1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00
occt/src/Extrema/Extrema_ExtCC.cxx
msv ce64c9ad5e 0030778: [Regression to 7.3.0] Extrema raises exception StdFail_InfiniteSolutions
The exception StdFail_InfiniteSolutions has been suppressed in all Points() methods.
2019-09-06 18:26:44 +03:00

833 lines
27 KiB
C++

// Created on: 1994-07-06
// Created by: Laurent PAINNOT
// Copyright (c) 1994-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// Modified by MPS (june 96) : correction du trap dans le cas droite/Bezier
// Modified by MPS (mai 97) : PRO 7598
// tri des solutions pour eviter de rendre plusieurs
// fois la meme solution
#include <Adaptor3d_Curve.hxx>
#include <Bnd_Range.hxx>
#include <ElCLib.hxx>
#include <Extrema_CurveTool.hxx>
#include <Extrema_ECC.hxx>
#include <Extrema_ExtCC.hxx>
#include <Extrema_ExtElC.hxx>
#include <Extrema_ExtPElC.hxx>
#include <Extrema_POnCurv.hxx>
#include <Extrema_SequenceOfPOnCurv.hxx>
#include <Geom_Circle.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Ellipse.hxx>
#include <Geom_Hyperbola.hxx>
#include <Geom_Line.hxx>
#include <Geom_Parabola.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <GeomAbs_CurveType.hxx>
#include <gp_Pnt.hxx>
#include <Precision.hxx>
#include <Standard_Failure.hxx>
#include <Standard_NotImplemented.hxx>
#include <Standard_NullObject.hxx>
#include <Standard_OutOfRange.hxx>
#include <StdFail_NotDone.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_ListIteratorOfListOfTransient.hxx>
#include <TColStd_SequenceOfReal.hxx>
//=======================================================================
//function : Extrema_ExtCC
//purpose :
//=======================================================================
Extrema_ExtCC::Extrema_ExtCC (const Standard_Real TolC1,
const Standard_Real TolC2)
: myIsFindSingleSolution(Standard_False),
myDone (Standard_False)
{
myC[0] = 0; myC[1] = 0;
myInf[0] = myInf[1] = -Precision::Infinite();
mySup[0] = mySup[1] = Precision::Infinite();
myTol[0] = TolC1; myTol[1] = TolC2;
mydist11 = mydist12 = mydist21 = mydist22 = RealFirst();
}
//=======================================================================
//function : Extrema_ExtCC
//purpose :
//=======================================================================
Extrema_ExtCC::Extrema_ExtCC(const Adaptor3d_Curve& C1,
const Adaptor3d_Curve& C2,
const Standard_Real U1,
const Standard_Real U2,
const Standard_Real V1,
const Standard_Real V2,
const Standard_Real TolC1,
const Standard_Real TolC2)
: myIsFindSingleSolution(Standard_False),
myECC(C1, C2, U1, U2, V1, V2),
myDone (Standard_False)
{
SetCurve (1, C1, U1, U2);
SetCurve (2, C2, V1, V2);
SetTolerance (1, TolC1);
SetTolerance (2, TolC2);
mydist11 = mydist12 = mydist21 = mydist22 = RealFirst();
Perform();
}
//=======================================================================
//function : Extrema_ExtCC
//purpose :
//=======================================================================
Extrema_ExtCC::Extrema_ExtCC(const Adaptor3d_Curve& C1,
const Adaptor3d_Curve& C2,
const Standard_Real TolC1,
const Standard_Real TolC2)
: myIsFindSingleSolution(Standard_False),
myECC(C1, C2),
myDone (Standard_False)
{
SetCurve (1, C1, C1.FirstParameter(), C1.LastParameter());
