1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-26 10:19:45 +03:00
occt/src/Graphic3d/Graphic3d_TransformUtils.hxx

494 lines
20 KiB
C++

// Created on: 2015-06-18
// Copyright (c) 2015 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _Graphic3d_TransformUtils_HeaderFile
#define _Graphic3d_TransformUtils_HeaderFile
#include <gp_Trsf.hxx>
#include <Graphic3d_Vec.hxx>
//! Helper class that implements transformation matrix functionality.
namespace Graphic3d_TransformUtils
{
template<class T> struct MatrixType {};
template<> struct MatrixType<Standard_Real> { typedef Graphic3d_Mat4d Mat4; };
template<> struct MatrixType<Standard_ShortReal> { typedef Graphic3d_Mat4 Mat4; };
template<class T> struct VectorType {};
template<> struct VectorType<Standard_Real> {
typedef Graphic3d_Vec2d Vec2;
typedef Graphic3d_Vec3d Vec3;
typedef Graphic3d_Vec4d Vec4;
};
template<> struct VectorType<Standard_ShortReal> {
typedef Graphic3d_Vec2 Vec2;
typedef Graphic3d_Vec3 Vec3;
typedef Graphic3d_Vec4 Vec4;
};
//! Converts gp_Trsf to Graphic3d_Mat4.
template<class T>
static void Convert (const gp_Trsf& theTransformation,
typename MatrixType<T>::Mat4& theOut);
//! Constructs a 3D orthographic projection matrix.
template<class T>
static void Ortho (typename MatrixType<T>::Mat4& theOut,
const T theLeft,
const T theRight,
const T theBottom,
const T theTop,
const T theZNear,
const T theZFar);
//! Constructs a 2D orthographic projection matrix.
template<class T>
static void Ortho2D (typename MatrixType<T>::Mat4& theOut,
const T theLeft,
const T theRight,
const T theBottom,
const T theTop);
//! Maps object coordinates to window coordinates.
template<class T>
static Standard_Boolean Project (const T theObjX,
const T theObjY,
const T theObjZ,
const typename MatrixType<T>::Mat4& theModViewMat,
const typename MatrixType<T>::Mat4& theProjectMat,
const Standard_Integer theViewport[4],
T& theWinX,
T& theWinY,
T& theWinZ);
//! Maps window coordinates to object coordinates.
template<class T>
static Standard_Boolean UnProject (const T theWinX,
const T theWinY,
const T theWinZ,
const typename MatrixType<T>::Mat4& theModViewMat,
const typename MatrixType<T>::Mat4& theProjectMat,
const Standard_Integer theViewport[4],
T& theObjX,
T& theObjY,
T& theObjZ);
//! Constructs a 4x4 rotation matrix.
template<class T>
static void ConstructRotate (typename MatrixType<T>::Mat4& theOut,
T theA,
T theX,
T theY,
T theZ);
//! Constructs a 4x4 rotation matrix.
template<class T>
static void Rotate (typename MatrixType<T>::Mat4& theOut,
T theA,
T theX,
T theY,
T theZ);
//! Constructs a 4x4 scaling matrix.
template<class T>
static void Scale (typename MatrixType<T>::Mat4& theOut,
T theX,
T theY,
T theZ);
//! Constructs a 4x4 translation matrix.
template<class T>
static void Translate (typename MatrixType<T>::Mat4& theOut,
T theX,
T theY,
T theZ);
//! Returns scaling factor from 3x3 affine matrix.
template<class T>
static Standard_Real ScaleFactor (const NCollection_Mat4<T>& theMatrix)
{
// The determinant of the matrix should give the scale factor (cubed).
const T aDeterminant = theMatrix.DeterminantMat3();
return Pow (static_cast<Standard_Real> (aDeterminant), 1.0 / 3.0);
}
}
// =======================================================================
// function : Convert
// purpose :
// =======================================================================
template<class T>
void Graphic3d_TransformUtils::Convert (const gp_Trsf& theTransformation,
typename MatrixType<T>::Mat4& theOut)
{
theOut.InitIdentity();
// Copy a 3x3 submatrix.
