mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
149 lines
6.5 KiB
C++
149 lines
6.5 KiB
C++
// Created on: 1994-10-07
|
|
// Created by: Bruno DUMORTIER
|
|
// Copyright (c) 1994-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef _ProjLib_ComputeApproxOnPolarSurface_HeaderFile
|
|
#define _ProjLib_ComputeApproxOnPolarSurface_HeaderFile
|
|
|
|
#include <Adaptor2d_Curve2d.hxx>
|
|
#include <Adaptor3d_Surface.hxx>
|
|
#include <AppParCurves_Constraint.hxx>
|
|
|
|
class Geom2d_BSplineCurve;
|
|
class Geom2d_Curve;
|
|
|
|
//! Approximate the projection of a 3d curve on an
|
|
//! polar surface and stores the result in Approx.
|
|
//! The result is a 2d curve. The evaluation of the
|
|
//! current point of the 2d curve is done with the
|
|
//! evaluation of the extrema P3d - Surface.
|
|
//! For approximation some parameters are used, including
|
|
//! required tolerance of approximation.
|
|
//! Tolerance is maximal possible value of 3d deviation of 3d projection of projected curve from
|
|
//! "exact" 3d projection. Since algorithm searches 2d curve on surface, required 2d tolerance is computed
|
|
//! from 3d tolerance with help of U,V resolutions of surface.
|
|
//! 3d and 2d tolerances have sense only for curves on surface, it defines precision of projecting and approximation
|
|
//! and have nothing to do with distance between the projected curve and the surface.
|
|
class ProjLib_ComputeApproxOnPolarSurface
|
|
{
|
|
public:
|
|
|
|
DEFINE_STANDARD_ALLOC
|
|
|
|
//! Empty constructor, it only sets some initial values for class fields.
|
|
Standard_EXPORT ProjLib_ComputeApproxOnPolarSurface();
|
|
|
|
//! Constructor, which performs projecting.
|
|
Standard_EXPORT ProjLib_ComputeApproxOnPolarSurface(const Handle(Adaptor3d_Curve)& C, const Handle(Adaptor3d_Surface)& S, const Standard_Real Tol = 1.0e-4);
|
|
|
|
|
|
//! Constructor, which performs projecting, using initial curve 2d InitCurve2d, which is any rough approximation of result curve.
|
|
//! Parameter Tol is 3d tolerance of approximation.
|
|
Standard_EXPORT ProjLib_ComputeApproxOnPolarSurface(const Handle(Adaptor2d_Curve2d)& InitCurve2d, const Handle(Adaptor3d_Curve)& C, const Handle(Adaptor3d_Surface)& S, const Standard_Real Tol);
|
|
|
|
//! Constructor, which performs projecting, using two initial curves 2d: InitCurve2d and InitCurve2dBis that are any rough approximations of result curves.
|
|
//! This constructor is used to get two pcurves for seem edge.
|
|
//! Parameter Tol is 3d tolerance of approximation.
|
|
Standard_EXPORT ProjLib_ComputeApproxOnPolarSurface(const Handle(Adaptor2d_Curve2d)& InitCurve2d, const Handle(Adaptor2d_Curve2d)& InitCurve2dBis, const Handle(Adaptor3d_Curve)& C,
|
|
const Handle(Adaptor3d_Surface)& S, const Standard_Real Tol);
|
|
|
|
|
|
//! Set min and max possible degree of result BSpline curve2d, which is got by approximation.
|
|
//! If theDegMin/Max < 0, algorithm uses values min = 2, max = 8.
|
|
Standard_EXPORT void SetDegree(const Standard_Integer theDegMin, const Standard_Integer theDegMax);
|
|
|
|
//! Set the parameter, which defines maximal value of parametric intervals the projected
|
|
//! curve can be cut for approximation. If theMaxSegments < 0, algorithm uses default
|
|
//! value = 1000.
|
|
Standard_EXPORT void SetMaxSegments(const Standard_Integer theMaxSegments);
|
|
|
|
//! Set the parameter, which defines type of boundary condition between segments during approximation.
|
|
//! It can be AppParCurves_PassPoint or AppParCurves_TangencyPoint.
|
|
//! Default value is AppParCurves_TangencyPoint.
|
|
Standard_EXPORT void SetBndPnt(const AppParCurves_Constraint theBndPnt);
|
|
|
|
//! Set the parameter, which defines maximal possible distance between projected curve and surface.
|
|
//! It is used only for projecting on not analytical surfaces.
|
|
//! If theMaxDist < 0, algorithm uses default value 100.*Tolerance.
|
|
//! If real distance between curve and surface more then theMaxDist, algorithm stops working.
|
|
Standard_EXPORT void SetMaxDist(const Standard_Real theMaxDist);
|
|
|
|
//! Set the tolerance used to project
|
|
//! the curve on the surface.
|
|
//! Default value is Precision::Approximation().
|
|
Standard_EXPORT void SetTolerance (const Standard_Real theTolerance);
|
|
|
|
//! Method, which performs projecting, using default values of parameters or
|
|
//! they must be set by corresponding methods before using.
|
|
Standard_EXPORT void Perform (const Handle(Adaptor3d_Curve)& C, const Handle(Adaptor3d_Surface)& S);
|
|
|
|
//! Method, which performs projecting, using default values of parameters or
|
|
//! they must be set by corresponding methods before using.
|
|
//! Parameter InitCurve2d is any rough estimation of 2d result curve.
|
|
Standard_EXPORT Handle(Geom2d_BSplineCurve) Perform (const Handle(Adaptor2d_Curve2d)& InitCurve2d, const Handle(Adaptor3d_Curve)& C, const Handle(Adaptor3d_Surface)& S);
|
|
|
|
//! Builds initial 2d curve as BSpline with degree = 1 using Extrema algorithm.
|
|
//! Method is used in method Perform(...).
|
|
Standard_EXPORT Handle(Adaptor2d_Curve2d) BuildInitialCurve2d (const Handle(Adaptor3d_Curve)& Curve, const Handle(Adaptor3d_Surface)& S);
|
|
|
|
|
|
//! Method, which performs projecting.
|
|
//! Method is used in method Perform(...).
|
|
Standard_EXPORT Handle(Geom2d_BSplineCurve) ProjectUsingInitialCurve2d (const Handle(Adaptor3d_Curve)& Curve, const Handle(Adaptor3d_Surface)& S, const Handle(Adaptor2d_Curve2d)& InitCurve2d);
|
|
|
|
//! Returns result curve 2d.
|
|
Standard_EXPORT Handle(Geom2d_BSplineCurve) BSpline() const;
|
|
//! Returns second 2d curve.
|
|
Standard_EXPORT Handle(Geom2d_Curve) Curve2d() const;
|
|
|
|
Standard_EXPORT Standard_Boolean IsDone() const;
|
|
|
|
//! returns the reached Tolerance.
|
|
Standard_EXPORT Standard_Real Tolerance() const;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
Standard_Boolean myProjIsDone;
|
|
Standard_Real myTolerance;
|
|
Handle(Geom2d_BSplineCurve) myBSpline;
|
|
Handle(Geom2d_Curve) my2ndCurve;
|
|
Standard_Real myTolReached;
|
|
Standard_Integer myDegMin;
|
|
Standard_Integer myDegMax;
|
|
Standard_Integer myMaxSegments;
|
|
Standard_Real myMaxDist;
|
|
AppParCurves_Constraint myBndPnt;
|
|
Standard_Real myDist;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif // _ProjLib_ComputeApproxOnPolarSurface_HeaderFile
|