1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-26 10:19:45 +03:00
occt/src/GeomFill/GeomFill_PolynomialConvertor.cxx
abv d5f74e42d6 0024624: Lost word in license statement in source files
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast
Wrong license statements corrected in several files.
Copyright and license statements added in XSD and GLSL files.
Copyright year updated in some files.
Obsolete documentation files removed from DrawResources.
2014-02-20 16:15:17 +04:00

364 lines
11 KiB
C++

// Created on: 1997-07-18
// Created by: Philippe MANGIN
// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <GeomFill_PolynomialConvertor.ixx>
#include <PLib.hxx>
#include <gp_Mat.hxx>
#include <Convert_CompPolynomialToPoles.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_HArray2OfReal.hxx>
#include <TColStd_HArray1OfInteger.hxx>
#include <TColStd_HArray1OfReal.hxx>
GeomFill_PolynomialConvertor::GeomFill_PolynomialConvertor():
Ordre(8),
myinit(Standard_False),
BH(1, Ordre, 1, Ordre)
{
}
Standard_Boolean GeomFill_PolynomialConvertor::Initialized() const
{
return myinit;
}
void GeomFill_PolynomialConvertor::Init()
{
if (myinit) return; //On n'initialise qu'une fois
Standard_Integer ii, jj;
Standard_Real terme;
math_Matrix H(1,Ordre, 1,Ordre), B(1,Ordre, 1,Ordre);
Handle(TColStd_HArray1OfReal)
Coeffs = new (TColStd_HArray1OfReal) (1, Ordre*Ordre),
TrueInter = new (TColStd_HArray1OfReal) (1,2);
Handle(TColStd_HArray2OfReal)
Poles1d = new (TColStd_HArray2OfReal) (1, Ordre, 1, Ordre),
Inter = new (TColStd_HArray2OfReal) (1,1,1,2);
//Calcul de B
Inter->SetValue(1, 1, -1);
Inter->SetValue(1, 2, 1);
TrueInter->SetValue(1, -1);
TrueInter->SetValue(2, 1);
Coeffs->Init(0);
for (ii=1; ii<=Ordre; ii++) { Coeffs->SetValue(ii+(ii-1)*Ordre, 1); }
//Convertion ancienne formules
Handle(TColStd_HArray1OfInteger) Ncf
= new (TColStd_HArray1OfInteger)(1,1);
Ncf->Init(Ordre);
Convert_CompPolynomialToPoles
AConverter(1, 1, 8, 8,
Ncf,
Coeffs,
Inter,
TrueInter);
/* Convert_CompPolynomialToPoles
AConverter(8, Ordre-1, Ordre-1,
Coeffs,
Inter,
TrueInter); En attente du bon Geomlite*/
AConverter.Poles(Poles1d);
for (jj=1; jj<=Ordre; jj++) {
for (ii=1; ii<=Ordre; ii++) {
terme = Poles1d->Value(ii,jj);
if (Abs(terme-1) < 1.e-9) terme = 1 ; //petite retouche