SetCurve (2, C2, C2.FirstParameter(), C2.LastParameter());
SetTolerance (1, TolC1);
SetTolerance (2, TolC2);
mydist11 = mydist12 = mydist21 = mydist22 = RealFirst();
Perform();
}
//=======================================================================
//function : SetCurve
//purpose :
//=======================================================================
void Extrema_ExtCC::SetCurve (const Standard_Integer theRank, const Adaptor3d_Curve& C)
{
Standard_OutOfRange_Raise_if (theRank < 1 || theRank > 2, "Extrema_ExtCC::SetCurve()")
Standard_Integer anInd = theRank - 1;
myC[anInd] = (Standard_Address)&C;
}
//=======================================================================
//function : SetCurve
//purpose :
//=======================================================================
void Extrema_ExtCC::SetCurve (const Standard_Integer theRank, const Adaptor3d_Curve& C,
const Standard_Real Uinf, const Standard_Real Usup)
{
SetCurve (theRank, C);
SetRange (theRank, Uinf, Usup);
}
//=======================================================================
//function : SetRange
//purpose :
//=======================================================================
void Extrema_ExtCC::SetRange (const Standard_Integer theRank,
const Standard_Real Uinf, const Standard_Real Usup)
{
Standard_OutOfRange_Raise_if (theRank < 1 || theRank > 2, "Extrema_ExtCC::SetRange()")
Standard_Integer anInd = theRank - 1;
myInf[anInd] = Uinf;
mySup[anInd] = Usup;
}
//=======================================================================
//function : SetTolerance
//purpose :
//=======================================================================
void Extrema_ExtCC::SetTolerance (const Standard_Integer theRank, const Standard_Real theTol)
{
Standard_OutOfRange_Raise_if (theRank < 1 || theRank > 2, "Extrema_ExtCC::SetTolerance()")
Standard_Integer anInd = theRank - 1;
myTol[anInd] = theTol;
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void Extrema_ExtCC::Perform()
{
Standard_NullObject_Raise_if (!myC[0] || !myC[1], "Extrema_ExtCC::Perform()")
myECC.SetParams(*((Adaptor3d_Curve*)myC[0]),
*((Adaptor3d_Curve*)myC[1]), myInf[0], mySup[0], myInf[1], mySup[1]);
myECC.SetTolerance(Min(myTol[0], myTol[1]));
myECC.SetSingleSolutionFlag(GetSingleSolutionFlag());
myDone = Standard_False;
mypoints.Clear();
mySqDist.Clear();
myIsPar = Standard_False;
GeomAbs_CurveType type1 = (*((Adaptor3d_Curve*)myC[0])).GetType();
GeomAbs_CurveType type2 = (*((Adaptor3d_Curve*)myC[1])).GetType();
Standard_Real U11, U12, U21, U22, Tol = Min(myTol[0], myTol[1]);
U11 = myInf[0];
U12 = mySup[0];
U21 = myInf[1];
U22 = mySup[1];
if (!Precision::IsInfinite(U11)) P1f = Extrema_CurveTool::Value(*((Adaptor3d_Curve*)myC[0]), U11);
if (!Precision::IsInfinite(U12)) P1l = Extrema_CurveTool::Value(*((Adaptor3d_Curve*)myC[0]), U12);
if (!Precision::IsInfinite(U21)) P2f = Extrema_CurveTool::Value(*((Adaptor3d_Curve*)myC[1]), U21);
if (!Precision::IsInfinite(U22)) P2l = Extrema_CurveTool::Value(*((Adaptor3d_Curve*)myC[1]), U22);
if (Precision::IsInfinite(U11) || Precision::IsInfinite(U21)) mydist11 = RealLast();
else mydist11 = P1f.SquareDistance(P2f);
if (Precision::IsInfinite(U11) || Precision::IsInfinite(U22)) mydist12 = RealLast();
else mydist12 = P1f.SquareDistance(P2l);
