1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00
occt/src/IntImpParGen/IntImpParGen.cxx

216 lines
6.3 KiB
C++

// Created on: 1992-06-10
// Created by: Laurent BUCHARD
// Copyright (c) 1992-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <IntImpParGen.hxx>
#include <gp.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec2d.hxx>
#include <IntImpParGen_Tool.hxx>
#include <IntRes2d_Domain.hxx>
#include <IntRes2d_Position.hxx>
#include <IntRes2d_Transition.hxx>
#define TOLERANCE_ANGULAIRE 0.00000001
#define DERIVEE_PREMIERE_NULLE 0.000000000001
//----------------------------------------------------------------------
Standard_Real IntImpParGen::NormalizeOnDomain(Standard_Real& Param,
const IntRes2d_Domain& TheDomain) {
Standard_Real modParam = Param;
if(TheDomain.IsClosed()) {
Standard_Real Periode,t;
TheDomain.EquivalentParameters(t,Periode);
Periode-=t;
while( modParam<TheDomain.FirstParameter()
&& modParam+Periode < TheDomain.LastParameter()) {
modParam+=Periode;
}
while( modParam>TheDomain.LastParameter()
&& modParam-Periode > TheDomain.FirstParameter()) {
modParam-=Periode;
}
}
return(modParam);
}
//----------------------------------------------------------------------
void IntImpParGen::DeterminePosition(IntRes2d_Position& Pos1,
const IntRes2d_Domain& TheDomain,
const gp_Pnt2d& Pnt1,
const Standard_Real Param1) {
Pos1=IntRes2d_Middle;
if(TheDomain.HasFirstPoint()) {
if(Pnt1.Distance(TheDomain.FirstPoint())
<= TheDomain.FirstTolerance()) {
Pos1=IntRes2d_Head;
}
}
if(TheDomain.HasLastPoint()) {
if(Pnt1.Distance(TheDomain.LastPoint())
<= TheDomain.LastTolerance()) {
if(Pos1==IntRes2d_Head) {
if(Abs(Param1-TheDomain.LastParameter())
< Abs(Param1-TheDomain.FirstParameter()))
Pos1=IntRes2d_End;
}
else {
Pos1=IntRes2d_End;
}
}
}
}
//----------------------------------------------------------------------
void IntImpParGen::DetermineTransition(const IntRes2d_Position Pos1,
gp_Vec2d& Tan1,
const gp_Vec2d& Norm1,
IntRes2d_Transition& T1,
const IntRes2d_Position Pos2,
gp_Vec2d& Tan2,
const gp_Vec2d& Norm2,
IntRes2d_Transition& T2,
const Standard_Real ) {
Standard_Boolean courbure1=Standard_True;
Standard_Boolean courbure2=Standard_True;
Standard_Boolean decide=Standard_True;
T1.SetPosition(Pos1);
T2.SetPosition(Pos2);
if (Tan1.SquareMagnitude()<=DERIVEE_PREMIERE_NULLE) {
Tan1=Norm1;
courbure1=Standard_False;
if (Tan1.SquareMagnitude()<=DERIVEE_PREMIERE_NULLE) { // transition undecided
decide=Standard_False;
}
}
if (Tan2.SquareMagnitude()<=DERIVEE_PREMIERE_NULLE) {
Tan2=Norm2;
courbure2=Standard_False;
if (Tan2.SquareMagnitude()<=DERIVEE_PREMIERE_NULLE) { // transition undecided
decide=Standard_False;
}
}
if (!decide) {
T1.SetValue(Pos1);
T2.SetValue(Pos2);
}
else {
Standard_Real sgn=Tan1.Crossed(Tan2);
Standard_Real norm=Tan1.Magnitude()*Tan2.Magnitude();
if (Abs(sgn)<=TOLERANCE_ANGULAIRE*norm) { // Transition TOUCH #########
Standard_Boolean opos=(Tan1.Dot(Tan2))<0;
if (!(courbure1||courbure2)) {
T1.SetValue(Standard_True,Pos1,IntRes2d_Unknown,opos);
T2.SetValue(Standard_True,Pos2,IntRes2d_Unknown,opos);
}
else {
gp_Vec2d Norm;
Norm.SetCoord(-Tan1.Y(),Tan1.X());
Standard_Real Val1,Val2;
if (!courbure1) {
Val1=0.0;
}
else {
Val1=Norm.Dot(Norm1);
}
if (!courbure2) {
Val2=0.0;
}
else {
Val2=Norm.Dot(Norm2);
}
if (Abs(Val1-Val2) <= TOLERANCE_ANGULAIRE) {
T1.SetValue(Standard_True,Pos1,IntRes2d_Unknown,opos);
T2.SetValue(Standard_True,Pos2,IntRes2d_Unknown,opos);
}
else if (Val2 > Val1) {
T2.SetValue(Standard_True,Pos2,IntRes2d_Inside,opos);
if (opos) {
T1.SetValue(Standard_True,Pos1,IntRes2d_Inside,opos);
}
else {
T1.SetValue(Standard_True,Pos1,IntRes2d_Outside,opos);
}
}
else { // Val1 > Val2
T2.SetValue(Standard_True,Pos2,IntRes2d_Outside,opos);
if (opos) {
T1.SetValue(Standard_True,Pos1,IntRes2d_Outside,opos);
}
else {
T1.SetValue(Standard_True,Pos1,IntRes2d_Inside,opos);
}
}
}
}
else if (sgn<0) {
T1.SetValue(Standard_False,Pos1,IntRes2d_In);
T2.SetValue(Standard_False,Pos2,IntRes2d_Out);
}
else { // sgn>0
T1.SetValue(Standard_False,Pos1,IntRes2d_Out);
T2.SetValue(Standard_False,Pos2,IntRes2d_In);
}
}
}
//----------------------------------------------------------------------
Standard_Boolean IntImpParGen::DetermineTransition(const IntRes2d_Position Pos1,
gp_Vec2d& Tan1,
IntRes2d_Transition& T1,
const IntRes2d_Position Pos2,
gp_Vec2d& Tan2,
IntRes2d_Transition& T2,
const Standard_Real ) {
T1.SetPosition(Pos1);
T2.SetPosition(Pos2);
Standard_Real Tan1Magnitude = Tan1.Magnitude();
if (Tan1Magnitude<=DERIVEE_PREMIERE_NULLE) {
return(Standard_False);
}
Standard_Real Tan2Magnitude = Tan2.Magnitude();
if (Tan2Magnitude<=DERIVEE_PREMIERE_NULLE) {
return(Standard_False);
}
Standard_Real sgn=Tan1.Crossed(Tan2);
Standard_Real norm=Tan1Magnitude*Tan2Magnitude;
if (Abs(sgn)<=TOLERANCE_ANGULAIRE*norm) { // Transition TOUCH #########
return(Standard_False);
}
else if (sgn<0) {
T1.SetValue(Standard_False,Pos1,IntRes2d_In);
T2.SetValue(Standard_False,Pos2,IntRes2d_Out);
}
else { // sgn>0
T1.SetValue(Standard_False,Pos1,IntRes2d_Out);
T2.SetValue(Standard_False,Pos2,IntRes2d_In);
}
return(Standard_True);
}