if (Abs(terme+1) < 1.e-9) terme = -1;
B(ii, jj) = terme;
}
}
//Calcul de H
myinit = PLib::HermiteCoefficients(-1, 1, Ordre/2-1, Ordre/2-1, H);
H.Transpose();
if (!myinit) return;
// reste l'essentiel
BH = B * H;
}
void GeomFill_PolynomialConvertor::Section(const gp_Pnt& FirstPnt,
const gp_Pnt& Center,
const gp_Vec& Dir,
const Standard_Real Angle,
TColgp_Array1OfPnt& Poles) const
{
math_Vector Vx(1, Ordre), Vy(1, Ordre);
math_Vector Px(1, Ordre), Py(1, Ordre);
Standard_Integer ii;
Standard_Real Cos_b = Cos(Angle), Sin_b = Sin(Angle);
Standard_Real beta, beta2, beta3;
gp_Vec V1(Center, FirstPnt), V2;
V2 = Dir^V1;
beta = Angle/2;
beta2 = beta * beta;
beta3 = beta * beta2;
// Calcul de la transformation
gp_Mat M(V1.X(), V2.X(), 0,
V1.Y(), V2.Y(), 0,
V1.Z(), V2.Z(), 0);
// Calcul des contraintes -----------
Vx(1) = 1; Vy(1) = 0;
Vx(2) = 0; Vy(2) = beta;
Vx(3) = -beta2; Vy(3) = 0;
Vx(4) = 0; Vy(4) = -beta3;
Vx(5) = Cos_b; Vy(5) = Sin_b;
Vx(6) = -beta*Sin_b; Vy(6) = beta*Cos_b;
Vx(7) = -beta2*Cos_b; Vy(7) = -beta2*Sin_b;
Vx(8) = beta3*Sin_b; Vy(8) = -beta3*Cos_b;
// Calcul des poles
Px = BH * Vx;
Py = BH * Vy;
gp_XYZ pnt;
for (ii=1; ii<=Ordre; ii++) {
pnt.SetCoord(Px(ii), Py(ii), 0);
pnt *= M;
pnt += Center.XYZ();
Poles(ii).ChangeCoord() = pnt;
}
}
void GeomFill_PolynomialConvertor::Section(const gp_Pnt& FirstPnt,
const gp_Vec& DFirstPnt,
const gp_Pnt& Center,
const gp_Vec& DCenter,
const gp_Vec& Dir,
const gp_Vec& DDir,
const Standard_Real Angle,
const Standard_Real DAngle,
TColgp_Array1OfPnt& Poles,
TColgp_Array1OfVec& DPoles) const
{
math_Vector Vx(1, Ordre), Vy(1, Ordre),
DVx(1, Ordre), DVy(1, Ordre);
math_Vector Px(1, Ordre), Py(1, Ordre),
DPx(1, Ordre), DPy(1, Ordre);
Standard_Integer ii;
Standard_Real Cos_b = Cos(Angle), Sin_b = Sin(Angle);
Standard_Real beta, beta2, beta3, bprim;
gp_Vec V1(Center, FirstPnt), V1Prim, V2;
V2 = Dir^V1;
beta = Angle/2;
bprim = DAngle/2;
beta2 = beta * beta;
beta3 = beta * beta2;
// Calcul des transformations
gp_Mat M (V1.X(), V2.X(), 0,
V1.Y(), V2.Y(), 0,
V1.Z(), V2.Z(), 0);
V1Prim = DFirstPnt - DCenter;
V2 = (DDir^V1) + (Dir^V1Prim);
gp_Mat MPrim (V1Prim.X(), V2.X(), 0,
V1Prim.Y(), V2.Y(), 0,
V1Prim.Z(), V2.Z(), 0);
// Calcul des contraintes -----------
Vx(1) = 1; Vy(1) = 0;
