mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
11296 lines
292 KiB
C++
11296 lines
292 KiB
C++
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
// AdvApp2Var_MathBase.cxx
|
|
#include <math.h>
|
|
#include <AdvApp2Var_SysBase.hxx>
|
|
#include <AdvApp2Var_Data_f2c.hxx>
|
|
#include <AdvApp2Var_MathBase.hxx>
|
|
#include <AdvApp2Var_Data.hxx>
|
|
#include <NCollection_Array1.hxx>
|
|
|
|
// statics
|
|
static
|
|
int mmchole_(integer *mxcoef,
|
|
integer *dimens,
|
|
doublereal *amatri,
|
|
integer *aposit,
|
|
integer *posuiv,
|
|
doublereal *chomat,
|
|
integer *iercod);
|
|
|
|
|
|
|
|
|
|
static
|
|
int mmrslss_(integer *mxcoef,
|
|
integer *dimens,
|
|
doublereal *smatri,
|
|
integer *sposit,
|
|
integer *posuiv,
|
|
doublereal *mscnmbr,
|
|
doublereal *soluti,
|
|
integer *iercod);
|
|
|
|
static
|
|
int mfac_(doublereal *f,
|
|
integer *n);
|
|
|
|
static
|
|
int mmaper0_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *crvlgd,
|
|
integer *ncfnew,
|
|
doublereal *ycvmax,
|
|
doublereal *errmax);
|
|
static
|
|
int mmaper2_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *crvjac,
|
|
integer *ncfnew,
|
|
doublereal *ycvmax,
|
|
doublereal *errmax);
|
|
|
|
static
|
|
int mmaper4_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *crvjac,
|
|
integer *ncfnew,
|
|
doublereal *ycvmax,
|
|
doublereal *errmax);
|
|
|
|
static
|
|
int mmaper6_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *crvjac,
|
|
integer *ncfnew,
|
|
doublereal *ycvmax,
|
|
doublereal *errmax);
|
|
|
|
static
|
|
int mmarc41_(integer *ndimax,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *crvold,
|
|
doublereal *upara0,
|
|
doublereal *upara1,
|
|
doublereal *crvnew,
|
|
integer *iercod);
|
|
|
|
static
|
|
int mmatvec_(integer *nligne,
|
|
integer *ncolon,
|
|
integer *gposit,
|
|
integer *gnstoc,
|
|
doublereal *gmatri,
|
|
doublereal *vecin,
|
|
integer *deblig,
|
|
doublereal *vecout,
|
|
integer *iercod);
|
|
|
|
static
|
|
int mmcvstd_(integer *ncofmx,
|
|
integer *ndimax,
|
|
integer *ncoeff,
|
|
integer *ndimen,
|
|
doublereal *crvcan,
|
|
doublereal *courbe);
|
|
|
|
static
|
|
int mmdrvcb_(integer *ideriv,
|
|
integer *ndim,
|
|
integer *ncoeff,
|
|
doublereal *courbe,
|
|
doublereal *tparam,
|
|
doublereal *tabpnt,
|
|
integer *iercod);
|
|
|
|
static
|
|
int mmexthi_(integer *ndegre,
|
|
NCollection_Array1<doublereal>& hwgaus);
|
|
|
|
static
|
|
int mmextrl_(integer *ndegre,
|
|
NCollection_Array1<doublereal>& rootlg);
|
|
|
|
|
|
|
|
static
|
|
int mmherm0_(doublereal *debfin,
|
|
integer *iercod);
|
|
|
|
static
|
|
int mmherm1_(doublereal *debfin,
|
|
integer *ordrmx,
|
|
integer *iordre,
|
|
doublereal *hermit,
|
|
integer *iercod);
|
|
static
|
|
int mmloncv_(integer *ndimax,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *courbe,
|
|
doublereal *tdebut,
|
|
doublereal *tfinal,
|
|
doublereal *xlongc,
|
|
integer *iercod);
|
|
static
|
|
int mmpojac_(doublereal *tparam,
|
|
integer *iordre,
|
|
integer *ncoeff,
|
|
integer *nderiv,
|
|
NCollection_Array1<doublereal>& valjac,
|
|
integer *iercod);
|
|
|
|
static
|
|
int mmrslw_(integer *normax,
|
|
integer *nordre,
|
|
integer *ndimen,
|
|
doublereal *epspiv,
|
|
doublereal *abmatr,
|
|
doublereal *xmatri,
|
|
integer *iercod);
|
|
static
|
|
int mmtmave_(integer *nligne,
|
|
integer *ncolon,
|
|
integer *gposit,
|
|
integer *gnstoc,
|
|
doublereal *gmatri,
|
|
doublereal *vecin,
|
|
doublereal *vecout,
|
|
integer *iercod);
|
|
static
|
|
int mmtrpj0_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *epsi3d,
|
|
doublereal *crvlgd,
|
|
doublereal *ycvmax,
|
|
doublereal *epstrc,
|
|
integer *ncfnew);
|
|
static
|
|
int mmtrpj2_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *epsi3d,
|
|
doublereal *crvlgd,
|
|
doublereal *ycvmax,
|
|
doublereal *epstrc,
|
|
integer *ncfnew);
|
|
|
|
static
|
|
int mmtrpj4_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *epsi3d,
|
|
doublereal *crvlgd,
|
|
doublereal *ycvmax,
|
|
doublereal *epstrc,
|
|
integer *ncfnew);
|
|
static
|
|
int mmtrpj6_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *epsi3d,
|
|
doublereal *crvlgd,
|
|
doublereal *ycvmax,
|
|
doublereal *epstrc,
|
|
integer *ncfnew);
|
|
static
|
|
integer pow__ii(integer *x,
|
|
integer *n);
|
|
|
|
static
|
|
int mvcvin2_(integer *ncoeff,
|
|
doublereal *crvold,
|
|
doublereal *crvnew,
|
|
integer *iercod);
|
|
|
|
static
|
|
int mvcvinv_(integer *ncoeff,
|
|
doublereal *crvold,
|
|
doublereal *crvnew,
|
|
integer *iercod);
|
|
|
|
static
|
|
int mvgaus0_(integer *kindic,
|
|
doublereal *urootl,
|
|
doublereal *hiltab,
|
|
integer *nbrval,
|
|
integer *iercod);
|
|
static
|
|
int mvpscr2_(integer *ncoeff,
|
|
doublereal *curve2,
|
|
doublereal *tparam,
|
|
doublereal *pntcrb);
|
|
|
|
static
|
|
int mvpscr3_(integer *ncoeff,
|
|
doublereal *curve2,
|
|
doublereal *tparam,
|
|
doublereal *pntcrb);
|
|
|
|
static struct {
|
|
doublereal eps1, eps2, eps3, eps4;
|
|
integer niterm, niterr;
|
|
} mmprcsn_;
|
|
|
|
static struct {
|
|
doublereal tdebut, tfinal, verifi, cmherm[576];
|
|
} mmcmher_;
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mdsptpt_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mdsptpt_(integer *ndimen,
|
|
doublereal *point1,
|
|
doublereal *point2,
|
|
doublereal *distan)
|
|
|
|
{
|
|
integer c__8 = 8;
|
|
/* System generated locals */
|
|
integer i__1;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer i__;
|
|
doublereal* differ = 0;
|
|
integer ier;
|
|
intptr_t iofset, j;
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* CALCULATE DISTANCE BETWEEN TWO POINTS */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* DISTANCE,POINT. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDIMEN: Space Dimension. */
|
|
/* POINT1: Table of coordinates of the 1st point. */
|
|
/* POINT2: Table of coordinates of the 2nd point. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* DISTAN: Distance between 2 points. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* INITIALISATION */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustment */
|
|
--point2;
|
|
--point1;
|
|
|
|
/* Function Body */
|
|
iofset = 0;
|
|
ier = 0;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* TRAITEMENT */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
AdvApp2Var_SysBase anAdvApp2Var_SysBase;
|
|
if (*ndimen > 100) {
|
|
anAdvApp2Var_SysBase.mcrrqst_(&c__8, ndimen, differ, &iofset, &ier);
|
|
}
|
|
|
|
/* --- If allocation is refused, the trivial method is applied. */
|
|
|
|
if (ier > 0) {
|
|
|
|
*distan = 0.;
|
|
i__1 = *ndimen;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
/* Computing 2nd power */
|
|
d__1 = point1[i__] - point2[i__];
|
|
*distan += d__1 * d__1;
|
|
}
|
|
*distan = sqrt(*distan);
|
|
|
|
/* --- Otherwise MZSNORM is used to minimize the risks of overflow
|
|
*/
|
|
|
|
} else {
|
|
i__1 = *ndimen;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
j=iofset + i__ - 1;
|
|
differ[j] = point2[i__] - point1[i__];
|
|
}
|
|
|
|
*distan = AdvApp2Var_MathBase::mzsnorm_(ndimen, &differ[iofset]);
|
|
|
|
}
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* RETURN CALLING PROGRAM */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* --- Dynamic Desallocation */
|
|
|
|
if (iofset != 0) {
|
|
anAdvApp2Var_SysBase.mcrdelt_(&c__8, ndimen, differ, &iofset, &ier);
|
|
}
|
|
|
|
return 0 ;
|
|
} /* mdsptpt_ */
|
|
|
|
//=======================================================================
|
|
//function : mfac_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mfac_(doublereal *f,
|
|
integer *n)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer i__1;
|
|
|
|
/* Local variables */
|
|
integer i__;
|
|
|
|
/* FORTRAN CONFORME AU TEXT */
|
|
/* CALCUL DE MFACTORIEL N */
|
|
/* Parameter adjustments */
|
|
--f;
|
|
|
|
/* Function Body */
|
|
f[1] = (float)1.;
|
|
i__1 = *n;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
/* L10: */
|
|
f[i__] = i__ * f[i__ - 1];
|
|
}
|
|
return 0;
|
|
} /* mfac_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmapcmp_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmapcmp_(integer *ndim,
|
|
integer *ncofmx,
|
|
integer *ncoeff,
|
|
doublereal *crvold,
|
|
doublereal *crvnew)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer crvold_dim1, crvold_offset, crvnew_dim1, crvnew_offset, i__1,
|
|
i__2;
|
|
|
|
/* Local variables */
|
|
integer ipair, nd, ndegre, impair, ibb, idg;
|
|
//extern int mgsomsg_();//mgenmsg_(),
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Compression of curve CRVOLD in a table of */
