1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-16 10:08:36 +03:00
occt/src/GeomFill/GeomFill_FunctionGuide.cxx
mkrylova d533dafb56 0031035: Coding - uninitialized class fields reported by Visual Studio Code Analysis
Added initialization of fields that had not initialization
Added default constructors to classes without constructors
2020-07-23 16:08:20 +03:00

419 lines
10 KiB
C++

// Created on: 1998-07-09
// Created by: Stephanie HUMEAU
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Adaptor3d_HCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Surface.hxx>
#include <Geom_SurfaceOfRevolution.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <GeomAdaptor_HCurve.hxx>
#include <GeomFill_FunctionGuide.hxx>
#include <GeomFill_SectionLaw.hxx>
#include <GeomTools.hxx>
#include <gp_Ax1.hxx>
#include <gp_Ax3.hxx>
#include <gp_Dir.hxx>
#include <gp_Pnt.hxx>
#include <gp_Trsf.hxx>
#include <gp_Vec.hxx>
#include <gp_XYZ.hxx>
#include <math_Matrix.hxx>
#include <Precision.hxx>
#include <TColgp_HArray1OfPnt.hxx>
#include <TColStd_HArray1OfInteger.hxx>
#include <TColStd_HArray1OfReal.hxx>
//#include <Standard_NotImplemented.hxx>
//==============================================
// Calcul de la valeur de la fonction :
// G(w) - S(teta,v) = 0
// ou G : guide et S : surface de revolution
//==============================================
//==============================================
// Function : FunctionGuide
// Purpose : Initialisation de la section et de la surface d'arret
//==============================================
GeomFill_FunctionGuide::GeomFill_FunctionGuide
(const Handle(GeomFill_SectionLaw)& S,
const Handle(Adaptor3d_HCurve)& C,
const Standard_Real Param)
: TheGuide(C),
TheLaw(S),
isconst(Standard_False),
First(0.0),
Last(0.0),
TheUonS(Param)
{
Standard_Real Tol = Precision::Confusion();
if (TheLaw->IsConstant(Tol)) {
isconst = Standard_True;
TheConst = TheLaw->ConstantSection();
First = TheConst->FirstParameter();
Last = TheConst->LastParameter();
}
else {
isconst = Standard_False;
TheConst.Nullify();
}
TheCurve.Nullify();
}
//==============================================
// Function : SetParam
// Purpose : Initialisation de la surface de revolution
//==============================================
// void GeomFill_FunctionGuide::SetParam(const Standard_Real Param,
void GeomFill_FunctionGuide::SetParam(const Standard_Real ,
const gp_Pnt& C,
const gp_XYZ& D,
const gp_XYZ& DX)
{
Centre = C.XYZ();
Dir = D;
//repere fixe
gp_Ax3 Rep (gp::Origin(), gp::DZ(), gp::DX());
// calculer transfo entre triedre et Oxyz
gp_Dir B2 = DX;
gp_Ax3 RepTriedre(C, D, B2);
gp_Trsf Transfo;
Transfo.SetTransformation(RepTriedre, Rep);
if (isconst) {
TheCurve = new (Geom_TrimmedCurve)
(Handle(Geom_Curve)::DownCast(TheConst->Copy()),
First, Last);
}
else {
Standard_Integer NbPoles, NbKnots, Deg;
TheLaw->SectionShape(NbPoles, NbKnots, Deg);
TColStd_Array1OfInteger Mult(1,NbKnots);
TheLaw->Mults( Mult);
TColStd_Array1OfReal Knots(1,NbKnots);
TheLaw->Knots(Knots);
TColgp_Array1OfPnt Poles(1, NbPoles);
TColStd_Array1OfReal Weights(1, NbPoles);
TheLaw->D0(TheUonS, Poles, Weights);
if (TheLaw->IsRational())