if (Precision::IsInfinite(U12) || Precision::IsInfinite(U21)) mydist21 = RealLast();
else mydist21 = P1l.SquareDistance(P2f);
if (Precision::IsInfinite(U12) || Precision::IsInfinite(U22)) mydist22 = RealLast();
else mydist22 = P1l.SquareDistance(P2l);
//Depending on the types of curves, the algorithm is chosen:
//- _ExtElC, when one of the curves is a line and the other is elementary,
// or there are two circles;
//- _GenExtCC, in all other cases
if ( (type1 == GeomAbs_Line && type2 <= GeomAbs_Parabola) ||
(type2 == GeomAbs_Line && type1 <= GeomAbs_Parabola) ) {
//analytical case - one curve is always a line
Standard_Integer anInd1 = 0, anInd2 = 1;
GeomAbs_CurveType aType2 = type2;
Standard_Boolean isInverse = (type1 > type2);
if (isInverse)
{
//algorithm uses inverse order of arguments
anInd1 = 1;
anInd2 = 0;
aType2 = type1;
}
switch (aType2) {
case GeomAbs_Line: {
Extrema_ExtElC Xtrem((*((Adaptor3d_Curve*)myC[anInd1])).Line(), (*((Adaptor3d_Curve*)myC[anInd2])).Line(), Tol);
PrepareResults(Xtrem, isInverse, U11, U12, U21, U22);
break;
}
case GeomAbs_Circle: {
Extrema_ExtElC Xtrem((*((Adaptor3d_Curve*)myC[anInd1])).Line(), (*((Adaptor3d_Curve*)myC[anInd2])).Circle(), Tol);
PrepareResults(Xtrem, isInverse, U11, U12, U21, U22);
break;
}
case GeomAbs_Ellipse: {
Extrema_ExtElC Xtrem((*((Adaptor3d_Curve*)myC[anInd1])).Line(), (*((Adaptor3d_Curve*)myC[anInd2])).Ellipse());
PrepareResults(Xtrem, isInverse, U11, U12, U21, U22);
break;
}
case GeomAbs_Hyperbola: {
Extrema_ExtElC Xtrem((*((Adaptor3d_Curve*)myC[anInd1])).Line(), (*((Adaptor3d_Curve*)myC[anInd2])).Hyperbola());
PrepareResults(Xtrem, isInverse, U11, U12, U21, U22);
break;
}
case GeomAbs_Parabola: {
Extrema_ExtElC Xtrem((*((Adaptor3d_Curve*)myC[anInd1])).Line(), (*((Adaptor3d_Curve*)myC[anInd2])).Parabola());
PrepareResults(Xtrem, isInverse, U11, U12, U21, U22);
break;
}
default: break;
}
} else if (type1 == GeomAbs_Circle && type2 == GeomAbs_Circle) {
//analytical case - two circles
Standard_Boolean bIsDone;
Extrema_ExtElC CCXtrem ((*((Adaptor3d_Curve*)myC[0])).Circle(), (*((Adaptor3d_Curve*)myC[1])).Circle());
bIsDone = CCXtrem.IsDone();
if(bIsDone) {
PrepareResults(CCXtrem, Standard_False, U11, U12, U21, U22);
}
else {
myECC.Perform();
PrepareResults(myECC, U11, U12, U21, U22);
}
} else {
myECC.Perform();
PrepareResults(myECC, U11, U12, U21, U22);
}
}
//=======================================================================
//function : IsDone
//purpose :
//=======================================================================
Standard_Boolean Extrema_ExtCC::IsDone() const
{
return myDone;
}
//=======================================================================
//function : IsParallel
//purpose :
//=======================================================================
Standard_Boolean Extrema_ExtCC::IsParallel() const
{
if (!IsDone())
{
throw StdFail_NotDone();
}
return myIsPar;
}
//=======================================================================
//function : Value
//purpose :
//=======================================================================
Standard_Real Extrema_ExtCC::SquareDistance(const Standard_Integer N) const
{
if ((N < 1) || (N > NbExt())) throw Standard_OutOfRange();
return mySqDist.Value(N);
}
//=======================================================================