|
|
/* coeff. of even : CRVNEW(*,0,*) */
|
|
/* and uneven range : CRVNEW(*,1,*). */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* COMPRESSION,CURVE. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDIM : Space Dimension. */
|
|
/* NCOFMX : Max nb of coeff. of the curve to compress. */
|
|
/* NCOEFF : Max nb of coeff. of the compressed curve. */
|
|
/* CRVOLD : The curve (0:NCOFMX-1,NDIM) to compress. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* CRVNEW : Curve compacted in (0:(NCOEFF-1)/2,0,NDIM) (containing
|
|
*/
|
|
/* even terms) and in (0:(NCOEFF-1)/2,1,NDIM) */
|
|
/* (containing uneven terms). */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* This routine is useful to prepare coefficients of a */
|
|
/* curve in an orthogonal base (Legendre or Jacobi) before */
|
|
/* calculating the coefficients in the canonical; base [-1,1] by */
|
|
/* MMJACAN. */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Name of the routine */
|
|
|
|
/* Parameter adjustments */
|
|
crvold_dim1 = *ncofmx;
|
|
crvold_offset = crvold_dim1;
|
|
crvold -= crvold_offset;
|
|
crvnew_dim1 = (*ncoeff - 1) / 2 + 1;
|
|
crvnew_offset = crvnew_dim1 << 1;
|
|
crvnew -= crvnew_offset;
|
|
|
|
/* Function Body */
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 3) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMAPCMP", 7L);
|
|
}
|
|
|
|
ndegre = *ncoeff - 1;
|
|
i__1 = *ndim;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
ipair = 0;
|
|
i__2 = ndegre / 2;
|
|
for (idg = 0; idg <= i__2; ++idg) {
|
|
crvnew[idg + (nd << 1) * crvnew_dim1] = crvold[ipair + nd *
|
|
crvold_dim1];
|
|
ipair += 2;
|
|
/* L200: */
|
|
}
|
|
if (ndegre < 1) {
|
|
goto L400;
|
|
}
|
|
impair = 1;
|
|
i__2 = (ndegre - 1) / 2;
|
|
for (idg = 0; idg <= i__2; ++idg) {
|
|
crvnew[idg + ((nd << 1) + 1) * crvnew_dim1] = crvold[impair + nd *
|
|
crvold_dim1];
|
|
impair += 2;
|
|
/* L300: */
|
|
}
|
|
|
|
L400:
|
|
/* L100: */
|
|
;
|
|
}
|
|
|
|
/* ---------------------------------- The end ---------------------------
|
|
*/
|
|
|
|
if (ibb >= 3) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMAPCMP", 7L);
|
|
}
|
|
return 0;
|
|
} /* mmapcmp_ */
|
|
|
|
//=======================================================================
|
|
//function : mmaper0_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmaper0_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *crvlgd,
|
|
integer *ncfnew,
|
|
doublereal *ycvmax,
|
|
doublereal *errmax)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer crvlgd_dim1, crvlgd_offset, i__1, i__2;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer ncut;
|
|
doublereal bidon;
|
|
integer ii, nd;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Calculate the max error of approximation done when */
|
|
/* only the first NCFNEW coefficients of a curve are preserved.
|
|
*/
|
|
/* Degree NCOEFF-1 written in the base of Legendre (Jacobi */
|
|
/* of order 0). */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* LEGENDRE,POLYGON,APPROXIMATION,ERROR. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOFMX : Max. degree of the curve. */
|
|
/* NDIMEN : Space dimension. */
|
|
/* NCOEFF : Degree +1 of the curve. */
|
|
/* CRVLGD : Curve the degree which of should be lowered. */
|
|
/* NCFNEW : Degree +1 of the resulting polynom. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* YCVMAX : Auxiliary Table (max error on each dimension).
|
|
*/
|
|
/* ERRMAX : Precision of the approximation. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* ------------------- Init to calculate an error -----------------------
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
--ycvmax;
|
|
crvlgd_dim1 = *ncofmx;
|
|
crvlgd_offset = crvlgd_dim1 + 1;
|
|
crvlgd -= crvlgd_offset;
|
|
|
|
/* Function Body */
|
|
i__1 = *ndimen;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
ycvmax[ii] = 0.;
|
|
/* L100: */
|
|
}
|
|
|
|
/* ------ Minimum that can be reached : Stop at 1 or NCFNEW ------
|
|
*/
|
|
|
|
ncut = 1;
|
|
if (*ncfnew + 1 > ncut) {
|
|
ncut = *ncfnew + 1;
|
|
}
|
|
|
|
/* -------------- Elimination of high degree coefficients-----------
|
|
*/
|
|
/* ----------- Loop on the series of Legendre: NCUT --> NCOEFF --------
|
|
*/
|
|
|
|
i__1 = *ncoeff;
|
|
for (ii = ncut; ii <= i__1; ++ii) {
|
|
/* Factor of renormalization (Maximum of Li(t)). */
|
|
bidon = ((ii - 1) * 2. + 1.) / 2.;
|
|
bidon = sqrt(bidon);
|
|
|
|
i__2 = *ndimen;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
ycvmax[nd] += (d__1 = crvlgd[ii + nd * crvlgd_dim1], advapp_abs(d__1)) *
|
|
bidon;
|
|
/* L310: */
|
|
}
|
|
/* L300: */
|
|
}
|
|
|
|
/* -------------- The error is the norm of the vector error ---------------
|
|
*/
|
|
|
|
*errmax = AdvApp2Var_MathBase::mzsnorm_(ndimen, &ycvmax[1]);
|
|
|
|
/* --------------------------------- Fin --------------------------------
|
|
*/
|
|
|
|
return 0;
|
|
} /* mmaper0_ */
|
|
|
|
//=======================================================================
|
|
//function : mmaper2_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmaper2_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *crvjac,
|
|
integer *ncfnew,
|
|
doublereal *ycvmax,
|
|
doublereal *errmax)
|
|
|
|
{
|
|
/* Initialized data */
|
|
|
|
static doublereal xmaxj[57] = { .9682458365518542212948163499456,
|
|
.986013297183269340427888048593603,
|
|
1.07810420343739860362585159028115,
|
|
1.17325804490920057010925920756025,
|
|
1.26476561266905634732910520370741,
|
|
1.35169950227289626684434056681946,
|
|
1.43424378958284137759129885012494,
|
|
1.51281316274895465689402798226634,
|
|
1.5878364329591908800533936587012,
|
|
1.65970112228228167018443636171226,
|
|
1.72874345388622461848433443013543,
|
|
1.7952515611463877544077632304216,
|
|
1.85947199025328260370244491818047,
|
|
1.92161634324190018916351663207101,
|
|
1.98186713586472025397859895825157,
|
|
2.04038269834980146276967984252188,
|
|
2.09730119173852573441223706382076,
|
|
2.15274387655763462685970799663412,
|
|
2.20681777186342079455059961912859,
|
|
2.25961782459354604684402726624239,
|
|
2.31122868752403808176824020121524,
|
|
2.36172618435386566570998793688131,
|
|
2.41117852396114589446497298177554,
|
|
2.45964731268663657873849811095449,
|
|
2.50718840313973523778244737914028,
|
|
2.55385260994795361951813645784034,
|
|
2.59968631659221867834697883938297,
|
|
2.64473199258285846332860663371298,
|
|
2.68902863641518586789566216064557,
|
|
2.73261215675199397407027673053895,
|
|
2.77551570192374483822124304745691,
|
|
2.8177699459714315371037628127545,
|
|
2.85940333797200948896046563785957,
|
|
2.90044232019793636101516293333324,
|
|
2.94091151970640874812265419871976,
|
|
2.98083391718088702956696303389061,
|
|
3.02023099621926980436221568258656,
|
|
3.05912287574998661724731962377847,
|
|
3.09752842783622025614245706196447,
|
|
3.13546538278134559341444834866301,
|
|
3.17295042316122606504398054547289,
|
|
3.2099992681699613513775259670214,
|
|
3.24662674946606137764916854570219,
|
|
3.28284687953866689817670991319787,
|
|
3.31867291347259485044591136879087,
|
|
3.35411740487202127264475726990106,
|
|
3.38919225660177218727305224515862,
|
|
3.42390876691942143189170489271753,
|
|
3.45827767149820230182596660024454,
|
|
3.49230918177808483937957161007792,
|
|
3.5260130200285724149540352829756,
|
|
3.55939845146044235497103883695448,
|
|
3.59247431368364585025958062194665,
|
|
3.62524904377393592090180712976368,
|
|
3.65773070318071087226169680450936,
|
|
3.68992700068237648299565823810245,
|
|
3.72184531357268220291630708234186 };
|
|
|
|
/* System generated locals */
|
|
integer crvjac_dim1, crvjac_offset, i__1, i__2;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer idec, ncut;
|
|
doublereal bidon;
|
|
integer ii, nd;
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FONCTION : */
|
|
/* ---------- */
|
|
/* Calculate max approximation error i faite lorsque l' on */
|
|
/* ne conserve que les premiers NCFNEW coefficients d' une courbe
|
|
*/
|
|
/* de degre NCOEFF-1 ecrite dans la base de Jacobi d' ordre 2. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* JACOBI, POLYGON, APPROXIMATION, ERROR. */
|
|
/**/
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOFMX : Max. degree of the curve. */
|
|
/* NDIMEN : Space dimension. */
|
|
/* NCOEFF : Degree +1 of the curve. */
|
|
/* CRVLGD : Curve the degree which of should be lowered. */
|
|
/* NCFNEW : Degree +1 of the resulting polynom. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* YCVMAX : Auxiliary Table (max error on each dimension).
