mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-16 10:08:36 +03:00
Added initialization of fields that had not initialization Added default constructors to classes without constructors
419 lines
10 KiB
C++
419 lines
10 KiB
C++
// Created on: 1998-07-09
|
|
// Created by: Stephanie HUMEAU
|
|
// Copyright (c) 1998-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <Adaptor3d_HCurve.hxx>
|
|
#include <Geom_BSplineCurve.hxx>
|
|
#include <Geom_Curve.hxx>
|
|
#include <Geom_Surface.hxx>
|
|
#include <Geom_SurfaceOfRevolution.hxx>
|
|
#include <Geom_TrimmedCurve.hxx>
|
|
#include <GeomAdaptor_HCurve.hxx>
|
|
#include <GeomFill_FunctionGuide.hxx>
|
|
#include <GeomFill_SectionLaw.hxx>
|
|
#include <GeomTools.hxx>
|
|
#include <gp_Ax1.hxx>
|
|
#include <gp_Ax3.hxx>
|
|
#include <gp_Dir.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Trsf.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <gp_XYZ.hxx>
|
|
#include <math_Matrix.hxx>
|
|
#include <Precision.hxx>
|
|
#include <TColgp_HArray1OfPnt.hxx>
|
|
#include <TColStd_HArray1OfInteger.hxx>
|
|
#include <TColStd_HArray1OfReal.hxx>
|
|
|
|
//#include <Standard_NotImplemented.hxx>
|
|
//==============================================
|
|
// Calcul de la valeur de la fonction :
|
|
// G(w) - S(teta,v) = 0
|
|
// ou G : guide et S : surface de revolution
|
|
//==============================================
|
|
//==============================================
|
|
// Function : FunctionGuide
|
|
// Purpose : Initialisation de la section et de la surface d'arret
|
|
//==============================================
|
|
GeomFill_FunctionGuide::GeomFill_FunctionGuide
|
|
(const Handle(GeomFill_SectionLaw)& S,
|
|
const Handle(Adaptor3d_HCurve)& C,
|
|
const Standard_Real Param)
|
|
: TheGuide(C),
|
|
TheLaw(S),
|
|
isconst(Standard_False),
|
|
First(0.0),
|
|
Last(0.0),
|
|
TheUonS(Param)
|
|
{
|
|
Standard_Real Tol = Precision::Confusion();
|
|
if (TheLaw->IsConstant(Tol)) {
|
|
isconst = Standard_True;
|
|
TheConst = TheLaw->ConstantSection();
|
|
First = TheConst->FirstParameter();
|
|
Last = TheConst->LastParameter();
|
|
}
|
|
else {
|
|
isconst = Standard_False;
|
|
TheConst.Nullify();
|
|
}
|
|
TheCurve.Nullify();
|
|
}
|
|
|
|
//==============================================
|
|
// Function : SetParam
|
|
// Purpose : Initialisation de la surface de revolution
|
|
//==============================================
|
|
// void GeomFill_FunctionGuide::SetParam(const Standard_Real Param,
|
|
void GeomFill_FunctionGuide::SetParam(const Standard_Real ,
|
|
const gp_Pnt& C,
|
|
const gp_XYZ& D,
|
|
const gp_XYZ& DX)
|
|
{
|
|
Centre = C.XYZ();
|
|
Dir = D;
|
|
|
|
//repere fixe
|
|
gp_Ax3 Rep (gp::Origin(), gp::DZ(), gp::DX());
|
|
|
|
|
|
// calculer transfo entre triedre et Oxyz
|
|
gp_Dir B2 = DX;
|
|
gp_Ax3 RepTriedre(C, D, B2);
|
|
gp_Trsf Transfo;
|
|
Transfo.SetTransformation(RepTriedre, Rep);
|
|
|
|
|
|
if (isconst) {
|
|
TheCurve = new (Geom_TrimmedCurve)
|
|
(Handle(Geom_Curve)::DownCast(TheConst->Copy()),
|
|
First, Last);
|
|
}
|
|
else {
|
|
Standard_Integer NbPoles, NbKnots, Deg;
|
|
TheLaw->SectionShape(NbPoles, NbKnots, Deg);
|
|
TColStd_Array1OfInteger Mult(1,NbKnots);
|
|
TheLaw->Mults( Mult);
|
|
TColStd_Array1OfReal Knots(1,NbKnots);
|
|
TheLaw->Knots(Knots);
|
|
TColgp_Array1OfPnt Poles(1, NbPoles);
|
|
TColStd_Array1OfReal Weights(1, NbPoles);
|
|
TheLaw->D0(TheUonS, Poles, Weights);
|
|
if (TheLaw->IsRational())
|
|
TheCurve = new (Geom_BSplineCurve)
|
|
(Poles, Weights, Knots, Mult ,
|
|
Deg, TheLaw->IsUPeriodic());
|
|
else
|
|
TheCurve = new (Geom_BSplineCurve)
|
|
(Poles, Knots, Mult,
|
|