//function : NbExt
//purpose :
//=======================================================================
Standard_Integer Extrema_ExtCC::NbExt() const
{
if(!myDone) throw StdFail_NotDone();
return mySqDist.Length();
}
//=======================================================================
//function : Points
//purpose :
//=======================================================================
void Extrema_ExtCC::Points(const Standard_Integer N,
Extrema_POnCurv& P1,
Extrema_POnCurv& P2) const
{
if (N < 1 || N > NbExt())
{
throw Standard_OutOfRange();
}
P1 = mypoints.Value(2 * N - 1);
P2 = mypoints.Value(2 * N);
}
//=======================================================================
//function : TrimmedDistances
//purpose :
//=======================================================================
void Extrema_ExtCC::TrimmedSquareDistances(Standard_Real& dist11,
Standard_Real& dist12,
Standard_Real& dist21,
Standard_Real& dist22,
gp_Pnt& P11 ,
gp_Pnt& P12 ,
gp_Pnt& P21 ,
gp_Pnt& P22 ) const {
dist11 = mydist11;
dist12 = mydist12;
dist21 = mydist21;
dist22 = mydist22;
P11 = P1f;
P12 = P1l;
P21 = P2f;
P22 = P2l;
}
//=======================================================================
//function : ParallelResult
//purpose :
//=======================================================================
void Extrema_ExtCC::PrepareParallelResult(const Standard_Real theUt11,
const Standard_Real theUt12,
const Standard_Real theUt21,
const Standard_Real theUt22,
const Standard_Real theSqDist)
{
if (!myIsPar)
return;
const GeomAbs_CurveType aType1 = Extrema_CurveTool::GetType(*((Adaptor3d_Curve*) myC[0]));
const GeomAbs_CurveType aType2 = Extrema_CurveTool::GetType(*((Adaptor3d_Curve*) myC[1]));
if (((aType1 != GeomAbs_Line) && (aType1 != GeomAbs_Circle)) ||
((aType2 != GeomAbs_Line) && (aType2 != GeomAbs_Circle)))
{
mySqDist.Append(theSqDist);
myDone = Standard_True;
myIsPar = Standard_True;
return;
}
// Parallel case is only for line-line, circle-circle and circle-line!!!
// But really for trimmed curves extremas can not exist!
if (aType1 != aType2)
{
//The projection of the circle's location to the trimmed line must exist.
const Standard_Boolean isReversed = (aType1 != GeomAbs_Circle);
const gp_Pnt aPonC = !isReversed ?
Extrema_CurveTool::Value(*((Adaptor3d_Curve*) myC[0]), theUt11) :
Extrema_CurveTool::Value(*((Adaptor3d_Curve*) myC[1]), theUt21);
const gp_Lin aL = !isReversed ? ((Adaptor3d_Curve*) myC[1])->Line() :
((Adaptor3d_Curve*) myC[0])->Line();
const Extrema_ExtPElC ExtPLin(aPonC, aL, Precision::Confusion(),
!isReversed ? theUt21 : theUt11,
!isReversed ? theUt22 : theUt12);
if (ExtPLin.IsDone())
{
mySqDist.Append(theSqDist);
}
else
{
myIsPar = Standard_False;
}
return;
}
if (aType1 == GeomAbs_Line)
{
// Line - Line
const Standard_Real isFirstInfinite = (Precision::IsInfinite(theUt11) &&
Precision::IsInfinite(theUt12));
const Standard_Real isLastInfinite = (Precision::IsInfinite(theUt21) &&
Precision::IsInfinite(theUt22));
if (isFirstInfinite || isLastInfinite)
{
// Infinite number of solution
mySqDist.Append(theSqDist);
}
else
{
// The range created by projection of both ends of the 1st line
// to the 2nd one must intersect the (native) trimmed range of
// the 2nd line.