|
|
*/
|
|
/* ERRMAX : Precision of the approximation. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
|
|
|
|
/* ------------------ Table of maximums of (1-t2)*Ji(t) ----------------
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
--ycvmax;
|
|
crvjac_dim1 = *ncofmx;
|
|
crvjac_offset = crvjac_dim1 + 1;
|
|
crvjac -= crvjac_offset;
|
|
|
|
/* Function Body */
|
|
|
|
|
|
|
|
/* ------------------- Init for error calculation -----------------------
|
|
*/
|
|
|
|
i__1 = *ndimen;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
ycvmax[ii] = 0.;
|
|
/* L100: */
|
|
}
|
|
|
|
/* ------ Min. Degree that can be attained : Stop at 3 or NCFNEW ------
|
|
*/
|
|
|
|
idec = 3;
|
|
/* Computing MAX */
|
|
i__1 = idec, i__2 = *ncfnew + 1;
|
|
ncut = advapp_max(i__1,i__2);
|
|
|
|
/* -------------- Removal of coefficients of high degree -----------
|
|
*/
|
|
/* ----------- Loop on the series of Jacobi :NCUT --> NCOEFF ----------
|
|
*/
|
|
|
|
i__1 = *ncoeff;
|
|
for (ii = ncut; ii <= i__1; ++ii) {
|
|
/* Factor of renormalization. */
|
|
bidon = xmaxj[ii - idec];
|
|
i__2 = *ndimen;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
ycvmax[nd] += (d__1 = crvjac[ii + nd * crvjac_dim1], advapp_abs(d__1)) *
|
|
bidon;
|
|
/* L310: */
|
|
}
|
|
/* L300: */
|
|
}
|
|
|
|
/* -------------- The error is the norm of the vector error ---------------
|
|
*/
|
|
|
|
*errmax = AdvApp2Var_MathBase::mzsnorm_(ndimen, &ycvmax[1]);
|
|
|
|
/* --------------------------------- Fin --------------------------------
|
|
*/
|
|
|
|
return 0;
|
|
} /* mmaper2_ */
|
|
|
|
/* MAPER4.f -- translated by f2c (version 19960827).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
/* Subroutine */
|
|
//=======================================================================
|
|
//function : mmaper4_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmaper4_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *crvjac,
|
|
integer *ncfnew,
|
|
doublereal *ycvmax,
|
|
doublereal *errmax)
|
|
{
|
|
/* Initialized data */
|
|
|
|
static doublereal xmaxj[55] = { 1.1092649593311780079813740546678,
|
|
1.05299572648705464724876659688996,
|
|
1.0949715351434178709281698645813,
|
|
1.15078388379719068145021100764647,
|
|
1.2094863084718701596278219811869,
|
|
1.26806623151369531323304177532868,
|
|
1.32549784426476978866302826176202,
|
|
1.38142537365039019558329304432581,
|
|
1.43575531950773585146867625840552,
|
|
1.48850442653629641402403231015299,
|
|
1.53973611681876234549146350844736,
|
|
1.58953193485272191557448229046492,
|
|
1.63797820416306624705258190017418,
|
|
1.68515974143594899185621942934906,
|
|
1.73115699602477936547107755854868,
|
|
1.77604489805513552087086912113251,
|
|
1.81989256661534438347398400420601,
|
|
1.86276344480103110090865609776681,
|
|
1.90471563564740808542244678597105,
|
|
1.94580231994751044968731427898046,
|
|
1.98607219357764450634552790950067,
|
|
2.02556989246317857340333585562678,
|
|
2.06433638992049685189059517340452,
|
|
2.10240936014742726236706004607473,
|
|
2.13982350649113222745523925190532,
|
|
2.17661085564771614285379929798896,
|
|
2.21280102016879766322589373557048,
|
|
2.2484214321456956597803794333791,
|
|
2.28349755104077956674135810027654,
|
|
2.31805304852593774867640120860446,
|
|
2.35210997297725685169643559615022,
|
|
2.38568889602346315560143377261814,
|
|
2.41880904328694215730192284109322,
|
|
2.45148841120796359750021227795539,
|
|
2.48374387161372199992570528025315,
|
|
2.5155912654873773953959098501893,
|
|
2.54704548720896557684101746505398,
|
|
2.57812056037881628390134077704127,
|
|
2.60882970619319538196517982945269,
|
|
2.63918540521920497868347679257107,
|
|
2.66919945330942891495458446613851,
|
|
2.69888301230439621709803756505788,
|
|
2.72824665609081486737132853370048,
|
|
2.75730041251405791603760003778285,
|
|
2.78605380158311346185098508516203,
|
|
2.81451587035387403267676338931454,
|
|
2.84269522483114290814009184272637,
|
|
2.87060005919012917988363332454033,
|
|
2.89823818258367657739520912946934,
|
|
2.92561704377132528239806135133273,
|
|
2.95274375377994262301217318010209,
|
|
2.97962510678256471794289060402033,
|
|
3.00626759936182712291041810228171,
|
|
3.03267744830655121818899164295959,
|
|
3.05886060707437081434964933864149 };
|
|
|
|
/* System generated locals */
|
|
integer crvjac_dim1, crvjac_offset, i__1, i__2;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer idec, ncut;
|
|
doublereal bidon;
|
|
integer ii, nd;
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Calculate the max. error of approximation made when */
|
|
/* only first NCFNEW coefficients of a curve are preserved
|
|
*/
|
|
/* degree NCOEFF-1 is written in the base of Jacobi of order 4. */
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* LEGENDRE,POLYGON,APPROXIMATION,ERROR. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOFMX : Max. degree of the curve. */
|
|
/* NDIMEN : Space dimension. */
|
|
/* NCOEFF : Degree +1 of the curve. */
|
|
/* CRVJAC : Curve the degree which of should be lowered. */
|
|
/* NCFNEW : Degree +1 of the resulting polynom. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* YCVMAX : Auxiliary Table (max error on each dimension).
|
|
*/
|
|
/* ERRMAX : Precision of the approximation. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* ---------------- Table of maximums of ((1-t2)2)*Ji(t) ---------------
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
--ycvmax;
|
|
crvjac_dim1 = *ncofmx;
|
|
crvjac_offset = crvjac_dim1 + 1;
|
|
crvjac -= crvjac_offset;
|
|
|
|
/* Function Body */
|
|
|
|
|
|
|
|
/* ------------------- Init for error calculation -----------------------
|
|
*/
|
|
|
|
i__1 = *ndimen;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
ycvmax[ii] = 0.;
|
|
/* L100: */
|
|
}
|
|
|
|
/* ------ Min. Degree that can be attained : Stop at 5 or NCFNEW ------
|
|
*/
|
|
|
|
idec = 5;
|
|
/* Computing MAX */
|
|
i__1 = idec, i__2 = *ncfnew + 1;
|
|
ncut = advapp_max(i__1,i__2);
|
|
|
|
/* -------------- Removal of high degree coefficients -----------
|
|
*/
|
|
/* ----------- Loop on the series of Jacobi :NCUT --> NCOEFF ----------
|
|
*/
|
|
|
|
i__1 = *ncoeff;
|
|
for (ii = ncut; ii <= i__1; ++ii) {
|
|
/* Factor of renormalisation. */
|
|
bidon = xmaxj[ii - idec];
|
|
i__2 = *ndimen;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
ycvmax[nd] += (d__1 = crvjac[ii + nd * crvjac_dim1], advapp_abs(d__1)) *
|
|
bidon;
|
|
/* L310: */
|
|
}
|
|
/* L300: */
|
|
}
|
|
|
|
/* -------------- The error is the norm of the error vector ---------------
|
|
*/
|
|
|
|
*errmax = AdvApp2Var_MathBase::mzsnorm_(ndimen, &ycvmax[1]);
|
|
|
|
/* --------------------------------- End --------------------------------
|
|
*/
|
|
|
|
return 0;
|
|
} /* mmaper4_ */
|
|
|
|
//=======================================================================
|
|
//function : mmaper6_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmaper6_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *crvjac,
|
|
integer *ncfnew,
|
|
doublereal *ycvmax,
|
|
doublereal *errmax)
|
|
|
|
{
|
|
/* Initialized data */
|
|
|
|
static doublereal xmaxj[53] = { 1.21091229812484768570102219548814,
|
|
1.11626917091567929907256116528817,
|
|
1.1327140810290884106278510474203,
|
|
1.1679452722668028753522098022171,
|
|
1.20910611986279066645602153641334,
|
|
1.25228283758701572089625983127043,
|
|
1.29591971597287895911380446311508,
|
|
1.3393138157481884258308028584917,
|
|
1.3821288728999671920677617491385,
|
|
1.42420414683357356104823573391816,
|
|
1.46546895108549501306970087318319,
|
|
1.50590085198398789708599726315869,
|
|
1.54550385142820987194251585145013,
|
|
1.58429644271680300005206185490937,
|
|
1.62230484071440103826322971668038,
|
|
1.65955905239130512405565733793667,
|
|
1.69609056468292429853775667485212,
|
|
1.73193098017228915881592458573809,
|
|
1.7671112206990325429863426635397,
|
|
1.80166107681586964987277458875667,
|
|
1.83560897003644959204940535551721,
|
|
1.86898184653271388435058371983316,
|
|
1.90180515174518670797686768515502,
|
|
1.93410285411785808749237200054739,
|
|
1.96589749778987993293150856865539,
|
|
1.99721027139062501070081653790635,
|
|
2.02806108474738744005306947877164,
|
|
2.05846864831762572089033752595401,
|
|
2.08845055210580131460156962214748,
|
|
2.11802334209486194329576724042253,
|
|
2.14720259305166593214642386780469,
|
|
2.17600297710595096918495785742803,
|
|
2.20443832785205516555772788192013,
|
|
2.2325216999457379530416998244706,
|
|
2.2602654243075083168599953074345,
|
|
2.28768115912702794202525264301585,
|
|
2.3147799369092684021274946755348,
|
|
2.34157220782483457076721300512406,
|
|
2.36806787963276257263034969490066,
|
|
2.39427635443992520016789041085844,
|
|
2.42020656255081863955040620243062,
|
|
2.44586699364757383088888037359254,
|
|
2.47126572552427660024678584642791,
|
|
2.49641045058324178349347438430311,
|
|
2.52130850028451113942299097584818,
|
|
2.54596686772399937214920135190177,
|
|
2.5703922285006754089328998222275,
|
|
2.59459096001908861492582631591134,
|
|
2.61856915936049852435394597597773,
|
|
2.64233265984385295286445444361827,
|
|
2.66588704638685848486056711408168,
|
|
2.68923766976735295746679957665724,
|
|
2.71238965987606292679677228666411 };
|
|
|
|
/* System generated locals */
|
|
integer crvjac_dim1, crvjac_offset, i__1, i__2;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer idec, ncut;
|
|
doublereal bidon;
|
|
integer ii, nd;
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Calculate the max. error of approximation made when */
|
|
/* only first NCFNEW coefficients of a curve are preserved
|
|
*/
|
|
/* degree NCOEFF-1 is written in the base of Jacobi of order 6. */
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* JACOBI,POLYGON,APPROXIMATION,ERROR. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOFMX : Max. degree of the curve. */
|
|
/* NDIMEN : Space dimension. */
|
|
/* NCOEFF : Degree +1 of the curve. */
|
|
/* CRVJAC : Curve the degree which of should be lowered. */
|
|
/* NCFNEW : Degree +1 of the resulting polynom. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* YCVMAX : Auxiliary Table (max error on each dimension).