TheCurve = new (Geom_BSplineCurve)
(Poles, Weights, Knots, Mult ,
Deg, TheLaw->IsUPeriodic());
else
TheCurve = new (Geom_BSplineCurve)
(Poles, Knots, Mult,
Deg, TheLaw->IsUPeriodic());
}
gp_Ax1 Axe(C, Dir);
TheCurve->Transform(Transfo);
TheSurface = new(Geom_SurfaceOfRevolution) (TheCurve, Axe);
}
//==============================================
// Function : NbVariables (w, u, v)
// Purpose :
//==============================================
Standard_Integer GeomFill_FunctionGuide::NbVariables()const
{
return 3;
}
//==============================================
// Function : NbEquations
// Purpose :
//==============================================
Standard_Integer GeomFill_FunctionGuide::NbEquations()const
{
return 3;
}
//==============================================
// Function : Value
// Purpose : calcul of the value of the function at <X>
//==============================================
Standard_Boolean GeomFill_FunctionGuide::Value(const math_Vector& X,
math_Vector& F)
{
gp_Pnt P,P1;
TheGuide->D0(X(1), P);
TheSurface->D0(X(2), X(3), P1);
F(1) = P.Coord(1) - P1.Coord(1);
F(2) = P.Coord(2) - P1.Coord(2);
F(3) = P.Coord(3) - P1.Coord(3);
return Standard_True;
}
//==============================================
// Function : Derivatives
// Purpose :calcul of the derivative of the function
//==============================================
Standard_Boolean GeomFill_FunctionGuide::Derivatives(const math_Vector& X,
math_Matrix& D)
{
gp_Pnt P,P1;
gp_Vec DP,DP1U,DP1V;
TheGuide->D1(X(1),P,DP);
TheSurface->D1(X(2),X(3),P1,DP1U,DP1V);
Standard_Integer i;
for (i=1;i<=3;i++)
{
D(i,1) = DP.Coord(i);
D(i,2) = -DP1U.Coord(i);
D(i,3) = -DP1V.Coord(i);
}// for
return Standard_True;
}
//==============================================
// Function : Values
// Purpose : calcul of the value and the derivative of the function
//==============================================
Standard_Boolean GeomFill_FunctionGuide::Values(const math_Vector& X,
math_Vector& F,
math_Matrix& D)
{
gp_Pnt P,P1;
gp_Vec DP,DP1U,DP1V;
TheGuide->D1(X(1),P,DP); //derivee de la generatrice
TheSurface->D1(X(2),X(3),P1,DP1U,DP1V); //derivee de la new surface
Standard_Integer i;
for (i=1;i<=3;i++)
{
F(i) = P.Coord(i) - P1.Coord(i);
D(i,1) = DP.Coord(i);
D(i,2) = -DP1U.Coord(i);
D(i,3) = -DP1V.Coord(i);
}// for
return Standard_True;
}
//==============================================
// Function : DerivT
// Purpose : calcul of the first derivative from t
//==============================================
Standard_Boolean GeomFill_FunctionGuide::DerivT(const math_Vector& X,
const gp_XYZ& DCentre,
const gp_XYZ& DDir,
math_Vector& F)
{
gp_Pnt P;
gp_Vec DS;
DSDT(X(2),X(3), DCentre,DDir, DS);
TheCurve->D0(X(1), P);
F(1) = P.Coord(1) - DS.Coord(1);
F(2) = P.Coord(2) - DS.Coord(2);
F(3) = P.Coord(3) - DS.Coord(3);
return Standard_True;
}
//=========================================================
// Function : DSDT
// Purpose : calcul de la derive de la surface /t en U, V
//=========================================================
void GeomFill_FunctionGuide::DSDT(const Standard_Real U,
const Standard_Real V,
const gp_XYZ& DC,
const gp_XYZ& DDir,
gp_Vec& DS) const
{