Deg, TheLaw->IsUPeriodic());
|
|
}
|
|
|
|
gp_Ax1 Axe(C, Dir);
|
|
TheCurve->Transform(Transfo);
|
|
TheSurface = new(Geom_SurfaceOfRevolution) (TheCurve, Axe);
|
|
}
|
|
|
|
//==============================================
|
|
// Function : NbVariables (w, u, v)
|
|
// Purpose :
|
|
//==============================================
|
|
Standard_Integer GeomFill_FunctionGuide::NbVariables()const
|
|
{
|
|
return 3;
|
|
}
|
|
|
|
//==============================================
|
|
// Function : NbEquations
|
|
// Purpose :
|
|
//==============================================
|
|
Standard_Integer GeomFill_FunctionGuide::NbEquations()const
|
|
{
|
|
return 3;
|
|
}
|
|
|
|
//==============================================
|
|
// Function : Value
|
|
// Purpose : calcul of the value of the function at <X>
|
|
//==============================================
|
|
Standard_Boolean GeomFill_FunctionGuide::Value(const math_Vector& X,
|
|
math_Vector& F)
|
|
{
|
|
gp_Pnt P,P1;
|
|
|
|
|
|
TheGuide->D0(X(1), P);
|
|
TheSurface->D0(X(2), X(3), P1);
|
|
|
|
F(1) = P.Coord(1) - P1.Coord(1);
|
|
F(2) = P.Coord(2) - P1.Coord(2);
|
|
F(3) = P.Coord(3) - P1.Coord(3);
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//==============================================
|
|
// Function : Derivatives
|
|
// Purpose :calcul of the derivative of the function
|
|
//==============================================
|
|
Standard_Boolean GeomFill_FunctionGuide::Derivatives(const math_Vector& X,
|
|
math_Matrix& D)
|
|
{
|
|
gp_Pnt P,P1;
|
|
gp_Vec DP,DP1U,DP1V;
|
|
|
|
TheGuide->D1(X(1),P,DP);
|
|
TheSurface->D1(X(2),X(3),P1,DP1U,DP1V);
|
|
|
|
Standard_Integer i;
|
|
for (i=1;i<=3;i++)
|
|
{
|
|
D(i,1) = DP.Coord(i);
|
|
D(i,2) = -DP1U.Coord(i);
|
|
D(i,3) = -DP1V.Coord(i);
|
|
}// for
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//==============================================
|
|
// Function : Values
|
|
// Purpose : calcul of the value and the derivative of the function
|
|
//==============================================
|
|
Standard_Boolean GeomFill_FunctionGuide::Values(const math_Vector& X,
|
|
math_Vector& F,
|
|
math_Matrix& D)
|
|
{
|
|
gp_Pnt P,P1;
|
|
gp_Vec DP,DP1U,DP1V;
|
|
|
|
TheGuide->D1(X(1),P,DP); //derivee de la generatrice
|
|
TheSurface->D1(X(2),X(3),P1,DP1U,DP1V); //derivee de la new surface
|
|
|
|
Standard_Integer i;
|
|
for (i=1;i<=3;i++)
|
|
{
|
|
F(i) = P.Coord(i) - P1.Coord(i);
|
|
|
|
D(i,1) = DP.Coord(i);
|
|
D(i,2) = -DP1U.Coord(i);
|
|
D(i,3) = -DP1V.Coord(i);
|
|
}// for
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//==============================================
|
|
// Function : DerivT
|
|
// Purpose : calcul of the first derivative from t
|
|
//==============================================
|
|
Standard_Boolean GeomFill_FunctionGuide::DerivT(const math_Vector& X,
|
|
const gp_XYZ& DCentre,
|
|
const gp_XYZ& DDir,
|
|
math_Vector& F)
|
|
{
|
|
gp_Pnt P;
|
|
gp_Vec DS;
|
|
DSDT(X(2),X(3), DCentre,DDir, DS);
|
|
|
|
TheCurve->D0(X(1), P);
|
|
|
|
F(1) = P.Coord(1) - DS.Coord(1);
|
|
F(2) = P.Coord(2) - DS.Coord(2);
|
|
F(3) = P.Coord(3) - DS.Coord(3);
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=========================================================
|
|
// Function : DSDT
|
|
// Purpose : calcul de la derive de la surface /t en U, V
|
|
//=========================================================
|
|
void GeomFill_FunctionGuide::DSDT(const Standard_Real U,
|
|
const Standard_Real V,
|
|
const gp_XYZ& DC,
|
|
const gp_XYZ& DDir,
|
|
gp_Vec& DS) const
|
|
{
|
|
// C origine sur l'axe de revolution
|
|
// Vdir vecteur unitaire definissant la direction de l'axe de revolution