theOut.ChangeValue (0, 0) = theTransformation.Value (1, 1);
theOut.ChangeValue (0, 1) = theTransformation.Value (1, 2);
theOut.ChangeValue (0, 2) = theTransformation.Value (1, 3);
theOut.ChangeValue (1, 0) = theTransformation.Value (2, 1);
theOut.ChangeValue (1, 1) = theTransformation.Value (2, 2);
theOut.ChangeValue (1, 2) = theTransformation.Value (2, 3);
theOut.ChangeValue (2, 0) = theTransformation.Value (3, 1);
theOut.ChangeValue (2, 1) = theTransformation.Value (3, 2);
theOut.ChangeValue (2, 2) = theTransformation.Value (3, 3);
// Add a translate component.
theOut.ChangeValue (0, 3) = theTransformation.TranslationPart().X();
theOut.ChangeValue (1, 3) = theTransformation.TranslationPart().Y();
theOut.ChangeValue (2, 3) = theTransformation.TranslationPart().Z();
}
// =======================================================================
// function : Rotate
// purpose : Constructs a 4x4 rotation matrix
// =======================================================================
template<class T>
void Graphic3d_TransformUtils::Rotate (typename MatrixType<T>::Mat4& theOut,
T theA,
T theX,
T theY,
T theZ)
{
typename MatrixType<T>::Mat4 aMat;
ConstructRotate (aMat, theA, theX, theY, theZ);
theOut = theOut * aMat;
}
// =======================================================================
// function : Translate
// purpose : Constructs a 4x4 translation matrix
// =======================================================================
template<class T>
void Graphic3d_TransformUtils::Translate (typename MatrixType<T>::Mat4& theOut,
T theX,
T theY,
T theZ)
{
theOut.ChangeValue (0, 3) = theOut.GetValue (0, 0) * theX +
theOut.GetValue (0, 1) * theY +
theOut.GetValue (0, 2) * theZ +
theOut.GetValue (0, 3);
theOut.ChangeValue (1, 3) = theOut.GetValue (1, 0) * theX +
theOut.GetValue (1, 1) * theY +
theOut.GetValue (1, 2) * theZ +
theOut.GetValue (1, 3);
theOut.ChangeValue (2, 3) = theOut.GetValue (2, 0) * theX +
theOut.GetValue (2, 1) * theY +
theOut.GetValue (2, 2) * theZ +
theOut.GetValue (2, 3);
theOut.ChangeValue (3, 3) = theOut.GetValue (3, 0) * theX +
theOut.GetValue (3, 1) * theY +
theOut.GetValue (3, 2) * theZ +
theOut.GetValue (3, 3);
}
// =======================================================================
// function : Scale
// purpose : Constructs a 4x4 scaling matrix
// =======================================================================
template<class T>
void Graphic3d_TransformUtils::Scale (typename MatrixType<T>::Mat4& theOut,
T theX,
T theY,
T theZ)
{
theOut.ChangeValue (0, 0) *= theX;
theOut.ChangeValue (1, 0) *= theX;
theOut.ChangeValue (2, 0) *= theX;
theOut.ChangeValue (3, 0) *= theX;
theOut.ChangeValue (0, 1) *= theY;
theOut.ChangeValue (1, 1) *= theY;
theOut.ChangeValue (2, 1) *= theY;
theOut.ChangeValue (3, 1) *= theY;
theOut.ChangeValue (0, 2) *= theZ;
theOut.ChangeValue (1, 2) *= theZ;
theOut.ChangeValue (2, 2) *= theZ;
theOut.ChangeValue (3, 2) *= theZ;
}
// =======================================================================
// function : ConstructRotate
// purpose : Constructs a 4x4 rotation matrix
// =======================================================================
template<class T>
void Graphic3d_TransformUtils::ConstructRotate (typename MatrixType<T>::Mat4& theOut,
T theA,
T theX,
T theY,
T theZ)
{
const T aSin = std::sin (theA * static_cast<T> (M_PI / 180.0));
const T aCos = std::cos (theA * static_cast<T> (M_PI / 180.0));
const Standard_Boolean isOnlyX = (theX != static_cast<T> (0.0))
&& (theY == static_cast<T> (0.0))
&& (theZ == static_cast<T> (0.0));
const Standard_Boolean isOnlyY = (theX == static_cast<T> (0.0))
&& (theY != static_cast<T> (0.0))
&& (theZ == static_cast<T> (0.0));
const Standard_Boolean isOnlyZ = (theX == static_cast<T> (0.0))
&& (theY == static_cast<T> (0.0))
&& (theZ != static_cast<T> (0.0));
if (isOnlyX) // Rotation only around X.