|
|
*/
|
|
/* ERRMAX : Precision of the approximation. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* ---------------- Table of maximums of ((1-t2)3)*Ji(t) ---------------
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
--ycvmax;
|
|
crvjac_dim1 = *ncofmx;
|
|
crvjac_offset = crvjac_dim1 + 1;
|
|
crvjac -= crvjac_offset;
|
|
|
|
/* Function Body */
|
|
|
|
|
|
|
|
/* ------------------- Init for error calculation -----------------------
|
|
*/
|
|
|
|
i__1 = *ndimen;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
ycvmax[ii] = 0.;
|
|
/* L100: */
|
|
}
|
|
|
|
/* ------ Min Degree that can be attained : Stop at 3 or NCFNEW ------
|
|
*/
|
|
|
|
idec = 7;
|
|
/* Computing MAX */
|
|
i__1 = idec, i__2 = *ncfnew + 1;
|
|
ncut = advapp_max(i__1,i__2);
|
|
|
|
/* -------------- Removal of high degree coefficients -----------
|
|
*/
|
|
/* ----------- Loop on the series of Jacobi :NCUT --> NCOEFF ----------
|
|
*/
|
|
|
|
i__1 = *ncoeff;
|
|
for (ii = ncut; ii <= i__1; ++ii) {
|
|
/* Factor of renormalization. */
|
|
bidon = xmaxj[ii - idec];
|
|
i__2 = *ndimen;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
ycvmax[nd] += (d__1 = crvjac[ii + nd * crvjac_dim1], advapp_abs(d__1)) *
|
|
bidon;
|
|
/* L310: */
|
|
}
|
|
/* L300: */
|
|
}
|
|
|
|
/* -------------- The error is the norm of the vector error ---------------
|
|
*/
|
|
|
|
*errmax = AdvApp2Var_MathBase::mzsnorm_(ndimen, &ycvmax[1]);
|
|
|
|
/* --------------------------------- END --------------------------------
|
|
*/
|
|
|
|
return 0;
|
|
} /* mmaper6_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmaperx_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmaperx_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
integer *iordre,
|
|
doublereal *crvjac,
|
|
integer *ncfnew,
|
|
doublereal *ycvmax,
|
|
doublereal *errmax,
|
|
integer *iercod)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer crvjac_dim1, crvjac_offset;
|
|
|
|
/* Local variables */
|
|
integer jord;
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Calculate the max. error of approximation made when */
|
|
/* only first NCFNEW coefficients of a curve are preserved
|
|
*/
|
|
/* degree NCOEFF-1 is written in the base of Jacobi of order IORDRE. */
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* JACOBI,LEGENDRE,POLYGON,APPROXIMATION,ERROR. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOFMX : Max. degree of the curve. */
|
|
/* NDIMEN : Space dimension. */
|
|
/* NCOEFF : Degree +1 of the curve. */
|
|
/* IORDRE : Order of continuity at the extremities. */
|
|
/* CRVJAC : Curve the degree which of should be lowered. */
|
|
/* NCFNEW : Degree +1 of the resulting polynom. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* YCVMAX : Auxiliary Table (max error on each dimension).
|
|
*/
|
|
/* ERRMAX : Precision of the approximation. */
|
|
/* IERCOD = 0, OK */
|
|
/* = 1, order of constraints (IORDRE) is not within the */
|
|
/* autorized values. */
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* Canceled and replaced MMAPERR. */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* Parameter adjustments */
|
|
--ycvmax;
|
|
crvjac_dim1 = *ncofmx;
|
|
crvjac_offset = crvjac_dim1 + 1;
|
|
crvjac -= crvjac_offset;
|
|
|
|
/* Function Body */
|
|
*iercod = 0;
|
|
/* --> Order of Jacobi polynoms */
|
|
jord = ( *iordre + 1) << 1;
|
|
|
|
if (jord == 0) {
|
|
mmaper0_(ncofmx, ndimen, ncoeff, &crvjac[crvjac_offset], ncfnew, &
|
|
ycvmax[1], errmax);
|
|
} else if (jord == 2) {
|
|
mmaper2_(ncofmx, ndimen, ncoeff, &crvjac[crvjac_offset], ncfnew, &
|
|
ycvmax[1], errmax);
|
|
} else if (jord == 4) {
|
|
mmaper4_(ncofmx, ndimen, ncoeff, &crvjac[crvjac_offset], ncfnew, &
|
|
ycvmax[1], errmax);
|
|
} else if (jord == 6) {
|
|
mmaper6_(ncofmx, ndimen, ncoeff, &crvjac[crvjac_offset], ncfnew, &
|
|
ycvmax[1], errmax);
|
|
} else {
|
|
*iercod = 1;
|
|
}
|
|
|
|
/* ----------------------------------- Fin ------------------------------
|
|
*/
|
|
|
|
return 0;
|
|
} /* mmaperx_ */
|
|
|
|
//=======================================================================
|
|
//function : mmarc41_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmarc41_(integer *ndimax,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *crvold,
|
|
doublereal *upara0,
|
|
doublereal *upara1,
|
|
doublereal *crvnew,
|
|
integer *iercod)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer crvold_dim1, crvold_offset, crvnew_dim1, crvnew_offset, i__1,
|
|
i__2, i__3;
|
|
|
|
/* Local variables */
|
|
integer nboct;
|
|
doublereal tbaux[61];
|
|
integer nd;
|
|
doublereal bid;
|
|
integer ncf, ncj;
|
|
|
|
|
|
/* IMPLICIT DOUBLE PRECISION(A-H,O-Z) */
|
|
/* IMPLICIT INTEGER (I-N) */
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Creation of curve C2(v) defined on (0,1) identic to */
|
|
/* curve C1(u) defined on (U0,U1) (change of parameter */
|
|
/* of a curve). */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* LIMITATION, RESTRICTION, CURVE */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDIMAX : Space Dimensioning. */
|
|
/* NDIMEN : Curve Dimension. */
|
|
/* NCOEFF : Nb of coefficients of the curve. */
|
|
/* CRVOLD : Curve to be limited. */
|
|
/* UPARA0 : Min limit of the interval limiting the curve.
|
|
*/
|
|
/* UPARA1 : Max limit of the interval limiting the curve.