|
|
// Q(v) point de parametre V sur la courbe de revolution
|
|
// OM (u,v) = OC + CQ * Cos(U) + (CQ.Vdir)(1-Cos(U)) * Vdir +
|
|
// (Vdir^CQ)* Sin(U)
|
|
|
|
|
|
gp_Pnt Pc;
|
|
TheCurve->D0(V, Pc); //Q(v)
|
|
// if (!isconst)
|
|
|
|
gp_XYZ& Q = Pc.ChangeCoord(), DQ(0, 0, 0); //Q
|
|
if (!isconst) {
|
|
std::cout << "Not implemented" << std::endl;
|
|
}
|
|
|
|
|
|
Q.Subtract(Centre); //CQ
|
|
DQ -= DC;
|
|
|
|
gp_XYZ DVcrossCQ;
|
|
DVcrossCQ.SetLinearForm(DDir.Crossed (Q),
|
|
Dir.Crossed(DQ)); //Vdir^CQ
|
|
DVcrossCQ.Multiply (Sin(U)); //(Vdir^CQ)*Sin(U)
|
|
|
|
Standard_Real CosU = Cos(U);
|
|
gp_XYZ DVdotCQ;
|
|
DVdotCQ.SetLinearForm(DDir.Dot(Q) + Dir.Dot(DQ), Dir,
|
|
Dir.Dot(Q), DDir);//(CQ.Vdir)(1-Cos(U))Vdir
|
|
DVdotCQ.Add (DVcrossCQ); //addition des composantes
|
|
|
|
DQ.Multiply (CosU);
|
|
DQ.Add (DVdotCQ);
|
|
DQ.Add (DC);
|
|
DS.SetXYZ(DQ);
|
|
}
|
|
|
|
//=========================================================
|
|
// Function : Deriv2T
|
|
// Purpose : calcul of the second derivatice from t
|
|
//=========================================================
|
|
|
|
/* Standard_Boolean GeomFill_FunctionGuide::Deriv2T(const Standard_Real Param1,
|
|
const Standard_Real Param,
|
|
const Standard_Real Param0,
|
|
const math_Vector & R1,
|
|
const math_Vector & R,
|
|
const math_Vector & R0,
|
|
math_Vector& F)
|
|
{
|
|
math_Vector F1(1,3,0);
|
|
math_Vector F2(1,3,0);
|
|
|
|
DerivT(Param1, Param, R1, R, F1);
|
|
DerivT(Param, Param0, R, R0, F2);
|
|
|
|
Standard_Real h1 = Param - Param1;
|
|
Standard_Real h2 = Param0 - Param;
|
|
|
|
Standard_Integer i;
|
|
for (i=1;i<=3;i++)
|
|
F(i) = (F2(i) - F1(i)) / ((h2 + h1)/2);
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=========================================================
|
|
// Function : DerivTX
|
|
// Purpose : calcul of the second derivative from t and x
|
|
//=========================================================
|
|
Standard_Boolean GeomFill_FunctionGuide::DerivTX(const Standard_Real Param,
|
|
const Standard_Real Param0,
|
|
const math_Vector & R,
|
|
const math_Vector & X0,
|
|
math_Matrix& D)
|
|
{
|
|
gp_Pnt P1,P2;
|
|
gp_Vec DP1,DP2,DP2U,DP2V,DP1U,DP1V;
|
|
|
|
TheCurve->D1(R(1), P1, DP1); // guide
|
|
TheCurve->D1(X0(1), P2, DP2);
|
|
TheSurface->D1(R(2), R(3), P1, DP1U, DP1V); // surface
|
|
TheSurface->D1(X0(2), X0(3), P2, DP2U, DP2V); //derivee de la new surface
|
|
|
|
Standard_Real h = Param0 - Param;
|
|
|
|
Standard_Integer i;
|
|
for (i=1;i<=3;i++)
|
|
{
|
|
D(i,1) = (DP2.Coord(i) - DP1.Coord(i)) / h;
|
|
//D(i,2) = - (DP2U.Coord(i) - DP1U.Coord(i)) / h;
|
|
D(i,2) = - DP1U.Coord(i) * (X0(2)-R(2)) / h;
|
|
//D(i,3) = - (DP2V.Coord(i) - DP1V.Coord(i)) / h;
|
|
D(i,3) = - DP1V.Coord(i) * (X0(3)-R(3)) / h;
|
|
}// for
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=========================================================
|
|
// Function : Deriv2X
|
|
// Purpose : calcul of the second derivative from x
|
|
//=========================================================
|
|
Standard_Boolean GeomFill_FunctionGuide::Deriv2X(const math_Vector & X,
|
|
GeomFill_Tensor& T)
|
|
{
|
|
gp_Pnt P,P1;
|
|
gp_Vec DP,D2P,DPU,DPV;
|
|
gp_Vec D2PU, D2PV, D2PUV;
|
|
|
|
TheCurve->D2(X(1), P1, DP, D2P);
|
|
TheSurface->D2(X(2), X(3), P, DPU, DPV, D2PU, D2PV, D2PUV);
|
|
|
|
T.Init(0.); // tenseur
|
|
|
|
Standard_Integer i;
|
|
for (i=1;i<=3;i++)
|
|
{
|
|
T(i,1,1) = D2P.Coord(i);
|
|
T(i,2,2) = -D2PU.Coord(i);
|
|
T(i,3,2) = T(i,2,3) = -D2PUV.Coord(i);
|
|
T(i,3,3) = -D2PV.Coord(i);
|
|
}// for
|
|
|
|
return Standard_True;
|
|
}*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|