myIsPar = Standard_False;
const gp_Lin aLin1 = ((Adaptor3d_Curve*) myC[0])->Line();
const gp_Lin aLin2 = ((Adaptor3d_Curve*) myC[1])->Line();
const Standard_Boolean isOpposite(aLin1.Direction().Dot(aLin2.Direction()) < 0.0);
Bnd_Range aRange2(theUt21, theUt22);
Bnd_Range aProjRng12;
if (Precision::IsInfinite(theUt11))
{
if (isOpposite)
aProjRng12.Add(Precision::Infinite());
else
aProjRng12.Add(-Precision::Infinite());
}
else
{
const gp_Pnt aPonC1 = ElCLib::Value(theUt11, aLin1);
const Standard_Real aPar = ElCLib::Parameter(aLin2, aPonC1);
aProjRng12.Add(aPar);
}
if (Precision::IsInfinite(theUt12))
{
if (isOpposite)
aProjRng12.Add(-Precision::Infinite());
else
aProjRng12.Add(Precision::Infinite());
}
else
{
const gp_Pnt aPonC1 = ElCLib::Value(theUt12, aLin1);
const Standard_Real aPar = ElCLib::Parameter(aLin2, aPonC1);
aProjRng12.Add(aPar);
}
aRange2.Common(aProjRng12);
if (aRange2.Delta() > Precision::Confusion())
{
ClearSolutions();
mySqDist.Append(theSqDist);
myIsPar = Standard_True;
}
else if (!aRange2.IsVoid())
{
//Case like this:
// ************** aLin1
// o
// o
// *************** aLin2
ClearSolutions();
Standard_Real aPar1 = 0.0, aPar2 = 0.0;
aRange2.GetBounds(aPar1, aPar2);
aPar2 = 0.5*(aPar1 + aPar2);
gp_Pnt aP = ElCLib::Value(aPar2, aLin2);
const Extrema_POnCurv aP2(aPar2, aP);
aPar1 = ElCLib::Parameter(aLin1, aP);
aP = ElCLib::Value(aPar1, aLin1);
const Extrema_POnCurv aP1(aPar1, aP);
mypoints.Append(aP1);
mypoints.Append(aP2);
mySqDist.Append(theSqDist);
}
}
}
else
{
// Circle - Circle
myIsPar = Standard_False;
//Two arcs with ranges [U1, U2] and [V1, V2] correspondingly are
//considered to be parallel in the following case:
// The range created by projection both points U1 and U2 of the
// 1st circle to the 2nd one intersects either the range [V1, V2] or
// the range [V1-PI, V2-PI]. All ranges must be adjusted to correspond
// periodic range before checking of intersection.
const gp_Circ aWorkCirc = ((Adaptor3d_Curve*) myC[1])->Circle();
const Standard_Real aPeriod = M_PI + M_PI;
gp_Vec aVTg1;
gp_Pnt aP11;
const gp_Pnt aP12 = Extrema_CurveTool::Value(*((Adaptor3d_Curve*) myC[0]), theUt12);
Extrema_CurveTool::D1(*((Adaptor3d_Curve*) myC[0]), theUt11, aP11, aVTg1);
const Bnd_Range aRange(theUt21, theUt22);
Bnd_Range aProjRng1;
// Project arc of the 1st circle between points theUt11 and theUt12 to the
// 2nd circle. It is necessary to chose correct arc from two possible ones.
Standard_Real aPar1 = ElCLib::InPeriod(ElCLib::Parameter(aWorkCirc, aP11),
theUt21, theUt21 + aPeriod);
const gp_Vec aVTg2 = Extrema_CurveTool::DN(*((Adaptor3d_Curve*) myC[1]), aPar1, 1);
// Check if circles have same/opposite directions
const Standard_Boolean isOpposite(aVTg1.Dot(aVTg2) < 0.0);
Standard_Real aPar2 = ElCLib::InPeriod(ElCLib::Parameter(aWorkCirc, aP12),
theUt21, theUt21 + aPeriod);
if (isOpposite)
{
// Must be aPar2 < aPar1
if ((aRange.Delta() > Precision::Angular()) &&
((aPar1 - aPar2) < Precision::Angular()))
{
aPar2 -= aPeriod;
}
}
else
{
// Must be aPar2 > aPar1
if ((aRange.Delta() > Precision::Angular()) &&
((aPar2 - aPar1) < Precision::Angular()))
{
aPar1 -= aPeriod;
}
}
// Now the projection result is the range [aPar1, aPar2]
// if aPar1 < aPar2 or the range [aPar2, aPar1], otherwise.
Standard_Real aMinSquareDist = RealLast();
aProjRng1.Add(aPar1 - M_PI);
aProjRng1.Add(aPar2 - M_PI);
for (Standard_Integer i = 0; i < 2; i++)
{
// Repeat computation twice
Bnd_Range aRng = aProjRng1;
aRng.Common(aRange);
//Cases are possible and processed below:
//1. Extrema does not exist. In this case all common ranges are VOID.
//2. Arcs are parallel and distance between them is equal to sqrt(theSqDist).
// In this case myIsPar = TRUE definitely.
//3. Arcs are parallel and distance between them is equal to (sqrt(theSqDist) + R),
// where R is the least radius of the both circles. In this case myIsPar flag
// will temporary be set to TRUE but check will be continued until less
// distance will be found. At that, region with the least distance can be
// either a local point or continuous range. In 1st case myIsPar = FALSE and
// several (or single) extremas will be returned. In the 2nd one
// myIsPar = TRUE and only the least distance will be returned.