|
|
*/
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* CRVNEW : Relimited curve, defined on (0,1) and equal to */
|
|
/* CRVOLD defined on (U0,U1). */
|
|
/* IERCOD : = 0, OK */
|
|
/* =10, Nb of coeff. <1 or > 61. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
/* Type Name */
|
|
/* MAERMSG MCRFILL MVCVIN2 */
|
|
/* MVCVINV */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* ---> Algorithm used in this general case is based on the */
|
|
/* following principle : */
|
|
/* Let S(t) = a0 + a1*t + a2*t**2 + ... of degree NCOEFF-1, and */
|
|
/* U(t) = b0 + b1*t, then the coeff. of */
|
|
/* S(U(t)) are calculated step by step with help of table TBAUX. */
|
|
/* At each step number N (N=2 to NCOEFF), TBAUX(n) contains */
|
|
/* the n-th coefficient of U(t)**N for n=1 to N. (RBD) */
|
|
/* ---> Reference : KNUTH, 'The Art of Computer Programming', */
|
|
/* Vol. 2/'Seminumerical Algorithms', */
|
|
/* Ex. 11 p:451 et solution p:562. (RBD) */
|
|
|
|
/* ---> Removal of the input argument CRVOLD by CRVNEW is */
|
|
/* possible, which means that the call : */
|
|
/* CALL MMARC41(NDIMAX,NDIMEN,NCOEFF,CURVE,UPARA0,UPARA1 */
|
|
/* ,CURVE,IERCOD) */
|
|
/* is absolutely LEGAL. (RBD) */
|
|
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* Name of the routine */
|
|
|
|
/* Auxiliary table of coefficients of (UPARA1-UPARA0)T+UPARA0 */
|
|
/* with power N=1 to NCOEFF-1. */
|
|
|
|
|
|
/* Parameter adjustments */
|
|
crvnew_dim1 = *ndimax;
|
|
crvnew_offset = crvnew_dim1 + 1;
|
|
crvnew -= crvnew_offset;
|
|
crvold_dim1 = *ndimax;
|
|
crvold_offset = crvold_dim1 + 1;
|
|
crvold -= crvold_offset;
|
|
|
|
/* Function Body */
|
|
*iercod = 0;
|
|
/* **********************************************************************
|
|
*/
|
|
/* CASE WHEN PROCESSING CAN'T BE DONE */
|
|
/* **********************************************************************
|
|
*/
|
|
if (*ncoeff > 61 || *ncoeff < 1) {
|
|
*iercod = 10;
|
|
goto L9999;
|
|
}
|
|
/* **********************************************************************
|
|
*/
|
|
/* IF NO CHANGES */
|
|
/* **********************************************************************
|
|
*/
|
|
if (*ndimen == *ndimax && *upara0 == 0. && *upara1 == 1.) {
|
|
nboct = (*ndimax << 3) * *ncoeff;
|
|
AdvApp2Var_SysBase::mcrfill_(&nboct,
|
|
&crvold[crvold_offset],
|
|
&crvnew[crvnew_offset]);
|
|
goto L9999;
|
|
}
|
|
/* **********************************************************************
|
|
*/
|
|
/* INVERSION 3D : FAST PROCESSING */
|
|
/* **********************************************************************
|
|
*/
|
|
if (*upara0 == 1. && *upara1 == 0.) {
|
|
if (*ndimen == 3 && *ndimax == 3 && *ncoeff <= 21) {
|
|
mvcvinv_(ncoeff, &crvold[crvold_offset], &crvnew[crvnew_offset],
|
|
iercod);
|
|
goto L9999;
|
|
}
|
|
/* ******************************************************************
|
|
**** */
|
|
/* INVERSION 2D : FAST PROCESSING */
|
|
/* ******************************************************************
|
|
**** */
|
|
if (*ndimen == 2 && *ndimax == 2 && *ncoeff <= 21) {
|
|
mvcvin2_(ncoeff, &crvold[crvold_offset], &crvnew[crvnew_offset],
|
|
iercod);
|
|
goto L9999;
|
|
}
|
|
}
|
|
/* **********************************************************************
|
|
*/
|
|
/* GENERAL PROCESSING */
|
|
/* **********************************************************************
|
|
*/
|
|
/* -------------------------- Initializations ---------------------------
|
|
*/
|
|
|
|
i__1 = *ndimen;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
crvnew[nd + crvnew_dim1] = crvold[nd + crvold_dim1];
|
|
/* L100: */
|
|
}
|
|
if (*ncoeff == 1) {
|
|
goto L9999;
|
|
}
|
|
tbaux[0] = *upara0;
|
|
tbaux[1] = *upara1 - *upara0;
|
|
|
|
/* ----------------------- Calculation of coeff. of CRVNEW ------------------
|
|
*/
|
|
|
|
i__1 = *ncoeff - 1;
|
|
for (ncf = 2; ncf <= i__1; ++ncf) {
|
|
|
|
/* ------------ Take into account NCF-th coeff. of CRVOLD --------
|
|
---- */
|
|
|
|
i__2 = ncf - 1;
|
|
for (ncj = 1; ncj <= i__2; ++ncj) {
|
|
bid = tbaux[ncj - 1];
|
|
i__3 = *ndimen;
|
|
for (nd = 1; nd <= i__3; ++nd) {
|
|
crvnew[nd + ncj * crvnew_dim1] += crvold[nd + ncf *
|
|
crvold_dim1] * bid;
|
|
/* L400: */
|
|
}
|
|
/* L300: */
|
|
}
|
|
|
|
bid = tbaux[ncf - 1];
|
|
i__2 = *ndimen;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
crvnew[nd + ncf * crvnew_dim1] = crvold[nd + ncf * crvold_dim1] *
|
|
bid;
|
|
/* L500: */
|
|
}
|
|
|
|
/* --------- Calculate (NCF+1) coeff. of ((U1-U0)*t + U0)**(NCF) ---
|
|
---- */
|
|
|
|
bid = *upara1 - *upara0;
|
|
tbaux[ncf] = tbaux[ncf - 1] * bid;
|
|
for (ncj = ncf; ncj >= 2; --ncj) {
|
|
tbaux[ncj - 1] = tbaux[ncj - 1] * *upara0 + tbaux[ncj - 2] * bid;
|
|
/* L600: */
|
|
}
|
|
tbaux[0] *= *upara0;
|
|
|
|
/* L200: */
|
|
}
|
|
|
|
/* -------------- Take into account the last coeff. of CRVOLD -----------
|
|
*/
|
|
|
|
i__1 = *ncoeff - 1;
|
|
for (ncj = 1; ncj <= i__1; ++ncj) {
|
|
bid = tbaux[ncj - 1];
|
|
i__2 = *ndimen;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
crvnew[nd + ncj * crvnew_dim1] += crvold[nd + *ncoeff *
|
|
crvold_dim1] * bid;
|
|
/* L800: */
|
|
}
|
|
/* L700: */
|
|
}
|
|
i__1 = *ndimen;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
crvnew[nd + *ncoeff * crvnew_dim1] = crvold[nd + *ncoeff *
|
|
crvold_dim1] * tbaux[*ncoeff - 1];
|
|
/* L900: */
|
|
}
|
|
|
|
/* ---------------------------- The end ---------------------------------
|
|
*/
|
|
|
|
L9999:
|
|
if (*iercod != 0) {
|
|
AdvApp2Var_SysBase::maermsg_("MMARC41", iercod, 7L);
|
|
}
|
|
|
|
return 0 ;
|
|
} /* mmarc41_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmarcin_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmarcin_(integer *ndimax,
|
|
integer *ndim,
|
|
integer *ncoeff,
|
|
doublereal *crvold,
|
|
doublereal *u0,
|
|
doublereal *u1,
|
|
doublereal *crvnew,
|
|
integer *iercod)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer crvold_dim1, crvold_offset, crvnew_dim1, crvnew_offset, i__1,
|
|
i__2, i__3;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
doublereal x0, x1;
|
|
integer nd;
|
|
doublereal tabaux[61];
|
|
integer ibb;
|
|
doublereal bid;
|
|
integer ncf;
|
|
integer ncj;
|
|
doublereal eps3;
|
|
|
|
|
|
|
|
/* **********************************************************************
|
|
*//* FUNCTION : */
|
|
/* ---------- */
|
|
/* Creation of curve C2(v) defined on [U0,U1] identic to */
|
|
/* curve C1(u) defined on [-1,1] (change of parameter */
|
|
/* of a curve) with INVERSION of indices of the resulting table. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* GENERALIZED LIMITATION, RESTRICTION, INVERSION, CURVE */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDIMAX : Maximum Space Dimensioning. */
|
|
/* NDIMEN : Curve Dimension. */
|
|
/* NCOEFF : Nb of coefficients of the curve. */
|
|
/* CRVOLD : Curve to be limited. */
|
|
/* U0 : Min limit of the interval limiting the curve.
|
|
*/
|
|
/* U1 : Max limit of the interval limiting the curve.
