1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/IntWalk/IntWalk_IWalking_5.gxx
luz paz 0177fe2617 0031939: Coding - correction of spelling errors in comments [part 4]
Fix various typos

Fixed via `codespell v2.1.dev
2020-12-17 21:17:43 +03:00

311 lines
11 KiB
Plaintext

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
namespace {
static const Standard_Real CosRef3D = 0.98;// rule by tests in U4
// correspond to 11.478 d
static const Standard_Real CosRef2D = 0.88; // correspond to 25 d
static const Standard_Integer MaxDivision = 60; // max number of step division
// because the angle is too great in 2d (U4)
}
IntWalk_StatusDeflection IntWalk_IWalking::TestDeflection
(TheIWFunction& sp,
const Standard_Boolean Finished,
const math_Vector& UV,
const IntWalk_StatusDeflection StatusPrecedent,
Standard_Integer& NbDivision,
Standard_Real& Step,
const Standard_Integer StepSign)
{
// Check the step of advancement, AND recalculate this step :
//
// 1) test point confused
// if yes other tests are not done
// 2) test angle 3d too great
// if yes divide the step and leave
// angle3d = angle ((previous point, calculated point),
// previous tangent)
// 3) check step of advancement in 2d
// 4) test point confused
// 5) test angle 2d too great
// 6) test point of tangency
// if yes leave
// 7) calculate the tangent by u,v of the section
// 8) test angle 3d too great
// angle3d = angle ((previous point, calculated point),
// new tangent)
// 9) test angle 2d too great
//10) test change of side (pass the tangent point not knowing it)
//11) calculate the step of advancement depending on the vector
//12) adjust the step depending on the previous steps
IntWalk_StatusDeflection aStatus = IntWalk_OK;
//---------------------------------------------------------------------------------
//-- lbr le 4 Avril 95 : it is possible that the status returns points confused
//-- if epsilon is great enough (1e-11). In this case one loops
//-- without ever changing the values sent to Rsnld.
//---------------------------------------------------------------------------------
Standard_Real Paramu = 0.0, Paramv = 0.0;
if (!reversed) {
previousPoint.ParametersOnS2(Paramu, Paramv);
}
else
{
previousPoint.ParametersOnS1(Paramu, Paramv);
}
const Standard_Real Du = UV(1) - Paramu;
const Standard_Real Dv = UV(2) - Paramv;
const Standard_Real Duv = Du * Du + Dv * Dv;
gp_Vec Corde(previousPoint.Value(), sp.Point());
const Standard_Real Norme = Corde.SquareMagnitude();
if ((Norme <= 4.0*Precision::SquareConfusion()) &&
((Duv <= Precision::SquarePConfusion()) || (StatusPrecedent != IntWalk_OK)))
{ // the square is already taken in the constructor
aStatus = IntWalk_PointConfondu;
if (StatusPrecedent == IntWalk_PasTropGrand)
{
return IntWalk_ArretSurPointPrecedent;
}
}
else
{
Standard_Real Cosi = Corde * previousd3d;
Standard_Real Cosi2 = 0.0;
if (Cosi*StepSign >= 0.) {// angle 3d <= pi/2 !!!!
const Standard_Real aDiv = previousd3d.SquareMagnitude()*Norme;
if(aDiv == 0)
return aStatus;
Cosi2 = Cosi * Cosi / aDiv;
}
if (Cosi2 < CosRef3D) { //angle 3d too great
Step = Step /2.0;
Standard_Real StepU = Abs(Step*previousd2d.X()),
StepV = Abs(Step*previousd2d.Y());
if (StepU < tolerance(1) && StepV < tolerance(2))
aStatus = IntWalk_ArretSurPointPrecedent;
else
aStatus = IntWalk_PasTropGrand;
return aStatus;
}
}
const Standard_Real aMinTolU = 0.1*Abs(Step*previousd2d.X()),
aMinTolV = 0.1*Abs(Step*previousd2d.Y());
const Standard_Real aTolU = (aMinTolU > 0.0) ? Min(tolerance(1), aMinTolU) : tolerance(1),
aTolV = (aMinTolV > 0.0) ? Min(tolerance(2), aMinTolV) : tolerance(2);
//If aMinTolU==0.0 then (Abs(Du) < aMinTolU) is equivalent of (Abs(Du) < 0.0).
//It is impossible. Therefore, this case should be processed separately.
//Analogically for aMinTolV.
if ((Abs(Du) < aTolU) && (Abs(Dv) < aTolV))
{
//Thin shapes (for which Ulast-Ufirst or/and Vlast-Vfirst is quite small)
//exists (see bug #25820). In this case, step is quite small too.
//Nevertheless, it not always means that we mark time. Therefore, Du and Dv
//must consider step (aMinTolU and aMinTolV parameters).
return IntWalk_ArretSurPointPrecedent; //confused point 2d
}
Standard_Real Cosi = StepSign * (Du * previousd2d.X() + Dv * previousd2d.Y());
if (Cosi < 0 && aStatus == IntWalk_PointConfondu)
return IntWalk_ArretSurPointPrecedent; // leave as step back
// with confused point