Vx(2) = 0; Vy(2) = beta;
Vx(3) = -beta2; Vy(3) = 0;
Vx(4) = 0; Vy(4) = -beta3;
Vx(5) = Cos_b; Vy(5) = Sin_b;
Vx(6) = -beta*Sin_b; Vy(6) = beta*Cos_b;
Vx(7) = -beta2*Cos_b; Vy(7) = -beta2*Sin_b;
Vx(8) = beta3*Sin_b; Vy(8) = -beta3*Cos_b;
Standard_Real b_bprim = bprim*beta,
b2_bprim = bprim*beta2;
DVx(1) = 0; DVy(1) = 0;
DVx(2) = 0; DVy(2) = bprim;
DVx(3) = -2*b_bprim; DVy(3) = 0;
DVx(4) = 0; DVy(4) = -3*b2_bprim;
DVx(5) = -2*bprim*Sin_b; DVy(5) = 2*bprim*Cos_b;
DVx(6) = -bprim*Sin_b - 2*b_bprim*Cos_b;
DVy(6) = bprim*Cos_b - 2*b_bprim*Sin_b;
DVx(7) = 2*b_bprim*(-Cos_b + beta*Sin_b);
DVy(7) = -2*b_bprim*(Sin_b+beta*Cos_b);
DVx(8) = b2_bprim*(3*Sin_b + 2*beta*Cos_b);
DVy(8) = b2_bprim*(2*beta*Sin_b - 3*Cos_b);
// Calcul des poles
Px = BH * Vx;
Py = BH * Vy;
DPx = BH * DVx;
DPy = BH * DVy;
gp_XYZ P, DP, aux;
for (ii=1; ii<=Ordre; ii++) {
P.SetCoord(Px(ii), Py(ii), 0);
Poles(ii).ChangeCoord() = M*P + Center.XYZ();
P *= MPrim;
DP.SetCoord(DPx(ii), DPy(ii), 0);
DP *= M;
aux.SetLinearForm(1, P, 1, DP, DCenter.XYZ());
DPoles(ii).SetXYZ(aux);
}
}
void GeomFill_PolynomialConvertor::Section(const gp_Pnt& FirstPnt,
const gp_Vec& DFirstPnt,
const gp_Vec& D2FirstPnt,
const gp_Pnt& Center,
const gp_Vec& DCenter,
const gp_Vec& D2Center,
const gp_Vec& Dir,
const gp_Vec& DDir,
const gp_Vec& D2Dir,
const Standard_Real Angle,
const Standard_Real DAngle,
const Standard_Real D2Angle,
TColgp_Array1OfPnt& Poles,
TColgp_Array1OfVec& DPoles,
TColgp_Array1OfVec& D2Poles) const
{
math_Vector Vx(1, Ordre), Vy(1, Ordre),
DVx(1, Ordre), DVy(1, Ordre),
D2Vx(1, Ordre), D2Vy(1, Ordre);
math_Vector Px(1, Ordre), Py(1, Ordre),
DPx(1, Ordre), DPy(1, Ordre),
D2Px(1, Ordre), D2Py(1, Ordre);
Standard_Integer ii;
Standard_Real aux, Cos_b = Cos(Angle), Sin_b = Sin(Angle);
Standard_Real beta, beta2, beta3, bprim, bprim2, bsecn;
gp_Vec V1(Center, FirstPnt), V1Prim, V1Secn, V2;
V2 = Dir^V1;
beta = Angle/2;
bprim = DAngle/2;
bsecn = D2Angle/2;
bsecn = D2Angle/2;
beta2 = beta * beta;
beta3 = beta * beta2;
bprim2 = bprim*bprim;
// Calcul des transformations
gp_Mat M (V1.X(), V2.X(), 0,
V1.Y(), V2.Y(), 0,
V1.Z(), V2.Z(), 0);
V1Prim = DFirstPnt - DCenter;
V2 = (DDir^V1) + (Dir^V1Prim);
gp_Mat MPrim (V1Prim.X(), V2.X(), 0,
V1Prim.Y(), V2.Y(), 0,
V1Prim.Z(), V2.Z(), 0);