|
|
*/
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* CRVNEW : Relimited curve, defined on [U0,U1] and equal to */
|
|
/* CRVOLD defined on [-1,1]. */
|
|
/* IERCOD : = 0, OK */
|
|
/* =10, Nb of coeff. <1 or > 61. */
|
|
/* =13, the requested interval of variation is null. */
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* Name of the routine */
|
|
|
|
/* Auxiliary table of coefficients of X1*T+X0 */
|
|
/* with power N=1 to NCOEFF-1. */
|
|
|
|
|
|
/* Parameter adjustments */
|
|
crvnew_dim1 = *ndimax;
|
|
crvnew_offset = crvnew_dim1 + 1;
|
|
crvnew -= crvnew_offset;
|
|
crvold_dim1 = *ncoeff;
|
|
crvold_offset = crvold_dim1 + 1;
|
|
crvold -= crvold_offset;
|
|
|
|
/* Function Body */
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 2) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMARCIN", 7L);
|
|
}
|
|
|
|
/* At zero machine it is tested if the output interval is not null */
|
|
|
|
AdvApp2Var_MathBase::mmveps3_(&eps3);
|
|
if ((d__1 = *u1 - *u0, advapp_abs(d__1)) < eps3) {
|
|
*iercod = 13;
|
|
goto L9999;
|
|
}
|
|
*iercod = 0;
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
/* CASE WHEN THE PROCESSING IS IMPOSSIBLE */
|
|
/* **********************************************************************
|
|
*/
|
|
if (*ncoeff > 61 || *ncoeff < 1) {
|
|
*iercod = 10;
|
|
goto L9999;
|
|
}
|
|
/* **********************************************************************
|
|
*/
|
|
/* IF NO CHANGE OF THE INTERVAL OF DEFINITION */
|
|
/* (ONLY INVERSION OF INDICES OF TABLE CRVOLD) */
|
|
/* **********************************************************************
|
|
*/
|
|
if (*ndim == *ndimax && *u0 == -1. && *u1 == 1.) {
|
|
AdvApp2Var_MathBase::mmcvinv_(ndim, ncoeff, ndim, &crvold[crvold_offset], &crvnew[
|
|
crvnew_offset]);
|
|
goto L9999;
|
|
}
|
|
/* **********************************************************************
|
|
*/
|
|
/* CASE WHEN THE NEW INTERVAL OF DEFINITION IS [0,1] */
|
|
/* **********************************************************************
|
|
*/
|
|
if (*u0 == 0. && *u1 == 1.) {
|
|
mmcvstd_(ncoeff, ndimax, ncoeff, ndim, &crvold[crvold_offset], &
|
|
crvnew[crvnew_offset]);
|
|
goto L9999;
|
|
}
|
|
/* **********************************************************************
|
|
*/
|
|
/* GENERAL PROCESSING */
|
|
/* **********************************************************************
|
|
*/
|
|
/* -------------------------- Initialization ---------------------------
|
|
*/
|
|
|
|
x0 = -(*u1 + *u0) / (*u1 - *u0);
|
|
x1 = 2. / (*u1 - *u0);
|
|
i__1 = *ndim;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
crvnew[nd + crvnew_dim1] = crvold[nd * crvold_dim1 + 1];
|
|
/* L100: */
|
|
}
|
|
if (*ncoeff == 1) {
|
|
goto L9999;
|
|
}
|
|
tabaux[0] = x0;
|
|
tabaux[1] = x1;
|
|
|
|
/* ----------------------- Calculation of coeff. of CRVNEW ------------------
|
|
*/
|
|
|
|
i__1 = *ncoeff - 1;
|
|
for (ncf = 2; ncf <= i__1; ++ncf) {
|
|
|
|
/* ------------ Take into account the NCF-th coeff. of CRVOLD --------
|
|
---- */
|
|
|
|
i__2 = ncf - 1;
|
|
for (ncj = 1; ncj <= i__2; ++ncj) {
|
|
bid = tabaux[ncj - 1];
|
|
i__3 = *ndim;
|
|
for (nd = 1; nd <= i__3; ++nd) {
|
|
crvnew[nd + ncj * crvnew_dim1] += crvold[ncf + nd *
|
|
crvold_dim1] * bid;
|
|
/* L400: */
|
|
}
|
|
/* L300: */
|
|
}
|
|
|
|
bid = tabaux[ncf - 1];
|
|
i__2 = *ndim;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
crvnew[nd + ncf * crvnew_dim1] = crvold[ncf + nd * crvold_dim1] *
|
|
bid;
|
|
/* L500: */
|
|
}
|
|
|
|
/* --------- Calculation of (NCF+1) coeff. of [X1*t + X0]**(NCF) --------
|
|
---- */
|
|
|
|
tabaux[ncf] = tabaux[ncf - 1] * x1;
|
|
for (ncj = ncf; ncj >= 2; --ncj) {
|
|
tabaux[ncj - 1] = tabaux[ncj - 1] * x0 + tabaux[ncj - 2] * x1;
|
|
/* L600: */
|
|
}
|
|
tabaux[0] *= x0;
|
|
|
|
/* L200: */
|
|
}
|
|
|
|
/* -------------- Take into account the last coeff. of CRVOLD -----------
|
|
*/
|
|
|
|
i__1 = *ncoeff - 1;
|
|
for (ncj = 1; ncj <= i__1; ++ncj) {
|
|
bid = tabaux[ncj - 1];
|
|
i__2 = *ndim;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
crvnew[nd + ncj * crvnew_dim1] += crvold[*ncoeff + nd *
|
|
crvold_dim1] * bid;
|
|
/* L800: */
|
|
}
|
|
/* L700: */
|
|
}
|
|
i__1 = *ndim;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
crvnew[nd + *ncoeff * crvnew_dim1] = crvold[*ncoeff + nd *
|
|
crvold_dim1] * tabaux[*ncoeff - 1];
|
|
/* L900: */
|
|
}
|
|
|
|
/* ---------------------------- The end ---------------------------------
|
|
*/
|
|
|
|
L9999:
|
|
if (*iercod > 0) {
|
|
AdvApp2Var_SysBase::maermsg_("MMARCIN", iercod, 7L);
|
|
}
|
|
if (ibb >= 2) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMARCIN", 7L);
|
|
}
|
|
return 0;
|
|
} /* mmarcin_ */
|
|
|
|
//=======================================================================
|
|
//function : mmatvec_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmatvec_(integer *nligne,
|
|
integer *,//ncolon,
|
|
integer *gposit,
|
|
integer *,//gnstoc,
|
|
doublereal *gmatri,
|
|
doublereal *vecin,
|
|
integer *deblig,
|
|
doublereal *vecout,
|
|
integer *iercod)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer i__1, i__2;
|
|
|
|
/* Local variables */
|
|
logical ldbg;
|
|
integer jmin, jmax, i__, j, k;
|
|
doublereal somme;
|
|
integer aux;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Produce vector matrix in form of profile */
|
|
|
|
|
|
/* MOTS CLES : */
|
|
/* ----------- */
|
|
/* RESERVE, MATRIX, PRODUCT, VECTOR, PROFILE */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* -------------------- */
|
|
/* NLIGNE : Line number of the matrix of constraints */
|
|
/* NCOLON : Number of column of the matrix of constraints */
|
|
/* GNSTOC: Number of coefficients in the profile of matrix GMATRI */
|
|
|
|
/* GPOSIT: Table of positioning of terms of storage */
|
|
/* GPOSIT(1,I) contains the number of terms-1 on the line I */
|
|
/* in the profile of the matrix. */
|
|
/* GPOSIT(2,I) contains the index of storage of diagonal term*/
|
|
/* of line I */
|
|
/* GPOSIT(3,I) contains the index of column of the first term of */
|
|
/* profile of line I */
|
|
/* GNSTOC: Number of coefficients in the profile of matrix */
|
|
/* GMATRI */
|
|
/* GMATRI : Matrix of constraints in form of profile */
|
|
/* VECIN : Input vector */
|
|
/* DEBLIG : Line indexusing which the vector matrix is calculated */
|
|
/**/
|
|
/* OUTPUT ARGUMENTS */
|
|
/* --------------------- */
|
|
/* VECOUT : VECTOR PRODUCT */
|
|
|
|
/* IERCOD : ERROR CODE */
|
|
|
|
|
|
/* COMMONS USED : */
|
|
/* ------------------ */
|
|
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* --------------------- */
|
|
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* DECLARATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* INITIALISATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
--vecout;
|
|
gposit -= 4;
|
|
--vecin;
|
|
--gmatri;
|
|
|
|
/* Function Body */
|
|
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 2;
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMATVEC", 7L);
|
|
}
|
|
*iercod = 0;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* Processing */
|
|
/* ***********************************************************************
|
|
*/
|
|
AdvApp2Var_SysBase::mvriraz_(nligne,
|
|
&vecout[1]);
|
|
i__1 = *nligne;
|
|
for (i__ = *deblig; i__ <= i__1; ++i__) {
|
|
somme = 0.;
|
|
jmin = gposit[i__ * 3 + 3];
|
|
jmax = gposit[i__ * 3 + 1] + gposit[i__ * 3 + 3] - 1;
|
|
aux = gposit[i__ * 3 + 2] - gposit[i__ * 3 + 1] - jmin + 1;
|
|
i__2 = jmax;
|
|
for (j = jmin; j <= i__2; ++j) {
|
|
k = j + aux;
|
|
somme += gmatri[k] * vecin[j];
|
|
}
|
|
vecout[i__] = somme;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* ERROR PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* RETURN CALLING PROGRAM */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9999:
|
|
|
|
/* ___ DESALLOCATION, ... */
|
|
|
|
AdvApp2Var_SysBase::maermsg_("MMATVEC", iercod, 7L);
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMATVEC", 7L);
|
|
}
|
|
|
|
return 0 ;
|
|
} /* mmatvec_ */
|
|
|
|
//=======================================================================
|
|
//function : mmbulld_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmbulld_(integer *nbcoln,
|
|
integer *nblign,
|
|
doublereal *dtabtr,
|
|
integer *numcle)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer dtabtr_dim1, dtabtr_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
logical ldbg;
|
|
doublereal daux;
|
|
integer nite1, nite2, nchan, i1, i2;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Parsing of columns of a table of integers in increasing order */
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* POINT-ENTRY, PARSING */
|
|
/* INPUT ARGUMENTS : */
|
|
/* -------------------- */
|
|
/* - NBCOLN : Number of columns in the table */
|
|
/* - NBLIGN : Number of lines in the table */
|
|
/* - DTABTR : Table of integers to be parsed */
|
|
/* - NUMCLE : Position of the key on the column */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* --------------------- */
|
|
/* - DTABTR : Parsed table */
|
|
|
|
/* COMMONS USED : */
|
|
/* ------------------ */
|
|
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* --------------------- */
|
|
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* Particularly performant if the table is almost parsed */
|
|
/* In the opposite case it is better to use MVSHELD */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
dtabtr_dim1 = *nblign;
|
|
dtabtr_offset = dtabtr_dim1 + 1;
|
|
dtabtr -= dtabtr_offset;
|
|
|
|
/* Function Body */
|
|
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 2;
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMBULLD", 7L);
|
|
}
|
|
nchan = 1;
|
|
nite1 = *nbcoln;
|
|
nite2 = 2;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* ---->ALGORITHM in N^2 / 2 additional iteration */
|
|
|
|
while(nchan != 0) {
|
|
|
|
/* ----> Parsing from left to the right */
|
|
|
|
nchan = 0;
|
|
i__1 = nite1;
|
|
for (i1 = nite2; i1 <= i__1; ++i1) {
|
|
if (dtabtr[*numcle + i1 * dtabtr_dim1] < dtabtr[*numcle + (i1 - 1)
|
|
* dtabtr_dim1]) {
|
|
i__2 = *nblign;
|
|
for (i2 = 1; i2 <= i__2; ++i2) {
|
|
daux = dtabtr[i2 + (i1 - 1) * dtabtr_dim1];
|
|
dtabtr[i2 + (i1 - 1) * dtabtr_dim1] = dtabtr[i2 + i1 *