// C origine sur l'axe de revolution
// Vdir vecteur unitaire definissant la direction de l'axe de revolution
// Q(v) point de parametre V sur la courbe de revolution
// OM (u,v) = OC + CQ * Cos(U) + (CQ.Vdir)(1-Cos(U)) * Vdir +
// (Vdir^CQ)* Sin(U)
gp_Pnt Pc;
TheCurve->D0(V, Pc); //Q(v)
// if (!isconst)
gp_XYZ& Q = Pc.ChangeCoord(), DQ(0, 0, 0); //Q
if (!isconst) {
std::cout << "Not implemented" << std::endl;
}
Q.Subtract(Centre); //CQ
DQ -= DC;
gp_XYZ DVcrossCQ;
DVcrossCQ.SetLinearForm(DDir.Crossed (Q),
Dir.Crossed(DQ)); //Vdir^CQ
DVcrossCQ.Multiply (Sin(U)); //(Vdir^CQ)*Sin(U)
Standard_Real CosU = Cos(U);
gp_XYZ DVdotCQ;
DVdotCQ.SetLinearForm(DDir.Dot(Q) + Dir.Dot(DQ), Dir,
Dir.Dot(Q), DDir);//(CQ.Vdir)(1-Cos(U))Vdir
DVdotCQ.Add (DVcrossCQ); //addition des composantes
DQ.Multiply (CosU);
DQ.Add (DVdotCQ);
DQ.Add (DC);
DS.SetXYZ(DQ);
}
//=========================================================
// Function : Deriv2T
// Purpose : calcul of the second derivatice from t
//=========================================================
/* Standard_Boolean GeomFill_FunctionGuide::Deriv2T(const Standard_Real Param1,
const Standard_Real Param,
const Standard_Real Param0,
const math_Vector & R1,
const math_Vector & R,
const math_Vector & R0,
math_Vector& F)
{
math_Vector F1(1,3,0);
math_Vector F2(1,3,0);
DerivT(Param1, Param, R1, R, F1);
DerivT(Param, Param0, R, R0, F2);
Standard_Real h1 = Param - Param1;
Standard_Real h2 = Param0 - Param;
Standard_Integer i;
for (i=1;i<=3;i++)
F(i) = (F2(i) - F1(i)) / ((h2 + h1)/2);
return Standard_True;
}
//=========================================================
// Function : DerivTX
// Purpose : calcul of the second derivative from t and x
//=========================================================
Standard_Boolean GeomFill_FunctionGuide::DerivTX(const Standard_Real Param,
const Standard_Real Param0,
const math_Vector & R,
const math_Vector & X0,
math_Matrix& D)
{
gp_Pnt P1,P2;
gp_Vec DP1,DP2,DP2U,DP2V,DP1U,DP1V;
TheCurve->D1(R(1), P1, DP1); // guide
TheCurve->D1(X0(1), P2, DP2);
TheSurface->D1(R(2), R(3), P1, DP1U, DP1V); // surface
TheSurface->D1(X0(2), X0(3), P2, DP2U, DP2V); //derivee de la new surface
Standard_Real h = Param0 - Param;
Standard_Integer i;
for (i=1;i<=3;i++)
{
D(i,1) = (DP2.Coord(i) - DP1.Coord(i)) / h;
//D(i,2) = - (DP2U.Coord(i) - DP1U.Coord(i)) / h;
D(i,2) = - DP1U.Coord(i) * (X0(2)-R(2)) / h;
//D(i,3) = - (DP2V.Coord(i) - DP1V.Coord(i)) / h;
D(i,3) = - DP1V.Coord(i) * (X0(3)-R(3)) / h;
}// for
return Standard_True;
}
//=========================================================
// Function : Deriv2X
// Purpose : calcul of the second derivative from x
//=========================================================
Standard_Boolean GeomFill_FunctionGuide::Deriv2X(const math_Vector & X,
GeomFill_Tensor& T)
{
gp_Pnt P,P1;
gp_Vec DP,D2P,DPU,DPV;
gp_Vec D2PU, D2PV, D2PUV;
TheCurve->D2(X(1), P1, DP, D2P);
TheSurface->D2(X(2), X(3), P, DPU, DPV, D2PU, D2PV, D2PUV);
T.Init(0.); // tenseur
Standard_Integer i;
for (i=1;i<=3;i++)
{
T(i,1,1) = D2P.Coord(i);
T(i,2,2) = -D2PU.Coord(i);
T(i,3,2) = T(i,2,3) = -D2PUV.Coord(i);
T(i,3,3) = -D2PV.Coord(i);
}// for
return Standard_True;
}*/