{
theOut.SetValue (1, 1, aCos);
theOut.SetValue (2, 2, aCos);
if (theX < static_cast<T> (0.0))
{
theOut.SetValue (1, 2, aSin);
theOut.SetValue (2, 1, -aSin);
}
else
{
theOut.SetValue (1, 2, -aSin);
theOut.SetValue (2, 1, aSin);
}
return;
}
else if (isOnlyY) // Rotation only around Y.
{
theOut.SetValue (0, 0, aCos);
theOut.SetValue (2, 2, aCos);
if (theY < static_cast<T> (0.0))
{
theOut.SetValue (0, 2, -aSin);
theOut.SetValue (2, 0, aSin);
}
else
{
theOut.SetValue (0, 2, aSin);
theOut.SetValue (2, 0, -aSin);
}
return;
}
else if (isOnlyZ) // Rotation only around Z.
{
theOut.SetValue (0, 0, aCos);
theOut.SetValue (1, 1, aCos);
if (theZ < static_cast<T> (0.0))
{
theOut.SetValue (0, 1, aSin);
theOut.SetValue (1, 0, -aSin);
}
else
{
theOut.SetValue (0, 1, -aSin);
theOut.SetValue (1, 0, aSin);
}
return;
}
T aNorm = std::sqrt (theX * theX + theY * theY + theZ * theZ);
if (aNorm <= static_cast<T> (1.0e-4))
{
return; // Negligible rotation.
}
aNorm = static_cast<T> (1.0) / aNorm;
theX *= aNorm;
theY *= aNorm;
theZ *= aNorm;
const T aXX = theX * theX;
const T aYY = theY * theY;
const T aZZ = theZ * theZ;
const T aXY = theX * theY;
const T aYZ = theY * theZ;
const T aZX = theZ * theX;
const T aSinX = theX * aSin;
const T aSinY = theY * aSin;
const T aSinZ = theZ * aSin;
const T aOneMinusCos = static_cast<T> (1.0) - aCos;
theOut.SetValue (0, 0, aOneMinusCos * aXX + aCos);
theOut.SetValue (0, 1, aOneMinusCos * aXY - aSinZ);
theOut.SetValue (0, 2, aOneMinusCos * aZX + aSinY);
theOut.SetValue (1, 0, aOneMinusCos * aXY + aSinZ);
theOut.SetValue (1, 1, aOneMinusCos * aYY + aCos);
theOut.SetValue (1, 2, aOneMinusCos * aYZ - aSinX);
theOut.SetValue (2, 0, aOneMinusCos * aZX - aSinY);
theOut.SetValue (2, 1, aOneMinusCos * aYZ + aSinX);
theOut.SetValue (2, 2, aOneMinusCos * aZZ + aCos);
}
// =======================================================================
// function : Ortho
// purpose : Constructs a 3D orthographic projection matrix
// =======================================================================
template<class T>
void Graphic3d_TransformUtils::Ortho (typename MatrixType<T>::Mat4& theOut,
const T theLeft,
const T theRight,
const T theBottom,
const T theTop,
const T theZNear,
const T theZFar)
{
theOut.InitIdentity();
T* aData = theOut.ChangeData();
const T anInvDx = static_cast<T> (1.0) / (theRight - theLeft);
const T anInvDy = static_cast<T> (1.0) / (theTop - theBottom);
const T anInvDz = static_cast<T> (1.0) / (theZFar - theZNear);
aData[0] = static_cast<T> ( 2.0) * anInvDx;
aData[5] = static_cast<T> ( 2.0) * anInvDy;
aData[10] = static_cast<T> (-2.0) * anInvDz;
aData[12] = -(theRight + theLeft) * anInvDx;
aData[13] = -(theTop + theBottom) * anInvDy;
aData[14] = -(theZFar + theZNear) * anInvDz;
}
// =======================================================================
// function : Ortho2D
// purpose : Constructs a 2D orthographic projection matrix
// =======================================================================
template<class T>
void Graphic3d_TransformUtils::Ortho2D (typename MatrixType<T>::Mat4& theOut,