|
|
dtabtr_dim1];
|
|
dtabtr[i2 + i1 * dtabtr_dim1] = daux;
|
|
}
|
|
if (nchan == 0) {
|
|
nchan = 1;
|
|
}
|
|
}
|
|
}
|
|
--nite1;
|
|
|
|
/* ----> Parsing from right to the left */
|
|
|
|
if (nchan != 0) {
|
|
nchan = 0;
|
|
i__1 = nite2;
|
|
for (i1 = nite1; i1 >= i__1; --i1) {
|
|
if (dtabtr[*numcle + i1 * dtabtr_dim1] < dtabtr[*numcle + (i1
|
|
- 1) * dtabtr_dim1]) {
|
|
i__2 = *nblign;
|
|
for (i2 = 1; i2 <= i__2; ++i2) {
|
|
daux = dtabtr[i2 + (i1 - 1) * dtabtr_dim1];
|
|
dtabtr[i2 + (i1 - 1) * dtabtr_dim1] = dtabtr[i2 + i1 *
|
|
dtabtr_dim1];
|
|
dtabtr[i2 + i1 * dtabtr_dim1] = daux;
|
|
}
|
|
if (nchan == 0) {
|
|
nchan = 1;
|
|
}
|
|
}
|
|
}
|
|
++nite2;
|
|
}
|
|
}
|
|
|
|
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* ERROR PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* ----> No errors at calling functions, only tests and loops. */
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* RETURN CALLING PROGRAM */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9999:
|
|
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMBULLD", 7L);
|
|
}
|
|
|
|
return 0 ;
|
|
} /* mmbulld_ */
|
|
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmcdriv_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmcdriv_(integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *courbe,
|
|
integer *ideriv,
|
|
integer *ncofdv,
|
|
doublereal *crvdrv)
|
|
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer courbe_dim1, courbe_offset, crvdrv_dim1, crvdrv_offset, i__1,
|
|
i__2;
|
|
|
|
/* Local variables */
|
|
integer i__, j, k;
|
|
doublereal mfactk, bid;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Calculate matrix of a derivate curve of order IDERIV. */
|
|
/* with input parameters other than output parameters. */
|
|
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* COEFFICIENTS,CURVE,DERIVATE I-EME. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDIMEN : Space dimension (2 or 3 in general) */
|
|
/* NCOEFF : Degree +1 of the curve. */
|
|
/* COURBE : Table of coefficients of the curve. */
|
|
/* IDERIV : Required order of derivation : 1=1st derivate, etc... */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* NCOFDV : Degree +1 of the derivative of order IDERIV of the curve. */
|
|
/* CRVDRV : Table of coefficients of the derivative of order IDERIV */
|
|
/* of the curve. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* ---> It is possible to take as output argument the curve */
|
|
/* and the number of coeff passed at input by making : */
|
|
/* CALL MMCDRIV(NDIMEN,NCOEFF,COURBE,IDERIV,NCOEFF,COURBE). */
|
|
/* After this call, NCOEFF does the number of coeff of the derived */
|
|
/* curve the coefficients which of are stored in CURVE. */
|
|
/* Attention to the coefficients of CURVE of rank superior to */
|
|
/* NCOEFF : they are not set to zero. */
|
|
|
|
/* ---> Algorithm : */
|
|
/* The code below was written basing on the following algorithm:
|
|
*/
|
|
|
|
/* Let P(t) = a1 + a2*t + ... an*t**n. Derivate of order k of P */
|
|
/* (containing n-k coefficients) is calculated as follows : */
|
|
|
|
/* Pk(t) = a(k+1)*CNP(k,k)*k! */
|
|
/* + a(k+2)*CNP(k+1,k)*k! * t */
|
|
/* . */
|
|
/* . */
|
|
/* . */
|
|
/* + a(n)*CNP(n-1,k)*k! * t**(n-k-1). */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* -------------- Case when the order of derivative is -------------------
|
|
*/
|
|
/* ---------------- greater than the degree of the curve ---------------------
|
|
*/
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Serves to provide the coefficients of binome (Pascal's triangle). */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* Binomial coeff from 0 to 60. read only . init par block data */
|
|
|
|
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* Binomial coefficients form a triangular matrix. */
|
|
/* This matrix is completed in table CNP by its transposition. */
|
|
/* So: CNP(I,J) = CNP(J,I) for I and J = 0, ..., 60. */
|
|
|
|
/* Initialization is done by block-data MMLLL09.RES, */
|
|
/* created by program MQINICNP.FOR). */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
crvdrv_dim1 = *ndimen;
|
|
crvdrv_offset = crvdrv_dim1 + 1;
|
|
crvdrv -= crvdrv_offset;
|
|
courbe_dim1 = *ndimen;
|
|
courbe_offset = courbe_dim1 + 1;
|
|
courbe -= courbe_offset;
|
|
|
|
/* Function Body */
|
|
if (*ideriv >= *ncoeff) {
|
|
i__1 = *ndimen;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
crvdrv[i__ + crvdrv_dim1] = 0.;
|
|
/* L10: */
|
|
}
|
|
*ncofdv = 1;
|
|
goto L9999;
|
|
}
|
|
/* **********************************************************************
|
|
*/
|
|
/* General processing */
|
|
/* **********************************************************************
|
|
*/
|
|
/* --------------------- Calculation of Factorial(IDERIV) ------------------
|
|
*/
|
|
|
|
k = *ideriv;
|
|
mfactk = 1.;
|
|
i__1 = k;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
mfactk *= i__;
|
|
/* L50: */
|
|
}
|
|
|
|
/* ------------ Calculation of coeff of the derived of order IDERIV ----------
|
|
*/
|
|
/* ---> Attention : coefficient binomial C(n,m) is represented in */
|
|
/* MCCNP by CNP(N+1,M+1). */
|
|
|
|
i__1 = *ncoeff;
|
|
for (j = k + 1; j <= i__1; ++j) {
|
|
bid = mmcmcnp_.cnp[j - 1 + k * 61] * mfactk;
|
|
i__2 = *ndimen;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
crvdrv[i__ + (j - k) * crvdrv_dim1] = bid * courbe[i__ + j *
|
|
courbe_dim1];
|
|
/* L200: */
|
|
}
|
|
/* L100: */
|
|
}
|
|
|
|
*ncofdv = *ncoeff - *ideriv;
|
|
|
|
/* -------------------------------- The end -----------------------------
|
|
*/
|
|
|
|
L9999:
|
|
return 0;
|
|
} /* mmcdriv_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmcglc1_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmcglc1_(integer *ndimax,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *courbe,
|
|
doublereal *tdebut,
|
|
doublereal *tfinal,
|
|
doublereal *epsiln,
|
|
doublereal *xlongc,
|
|
doublereal *erreur,
|
|
integer *iercod)
|
|
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer courbe_dim1, courbe_offset, i__1;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer ndec;
|
|
doublereal tdeb, tfin;
|
|
integer iter;
|
|
doublereal oldso = 0.;
|
|
integer itmax;
|
|
doublereal sottc;
|
|
integer kk, ibb;
|
|
doublereal dif, pas;
|
|
doublereal som;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Allows calculating the length of an arc of curve POLYNOMIAL */
|
|
/* on an interval [A,B]. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* LENGTH,CURVE,GAUSS,PRIVATE. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDIMAX : Max. number of lines of tables */
|
|
/* (i.e. max. nb of polynoms). */
|
|
/* NDIMEN : Dimension of the space (nb of polynoms). */
|
|
/* NCOEFF : Nb of coefficients of the polynom. This is degree + 1.
|
|
*/
|
|
/* COURBE(NDIMAX,NCOEFF) : Coefficients of the curve. */
|
|
/* TDEBUT : Lower limit of the interval of integration for */
|
|
/* length calculation. */
|
|
/* TFINAL : Upper limit of the interval of integration for */
|
|
/* length calculation. */
|
|
/* EPSILN : REQIRED precision for length calculation. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* XLONGC : Length of the arc of curve */
|
|
/* ERREUR : Precision OBTAINED for the length calculation. */
|
|
/* IERCOD : Error code, 0 OK, >0 Serious error. */
|
|
/* = 1 Too much iterations, the best calculated resultat */
|
|
/* (is almost ERROR) */
|
|
/* = 2 Pb MMLONCV (no result) */
|
|
/* = 3 NDIM or NCOEFF invalid (no result) */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* The polynom is actually a set of polynoms with */
|
|
/* coefficients arranged in a table of 2 indices, */
|
|
/* each line relative to the polynom. */
|
|
/* The polynom is defined by these coefficients ordered */
|
|
/* by increasing power of the variable. */
|
|
/* All polynoms have the same number of coefficients (the */
|
|
/* same degree). */
|
|
|
|
/* This program cancels and replaces LENGCV, MLONGC and MLENCV. */
|
|
|
|
/* ATTENTION : if TDEBUT > TFINAL, the length is NEGATIVE. */
|
|
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Name of the routine */
|
|
|
|
|
|
/* ------------------------ General Initialization ---------------------
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
courbe_dim1 = *ndimax;
|
|
courbe_offset = courbe_dim1 + 1;
|
|
courbe -= courbe_offset;
|
|
|
|
/* Function Body */
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 2) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMCGLC1", 7L);
|
|
}
|
|
|
|
*iercod = 0;
|
|
*xlongc = 0.;
|
|
*erreur = 0.;
|
|
|
|
/* ------ Test of equity of limits */
|
|
|
|
if (*tdebut == *tfinal) {
|
|
*iercod = 0;
|
|
goto L9999;
|
|
}
|
|
|
|
/* ------ Test of the dimension and the number of coefficients */
|
|
|
|
if (*ndimen <= 0 || *ncoeff <= 0) {
|
|
goto L9003;
|
|
}
|
|
|
|
/* ----- Nb of current cutting, nb of iteration, */
|
|
/* max nb of iterations */
|
|
|
|
ndec = 1;
|
|
iter = 1;
|
|
|
|
itmax = 13;
|
|
|
|
/* ------ Variation of the nb of intervals */
|
|
/* Multiplied by 2 at each iteration */
|
|
|
|
L5000:
|
|
pas = (*tfinal - *tdebut) / ndec;
|
|
sottc = 0.;
|
|
|
|
/* ------ Loop on all current NDEC intervals */
|
|
|
|
i__1 = ndec;
|
|
for (kk = 1; kk <= i__1; ++kk) {
|
|
|
|
/* ------ Limits of the current integration interval */
|
|
|
|
tdeb = *tdebut + (kk - 1) * pas;
|
|
tfin = tdeb + pas;
|
|
mmloncv_(ndimax, ndimen, ncoeff, &courbe[courbe_offset], &tdeb, &tfin,
|
|
&som, iercod);
|
|
if (*iercod > 0) {
|
|
goto L9002;
|
|
}
|
|
|
|
sottc += som;
|
|
|
|
/* L100: */
|
|
}
|
|
|
|
|
|
/* ----------------- Test of the maximum number of iterations ------------
|
|
*/
|
|
|
|
/* Test if passes at least once ** */
|
|
|
|
if (iter == 1) {
|
|
oldso = sottc;
|
|
ndec <<= 1;
|
|
++iter;
|
|
goto L5000;
|
|
} else {
|
|
|
|
/* ------ Take into account DIF - Test of convergence */
|
|
|
|
++iter;
|
|
dif = (d__1 = sottc - oldso, advapp_abs(d__1));
|
|
|
|
/* ------ If DIF is OK, leave..., otherwise: */
|
|
|
|
if (dif > *epsiln) {
|
|
|
|
/* ------ If nb iteration exceeded, leave */
|
|
|
|
if (iter > itmax) {
|
|
*iercod = 1;
|
|
goto L9000;
|
|
} else {
|
|
|
|
/* ------ Otherwise continue by cutting the initial interval.