//4. Arcs are not parallel. Then several (or single) extremas will be returned.
if (aRng.Delta() > Precision::Angular())
{
Standard_Real aPar = 0.0;
aRng.GetIntermediatePoint(0.5, aPar);
const gp_Pnt aPCirc2 = ElCLib::Value(aPar, aWorkCirc);
Extrema_ExtPElC ExtPCir(aPCirc2,
Extrema_CurveTool::Circle(*((Adaptor3d_Curve*) myC[0])),
Precision::Confusion(), theUt11, theUt12);
Standard_Real aMinSqD = ExtPCir.SquareDistance(1);
for (Standard_Integer anExtID = 2; anExtID <= ExtPCir.NbExt(); anExtID++)
{
aMinSqD = Min(aMinSqD, ExtPCir.SquareDistance(anExtID));
}
if (aMinSqD <= aMinSquareDist)
{
ClearSolutions();
mySqDist.Append(aMinSqD);
myIsPar = Standard_True;
const Standard_Real aDeltaSqDist = aMinSqD - theSqDist;
const Standard_Real aSqD = Max(aMinSqD, theSqDist);
// 0 <= Dist1-Dist2 <= Eps
// 0 <= Dist1^2 - Dist2^2 < Eps*(Dist1+Dist2)
//If Dist1 ~= Dist2 ==> Dist1+Dist2 ~= 2*Dist2.
//Consequently,
// 0 <= Dist1^2 - Dist2^2 <= 2*Dist2*Eps
//Or
// (Dist1^2 - Dist2^2)^2 <= 4*Dist2^2*Eps^2
if (aDeltaSqDist*aDeltaSqDist < 4.0*aSqD*Precision::SquareConfusion())
{
// New solution is found
break;
}
}
//Nearer solution can be found
}
else if (!aRng.IsVoid())
{
//Check cases like this:
// ************** aCirc1
// o
// o
// *************** aCirc2
Standard_Real aPar = 0.0;
aRng.GetIntermediatePoint(0.5, aPar);
const gp_Pnt aPCirc2 = ElCLib::Value(aPar, aWorkCirc);
const Extrema_POnCurv aP2(aPar, aPCirc2);
Extrema_ExtPElC ExtPCir(aPCirc2,
Extrema_CurveTool::Circle(*((Adaptor3d_Curve*) myC[0])),
Precision::Confusion(), theUt11, theUt12);
Standard_Boolean isFound = !myIsPar;
if (!isFound)
{
//If the flag myIsPar was set earlier then it does not mean that
//we have found the minimal distance. Here we check it. If there is
//a pair of points, which are in less distance then myIsPar flag
//was unset and the algorithm will return these nearest points.
for (Standard_Integer anExtID = 1; anExtID <= ExtPCir.NbExt(); anExtID++)
{
if (ExtPCir.SquareDistance(anExtID) < aMinSquareDist)
{
isFound = Standard_True;
break;
}
}
}
if (isFound)
{
ClearSolutions();
myIsPar = Standard_False;
for (Standard_Integer anExtID = 1; anExtID <= ExtPCir.NbExt(); anExtID++)
{
mypoints.Append(ExtPCir.Point(anExtID));
mypoints.Append(aP2);
mySqDist.Append(ExtPCir.SquareDistance(anExtID));
aMinSquareDist = Min(aMinSquareDist, ExtPCir.SquareDistance(anExtID));
}
}
}
aProjRng1.Shift(M_PI);
}
}
}
//=======================================================================
//function : Results
//purpose :
//=======================================================================
void Extrema_ExtCC::PrepareResults(const Extrema_ExtElC& AlgExt,
const Standard_Boolean theIsInverse,
const Standard_Real Ut11,
const Standard_Real Ut12,
const Standard_Real Ut21,
const Standard_Real Ut22)
{
Standard_Integer i, NbExt;
Standard_Real Val, U, U2;
Extrema_POnCurv P1, P2;
myDone = AlgExt.IsDone();
if (myDone) {
myIsPar = AlgExt.IsParallel();
if (myIsPar) {
PrepareParallelResult(Ut11, Ut12, Ut21, Ut22, AlgExt.SquareDistance());