const T theLeft,
const T theRight,
const T theBottom,
const T theTop)
{
Ortho (theOut, theLeft, theRight, theBottom, theTop, static_cast<T> (-1.0), static_cast<T> (1.0));
}
// =======================================================================
// function : Project
// purpose : Maps object coordinates to window coordinates
// =======================================================================
template<class T>
static Standard_Boolean Graphic3d_TransformUtils::Project (const T theObjX,
const T theObjY,
const T theObjZ,
const typename MatrixType<T>::Mat4& theModViewMat,
const typename MatrixType<T>::Mat4& theProjectMat,
const Standard_Integer theViewport[4],
T& theWinX,
T& theWinY,
T& theWinZ)
{
typename VectorType<T>::Vec4 anIn (theObjX, theObjY, theObjZ, static_cast<T> (1.0));
typename VectorType<T>::Vec4 anOut = theProjectMat * (theModViewMat * anIn);
if (anOut.w() == static_cast<T> (0.0))
{
return Standard_False;
}
anOut.w() = static_cast<T> (1.0) / anOut.w();
anOut.x() *= anOut.w();
anOut.y() *= anOut.w();
anOut.z() *= anOut.w();
// Map x, y and z to range 0-1.
anOut.x() = anOut.x() * static_cast<T> (0.5) + static_cast<T> (0.5);
anOut.y() = anOut.y() * static_cast<T> (0.5) + static_cast<T> (0.5);
anOut.z() = anOut.z() * static_cast<T> (0.5) + static_cast<T> (0.5);
// Map x,y to viewport.
anOut.x() = anOut.x() * theViewport[2] + theViewport[0];
anOut.y() = anOut.y() * theViewport[3] + theViewport[1];
theWinX = anOut.x();
theWinY = anOut.y();
theWinZ = anOut.z();
return Standard_True;
}
// =======================================================================
// function : UnProject
// purpose : Maps window coordinates to object coordinates
// =======================================================================
template<class T>
static Standard_Boolean Graphic3d_TransformUtils::UnProject (const T theWinX,
const T theWinY,
const T theWinZ,
const typename MatrixType<T>::Mat4& theModViewMat,
const typename MatrixType<T>::Mat4& theProjectMat,
const Standard_Integer theViewport[4],
T& theObjX,
T& theObjY,
T& theObjZ)
{
typename MatrixType<T>::Mat4 anUnviewMat;
if (!(theProjectMat * theModViewMat).Inverted (anUnviewMat))
{
return Standard_False;
}
typename VectorType<T>::Vec4 anIn (theWinX, theWinY, theWinZ, static_cast<T> (1.0));
// Map x and y from window coordinates.
anIn.x() = (anIn.x() - theViewport[0]) / theViewport[2];
anIn.y() = (anIn.y() - theViewport[1]) / theViewport[3];
// Map to range -1 to 1.
anIn.x() = anIn.x() * static_cast<T> (2.0) - static_cast<T> (1.0);
anIn.y() = anIn.y() * static_cast<T> (2.0) - static_cast<T> (1.0);
anIn.z() = anIn.z() * static_cast<T> (2.0) - static_cast<T> (1.0);
typename VectorType<T>::Vec4 anOut = anUnviewMat * anIn;
if (anOut.w() == static_cast<T> (0.0))
{
return Standard_False;
}
anOut.w() = static_cast<T> (1.0) / anOut.w();
anOut.x() *= anOut.w();
anOut.y() *= anOut.w();
anOut.z() *= anOut.w();
theObjX = anOut.x();
theObjY = anOut.y();
theObjZ = anOut.z();
return Standard_True;
}
#endif // _Graphic3d_TransformUtils_HeaderFile