;
}
case 2:
{
gp_Vec2d v1, v2;
fonct2d->D2(par, pnt, v1, v2);
Result[0] = v2.X();
Result[1] = v2.Y();
break;
}
default:
Result[0] = Result[1] = 0.;
*ErrorCode = 3;
break;
}
}
Approx_CurveOnSurface::Approx_CurveOnSurface(const Handle(Adaptor2d_HCurve2d)& C2D,
const Handle(Adaptor3d_HSurface)& Surf,
const Standard_Real First,
const Standard_Real Last,
const Standard_Real Tol,
const GeomAbs_Shape S,
const Standard_Integer MaxDegree,
const Standard_Integer MaxSegments,
const Standard_Boolean only3d,
const Standard_Boolean only2d)
{
myIsDone = Standard_False;
if(only3d && only2d) throw Standard_ConstructionError();
GeomAbs_Shape Order = S;
Handle( Adaptor2d_HCurve2d ) TrimmedC2D = C2D->Trim( First, Last, Precision::PConfusion() );
Adaptor3d_CurveOnSurface COnS( TrimmedC2D, Surf );
Handle(Adaptor3d_HCurveOnSurface) HCOnS = new Adaptor3d_HCurveOnSurface();
HCOnS->Set(COnS);
Standard_Integer Num1DSS = 0, Num2DSS=0, Num3DSS=0;
Handle(TColStd_HArray1OfReal) OneDTol;
Handle(TColStd_HArray1OfReal) TwoDTolNul;
Handle(TColStd_HArray1OfReal) ThreeDTol;
// create evaluators and choose appropriate one
Approx_CurveOnSurface_Eval3d Eval3dCvOnSurf (HCOnS, First, Last);
Approx_CurveOnSurface_Eval2d Eval2dCvOnSurf ( TrimmedC2D, First, Last);
Approx_CurveOnSurface_Eval EvalCvOnSurf (HCOnS, TrimmedC2D, First, Last);
AdvApprox_EvaluatorFunction* EvalPtr;
if ( only3d ) EvalPtr = &Eval3dCvOnSurf;
else if ( only2d ) EvalPtr = &Eval2dCvOnSurf;
else EvalPtr = &EvalCvOnSurf;
// Initialization for 2d approximation
if(!only3d) {
Num1DSS = 2;
OneDTol = new TColStd_HArray1OfReal(1,Num1DSS);
Standard_Real TolU, TolV;
TolU = Surf->UResolution(Tol)/2;
TolV = Surf->VResolution(Tol)/2;
OneDTol->SetValue(1,TolU);
OneDTol->SetValue(2,TolV);
}
if(!only2d) {
Num3DSS=1;
ThreeDTol = new TColStd_HArray1OfReal(1,Num3DSS);
ThreeDTol->Init(Tol/2);
}
myError2dU = 0;
myError2dV = 0;
myError3d = 0;
Standard_Integer NbInterv_C2 = HCOnS->NbIntervals(GeomAbs_C2);
TColStd_Array1OfReal CutPnts_C2(1, NbInterv_C2 + 1);
HCOnS->Intervals(CutPnts_C2, GeomAbs_C2);
Standard_Integer NbInterv_C3 = HCOnS->NbIntervals(GeomAbs_C3);
TColStd_Array1OfReal CutPnts_C3(1, NbInterv_C3 + 1);
HCOnS->Intervals(CutPnts_C3, GeomAbs_C3);
AdvApprox_PrefAndRec CutTool(CutPnts_C2,CutPnts_C3);
AdvApprox_ApproxAFunction aApprox (Num1DSS, Num2DSS, Num3DSS,
OneDTol, TwoDTolNul, ThreeDTol,
First, Last, Order,
MaxDegree, MaxSegments,
*EvalPtr, CutTool);
myIsDone = aApprox.IsDone();
myHasResult = aApprox.HasResult();
if (myHasResult) {
Handle(TColStd_HArray1OfReal) Knots = aApprox.Knots();
Handle(TColStd_HArray1OfInteger) Mults = aApprox.Multiplicities();
Standard_Integer Degree = aApprox.Degree();
if(!only2d)
{
TColgp_Array1OfPnt Poles(1,aApprox.NbPoles());
aApprox.Poles(1,Poles);
myCurve3d = new Geom_BSplineCurve(Poles, Knots->Array1(), Mults->Array1(), Degree);
myError3d = aApprox.MaxError(3, 1);
}
if(!only3d)
{
TColgp_Array1OfPnt2d Poles2d(1,aApprox.NbPoles());
TColStd_Array1OfReal Poles1dU(1,aApprox.NbPoles());
aApprox.Poles1d(1, Poles1dU);
TColStd_Array1OfReal Poles1dV(1,aApprox.NbPoles());
aApprox.Poles1d(2, Poles1dV);
for(Standard_Integer i = 1; i <= aApprox.NbPoles(); i++)
Poles2d.SetValue(i, gp_Pnt2d(Poles1dU.Value(i), Poles1dV.Value(i)));
myCurve2d = new Geom2d_BSplineCurve(Poles2d, Knots->Array1(), Mults->Array1(), Degree);
myError2dU = aApprox.MaxError(1, 1);
myError2dV = aApprox.MaxError(1, 2);
}
}
// }
}
Standard_Boolean Approx_CurveOnSurface::IsDone() const
{
return myIsDone;
}
Standard_Boolean Approx_CurveOnSurface::HasResult() const
{
return myHasResult;
}
Handle(Geom_BSplineCurve) Approx_CurveOnSurface::Curve3d() const
{
return myCurve3d;
}
Handle(Geom2d_BSplineCurve) Approx_CurveOnSurface::Curve2d() const
{
return myCurve2d;
}
Standard_Real Approx_CurveOnSurface::MaxError3d() const
{
return myError3d;
}
Standard_Real Approx_CurveOnSurface::MaxError2dU() const
{
return myError2dU;
}
Standard_Real Approx_CurveOnSurface::MaxError2dV() const
{
return myError2dV;
}