if (sp.IsTangent())
return IntWalk_ArretSurPoint;
//if during routing one has subdivided more than MaxDivision for each
//previous step, bug on the square; do nothing (experience U4)
if ((NbDivision < MaxDivision) && (aStatus != IntWalk_PointConfondu) &&
(StatusPrecedent!= IntWalk_PointConfondu))
{
Standard_Real Cosi2 = Cosi * Cosi / Duv;
if (Cosi2 < CosRef2D || Cosi < 0 ) {
Step = Step / 2.0;
Standard_Real StepU = Abs(Step*previousd2d.X()),
StepV = Abs(Step*previousd2d.Y());
if (StepU < tolerance(1) && StepV < tolerance(2))
aStatus = IntWalk_ArretSurPointPrecedent;
else
aStatus = IntWalk_PasTropGrand;
NbDivision = NbDivision + 1;
return aStatus;
}
Cosi = Corde * sp.Direction3d();
Cosi2 = Cosi * Cosi / sp.Direction3d().SquareMagnitude() / Norme;
if (Cosi2 < CosRef3D ){ //angle 3d too great
Step = Step / 2.;
Standard_Real StepU = Abs(Step*previousd2d.X()),
StepV = Abs(Step*previousd2d.Y());
if (StepU < tolerance(1) && StepV < tolerance(2))
aStatus = IntWalk_ArretSurPoint;
else
aStatus = IntWalk_PasTropGrand;
return aStatus;
}
Cosi = Du * sp.Direction2d().X() +
Dv * sp.Direction2d().Y();
Cosi2 = Cosi * Cosi / Duv;
if (Cosi2 < CosRef2D ||
sp.Direction2d() * previousd2d < 0) {
//angle 2d too great or change the side
Step = Step / 2.;
Standard_Real StepU = Abs(Step*previousd2d.X()),
StepV = Abs(Step*previousd2d.Y());
if (StepU < tolerance(1) && StepV < tolerance(2))
aStatus = IntWalk_ArretSurPointPrecedent;
else
aStatus = IntWalk_PasTropGrand;
return aStatus;
}
}
if (!Finished) {
if (aStatus == IntWalk_PointConfondu)
{
Standard_Real StepU = Min(Abs(1.5 * Du),pas*(UM-Um)),
StepV = Min(Abs(1.5 * Dv),pas*(VM-Vm));
Standard_Real d2dx = Abs(previousd2d.X());
Standard_Real d2dy = Abs(previousd2d.Y());
if (d2dx < tolerance(1))
{
Step = StepV/d2dy;
}
else if (d2dy < tolerance(2))
{
Step = StepU/d2dx;
}
else
{
Step = Min(StepU/d2dx,StepV/d2dy);
}
}
else
{
// estimate the current vector.
// if vector/2<=current vector<= vector it is considered that the criterion
// is observed.
// otherwise adjust the step depending on the previous step
/*
Standard_Real Dist = Sqrt(Norme)/3.;
TColgp_Array1OfPnt Poles(1,4);
gp_Pnt POnCurv,Milieu;
Poles(1) = previousPoint.Value();
Poles(4) = sp.Point();
Poles(2) = Poles(1).XYZ() +
StepSign * Dist* previousd3d.Normalized().XYZ();
Poles(3) = Poles(4).XYZ() -
StepSign * Dist*sp.Direction3d().Normalized().XYZ();
BzCLib::PntPole(0.5,Poles,POnCurv);
Milieu = (Poles(1).XYZ() + Poles(4).XYZ())*0.5;
// FlecheCourante = Milieu.Distance(POnCurv);
Standard_Real FlecheCourante = Milieu.SquareDistance(POnCurv);
*/
// Direct calculation :
// POnCurv=(((p1+p2)/2.+(p2+p3)/2.)/2. + ((p2+p3)/2.+(p3+P4)/2.)/2.)/2.
// either POnCurv = p1/8. + 3.p2/8. + 3.p3/8. + p4/8.
// Or p2 = p1 + lambda*d1 et p3 = p4 - lambda*d4
// So POnCurv = (p1 + p4)/2. + 3.*(lambda d1 - lambda d4)/8.
// Calculate the deviation with (p1+p4)/2. . So it is just necessary to calculate
// the norm (square) of 3.*lambda (d1 - d4)/8.
// either the norm of :
// 3.*(Sqrt(Norme)/3.)*StepSign*(d1-d4)/8.
// which produces, takin the square :
// Norme * (d1-d4).SquareMagnitude()/64.
Standard_Real FlecheCourante =
(previousd3d.Normalized().XYZ()-sp.Direction3d().Normalized().XYZ()).SquareModulus()*Norme/64.;
// if (FlecheCourante <= 0.5*fleche) {
if (FlecheCourante <= 0.25*fleche*fleche)
{
Standard_Real d2dx = Abs(sp.Direction2d().X());
Standard_Real d2dy = Abs(sp.Direction2d().Y());
Standard_Real StepU = Min(Abs(1.5*Du),pas*(UM-Um)),
StepV = Min(Abs(1.5*Dv),pas*(VM-Vm));
if (d2dx < tolerance(1))
{
Step = StepV/d2dy;
}
else if (d2dy < tolerance(2))
{
Step = StepU/d2dx;
}
else
{
Step = Min(StepU/d2dx,StepV/d2dy);
}
}
else
{
//if (FlecheCourante > fleche) { // step too great
if (FlecheCourante > fleche*fleche)
{ // step too great
Step = Step /2.;
Standard_Real StepU = Abs(Step*previousd2d.X()),
StepV = Abs(Step*previousd2d.Y());
if (StepU < tolerance(1) && StepV < tolerance(2))
aStatus = IntWalk_ArretSurPointPrecedent;
else
aStatus = IntWalk_PasTropGrand;
}
else
{
Standard_Real d2dx = Abs(sp.Direction2d().X());
Standard_Real d2dy = Abs(sp.Direction2d().Y());
Standard_Real StepU = Min(Abs(1.5*Du),pas*(UM-Um)),
StepV = Min(Abs(1.5*Dv),pas*(VM-Vm));
if (d2dx < tolerance(1))
{
Step = Min(Step,StepV/d2dy);
}
else if (d2dy < tolerance(2))
{
Step = Min(Step,StepU/d2dx);
}
else
{
Step = Min(Step,Min(StepU/d2dx,StepV/d2dy));
}
}
}
}
}
return aStatus;
}