V1Secn = D2FirstPnt - D2Center;
V2 = DDir^V1Prim;
V2 *= 2;
V2 += (D2Dir^V1) + (Dir^V1Secn);
gp_Mat MSecn (V1Secn.X(), V2.X(), 0,
V1Secn.Y(), V2.Y(), 0,
V1Secn.Z(), V2.Z(), 0);
// Calcul des contraintes -----------
Vx(1) = 1; Vy(1) = 0;
Vx(2) = 0; Vy(2) = beta;
Vx(3) = -beta2; Vy(3) = 0;
Vx(4) = 0; Vy(4) = -beta3;
Vx(5) = Cos_b; Vy(5) = Sin_b;
Vx(6) = -beta*Sin_b; Vy(6) = beta*Cos_b;
Vx(7) = -beta2*Cos_b; Vy(7) = -beta2*Sin_b;
Vx(8) = beta3*Sin_b; Vy(8) = -beta3*Cos_b;
Standard_Real b_bprim = bprim*beta,
b2_bprim = bprim*beta2,
b_bsecn = bsecn*beta;
DVx(1) = 0; DVy(1) = 0;
DVx(2) = 0; DVy(2) = bprim;
DVx(3) = -2*b_bprim; DVy(3) = 0;
DVx(4) = 0; DVy(4) = -3*b2_bprim;
DVx(5) = -2*bprim*Sin_b; DVy(5) = 2*bprim*Cos_b;
DVx(6) = -bprim*Sin_b - 2*b_bprim*Cos_b;
DVy(6) = bprim*Cos_b - 2*b_bprim*Sin_b;
DVx(7) = 2*b_bprim*(-Cos_b + beta*Sin_b);
DVy(7) = -2*b_bprim*(Sin_b + beta*Cos_b);
DVx(8) = b2_bprim*(3*Sin_b + 2*beta*Cos_b);
DVy(8) = b2_bprim*(2*beta*Sin_b - 3*Cos_b);
D2Vx(1) = 0; D2Vy(1) = 0;
D2Vx(2) = 0; D2Vy(2) = bsecn;
D2Vx(3) = -2*(bprim2+b_bsecn); D2Vy(3) = 0;
D2Vx(4) = 0; D2Vy(4) = -3*beta*(2*bprim2+b_bsecn);
D2Vx(5) = -2*(bsecn*Sin_b + 2*bprim2*Cos_b);
D2Vy(5) = 2*(bsecn*Cos_b - 2*bprim2*Sin_b);
D2Vx(6) = (4*beta*bprim2-bsecn)*Sin_b - 2*(2*bprim2+b_bsecn)*Cos_b;
D2Vy(6) = (bsecn - 4*beta*bprim2)*Cos_b
- 2*(b_bsecn + 2*bprim2)*Sin_b;
aux = 2*(bprim2+b_bsecn);
D2Vx(7) = aux*(-Cos_b + beta*Sin_b)
+ 2*beta*bprim2*(2*beta*Cos_b + 3*Sin_b);
D2Vy(7) = -aux*(Sin_b + beta*Cos_b)
- 2*beta*bprim2*(3*Cos_b - 2*beta*Sin_b);
aux = beta*(2*bprim2+b_bsecn);
D2Vx(8) = aux * (3*Sin_b + 2*beta*Cos_b)
+ 4*beta2*bprim2 * (2*Cos_b - beta*Sin_b);
D2Vy(8)= aux * (2*beta*Sin_b - 3*Cos_b)
+ 4*beta2*bprim2 * (2*Sin_b + beta*Cos_b);
// Calcul des poles
Px = BH * Vx;
Py = BH * Vy;
DPx = BH * DVx;
DPy = BH * DVy;
D2Px = BH * D2Vx;
D2Py = BH * D2Vy;
gp_XYZ P, DP, D2P, auxyz;
for (ii=1; ii<=Ordre; ii++) {
P.SetCoord(Px(ii), Py(ii), 0);
DP.SetCoord(DPx(ii), DPy(ii), 0);
D2P.SetCoord(D2Px(ii), D2Py(ii), 0);
Poles(ii).ChangeCoord() = M*P + Center.XYZ();
auxyz.SetLinearForm(1, MPrim*P,
1, M*DP,
DCenter.XYZ());
DPoles(ii).SetXYZ(auxyz);
P *= MSecn;
DP *= MPrim;
D2P*= M;
auxyz.SetLinearForm(1, P,
2, DP,
1, D2P,
D2Center.XYZ());
D2Poles(ii).SetXYZ(auxyz);
}
}