}
else {
NbExt = AlgExt.NbExt();
for (i = 1; i <= NbExt; i++) {
// Verification de la validite des parametres
AlgExt.Points(i, P1, P2);
if (!theIsInverse)
{
U = P1.Parameter();
U2 = P2.Parameter();
}
else {
U2 = P1.Parameter();
U = P2.Parameter();
}
if (Extrema_CurveTool::IsPeriodic(*((Adaptor3d_Curve*)myC[0]))) {
U = ElCLib::InPeriod(U, Ut11, Ut11+Extrema_CurveTool::Period(*((Adaptor3d_Curve*)myC[0])));
}
if (Extrema_CurveTool::IsPeriodic(*((Adaptor3d_Curve*)myC[1]))) {
U2 = ElCLib::InPeriod(U2, Ut21, Ut21+Extrema_CurveTool::Period(*((Adaptor3d_Curve*)myC[1])));
}
if ((U >= Ut11 - RealEpsilon()) &&
(U <= Ut12 + RealEpsilon()) &&
(U2 >= Ut21 - RealEpsilon()) &&
(U2 <= Ut22 + RealEpsilon())) {
Val = AlgExt.SquareDistance(i);
mySqDist.Append(Val);
if (!theIsInverse)
{
P1.SetValues(U, P1.Value());
P2.SetValues(U2, P2.Value());
mypoints.Append(P1);
mypoints.Append(P2);
}
else {
P1.SetValues(U2, P1.Value());
P2.SetValues(U, P2.Value());
mypoints.Append(P2);
mypoints.Append(P1);
}
}
}
}
}
}
//=======================================================================
//function : Results
//purpose :
//=======================================================================
void Extrema_ExtCC::PrepareResults(const Extrema_ECC& AlgExt,
const Standard_Real Ut11,
const Standard_Real Ut12,
const Standard_Real Ut21,
const Standard_Real Ut22)
{
Standard_Integer i, NbExt;
Standard_Real Val, U, U2;
Extrema_POnCurv P1, P2;
myDone = AlgExt.IsDone();
if (myDone)
{
myIsPar = AlgExt.IsParallel();
if (myIsPar)
{
PrepareParallelResult(Ut11, Ut12, Ut21, Ut22, AlgExt.SquareDistance());
}
else
{
NbExt = AlgExt.NbExt();
for (i = 1; i <= NbExt; i++)
{
AlgExt.Points(i, P1, P2);
U = P1.Parameter();
U2 = P2.Parameter();
// Check points to be into param space.
if (Extrema_CurveTool::IsPeriodic(*((Adaptor3d_Curve*) myC[0])))
{
U = ElCLib::InPeriod(U, Ut11, Ut11 + Extrema_CurveTool::Period(*((Adaptor3d_Curve*) myC[0])));
}
if (Extrema_CurveTool::IsPeriodic(*((Adaptor3d_Curve*) myC[1])))
{
U2 = ElCLib::InPeriod(U2, Ut21, Ut21 + Extrema_CurveTool::Period(*((Adaptor3d_Curve*) myC[1])));
}
if ((U >= Ut11 - RealEpsilon()) &&
(U <= Ut12 + RealEpsilon()) &&
(U2 >= Ut21 - RealEpsilon()) &&
(U2 <= Ut22 + RealEpsilon()))
{
Val = AlgExt.SquareDistance(i);
mySqDist.Append(Val);
P1.SetValues(U, P1.Value());
P2.SetValues(U2, P2.Value());
mypoints.Append(P1);
mypoints.Append(P2);
}
}
}
}
}
//=======================================================================
//function : SetSingleSolutionFlag
//purpose :
//=======================================================================
void Extrema_ExtCC::SetSingleSolutionFlag(const Standard_Boolean theFlag)
{
myIsFindSingleSolution = theFlag;
}
//=======================================================================
//function : GetSingleSolutionFlag
//purpose :
//=======================================================================
Standard_Boolean Extrema_ExtCC::GetSingleSolutionFlag() const
{
return myIsFindSingleSolution;
}