|
|
*/
|
|
|
|
oldso = sottc;
|
|
ndec <<= 1;
|
|
goto L5000;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ------------------------------ THE END -------------------------------
|
|
*/
|
|
|
|
L9000:
|
|
*xlongc = sottc;
|
|
*erreur = dif;
|
|
goto L9999;
|
|
|
|
/* ---> PB in MMLONCV */
|
|
|
|
L9002:
|
|
*iercod = 2;
|
|
goto L9999;
|
|
|
|
/* ---> NCOEFF or NDIM invalid. */
|
|
|
|
L9003:
|
|
*iercod = 3;
|
|
goto L9999;
|
|
|
|
L9999:
|
|
if (*iercod > 0) {
|
|
AdvApp2Var_SysBase::maermsg_("MMCGLC1", iercod, 7L);
|
|
}
|
|
if (ibb >= 2) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMCGLC1", 7L);
|
|
}
|
|
return 0;
|
|
} /* mmcglc1_ */
|
|
|
|
//=======================================================================
|
|
//function : mmchole_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmchole_(integer *,//mxcoef,
|
|
integer *dimens,
|
|
doublereal *amatri,
|
|
integer *aposit,
|
|
integer *posuiv,
|
|
doublereal *chomat,
|
|
integer *iercod)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer i__1, i__2, i__3;
|
|
doublereal d__1;
|
|
|
|
/* Builtin functions */
|
|
//double sqrt();
|
|
|
|
/* Local variables */
|
|
logical ldbg;
|
|
integer kmin, i__, j, k;
|
|
doublereal somme;
|
|
integer ptini, ptcou;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- T */
|
|
/* Produce decomposition of choleski of matrix A in S.S */
|
|
/* Calculate inferior triangular matrix S. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* RESOLUTION, MFACTORISATION, MATRIX_PROFILE, CHOLESKI */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* -------------------- */
|
|
/* MXCOEF : Max number of terms in the hessian profile */
|
|
/* DIMENS : Dimension of the problem */
|
|
/* AMATRI(MXCOEF) : Coefficients of the matrix profile */
|
|
/* APOSIT(1,*) : Distance diagonal-left extremity of the line
|
|
*/
|
|
/* APOSIT(2,*) : Position of diagonal terms in HESSIE */
|
|
/* POSUIV(MXCOEF) : first line inferior not out of profile */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* --------------------- */
|
|
/* CHOMAT(MXCOEF) : Inferior triangular matrix preserving the */
|
|
/* profile of AMATRI. */
|
|
/* IERCOD : error code */
|
|
/* = 0 : ok */
|
|
/* = 1 : non-defined positive matrix */
|
|
|
|
/* COMMONS USED : */
|
|
/* ------------------ */
|
|
|
|
/* .Neant. */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* DEBUG LEVEL = 4 */
|
|
/* ***********************************************************************
|
|
*/
|
|
/* DECLARATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* INITIALISATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
--chomat;
|
|
--posuiv;
|
|
--amatri;
|
|
aposit -= 3;
|
|
|
|
/* Function Body */
|
|
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 4;
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMCHOLE", 7L);
|
|
}
|
|
*iercod = 0;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
i__1 = *dimens;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
ptini = aposit[(j << 1) + 2];
|
|
|
|
somme = 0.;
|
|
i__2 = ptini - 1;
|
|
for (k = ptini - aposit[(j << 1) + 1]; k <= i__2; ++k) {
|
|
/* Computing 2nd power */
|
|
d__1 = chomat[k];
|
|
somme += d__1 * d__1;
|
|
}
|
|
|
|
if (amatri[ptini] - somme < 1e-32) {
|
|
goto L9101;
|
|
}
|
|
chomat[ptini] = sqrt(amatri[ptini] - somme);
|
|
|
|
ptcou = ptini;
|
|
|
|
while(posuiv[ptcou] > 0) {
|
|
|
|
i__ = posuiv[ptcou];
|
|
ptcou = aposit[(i__ << 1) + 2] - (i__ - j);
|
|
|
|
/* Calculate the sum of S .S for k =1 a j-1 */
|
|
/* ik jk */
|
|
somme = 0.;
|
|
/* Computing MAX */
|
|
i__2 = i__ - aposit[(i__ << 1) + 1], i__3 = j - aposit[(j << 1) +
|
|
1];
|
|
kmin = advapp_max(i__2,i__3);
|
|
i__2 = j - 1;
|
|
for (k = kmin; k <= i__2; ++k) {
|
|
somme += chomat[aposit[(i__ << 1) + 2] - (i__ - k)] * chomat[
|
|
aposit[(j << 1) + 2] - (j - k)];
|
|
}
|
|
|
|
chomat[ptcou] = (amatri[ptcou] - somme) / chomat[ptini];
|
|
}
|
|
}
|
|
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* ERROR PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9101:
|
|
*iercod = 1;
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* RETURN CALLING PROGRAM */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9999:
|
|
|
|
AdvApp2Var_SysBase::maermsg_("MMCHOLE", iercod, 7L);
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMCHOLE", 7L);
|
|
}
|
|
|
|
return 0 ;
|
|
} /* mmchole_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmcvctx_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmcvctx_(integer *ndimen,
|
|
integer *ncofmx,
|
|
integer *nderiv,
|
|
doublereal *ctrtes,
|
|
doublereal *crvres,
|
|
doublereal *tabaux,
|
|
doublereal *xmatri,
|
|
integer *iercod)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer ctrtes_dim1, ctrtes_offset, crvres_dim1, crvres_offset,
|
|
xmatri_dim1, xmatri_offset, tabaux_dim1, tabaux_offset, i__1,
|
|
i__2;
|
|
|
|
/* Local variables */
|
|
integer moup1, nordr;
|
|
integer nd;
|
|
integer ibb, ncf, ndv;
|
|
doublereal eps1;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Calculate a polynomial curve checking the */
|
|
/* passage constraints (interpolation) */
|
|
/* from first derivatives, etc... to extremities. */
|
|
/* Parameters at the extremities are supposed to be -1 and 1. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* ALL, AB_SPECIFI::CONSTRAINTS&,INTERPOLATION,&CURVE */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDIMEN : Space Dimension. */
|
|
/* NCOFMX : Nb of coeff. of curve CRVRES on each */
|
|
/* dimension. */
|
|
/* NDERIV : Order of constraint with derivatives : */
|
|
/* 0 --> interpolation simple. */
|
|
/* 1 --> interpolation+constraints with 1st. */
|
|
/* 2 --> cas (0)+ (1) + " " 2nd derivatives. */
|
|
/* etc... */
|
|
/* CTRTES : Table of constraints. */
|
|
/* CTRTES(*,1,*) = contraints at -1. */
|
|
/* CTRTES(*,2,*) = contraints at 1. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* CRVRES : Resulting curve defined on (-1,1). */
|
|
/* TABAUX : Auxilliary matrix. */
|
|
/* XMATRI : Auxilliary matrix. */
|
|
|
|
/* COMMONS UTILISES : */
|
|
/* ---------------- */
|
|
|
|
/* .Neant. */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
/* Type Name */
|
|
/* MAERMSG R*8 DFLOAT MGENMSG */
|
|
/* MGSOMSG MMEPS1 MMRSLW */
|
|
/* I*4 MNFNDEB */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* The polynom (or the curve) is calculated by solving a */
|
|
/* system of linear equations. If the imposed degree is great */
|
|
/* it is preferable to call a routine based on */
|
|
/* Lagrange or Hermite interpolation depending on the case. */
|
|
/* (for a high degree the matrix of the system can be badly */
|
|
/* conditionned). */
|
|
/* This routine returns a curve defined in (-1,1). */
|
|
/* In general case, it is necessary to use MCVCTG. */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Name of the routine */
|
|
|
|
|
|
/* Parameter adjustments */
|
|
crvres_dim1 = *ncofmx;
|
|
crvres_offset = crvres_dim1 + 1;
|
|
crvres -= crvres_offset;
|
|
xmatri_dim1 = *nderiv + 1;
|
|
xmatri_offset = xmatri_dim1 + 1;
|
|
xmatri -= xmatri_offset;
|
|
tabaux_dim1 = *nderiv + 1 + *ndimen;
|
|
tabaux_offset = tabaux_dim1 + 1;
|
|
tabaux -= tabaux_offset;
|
|
ctrtes_dim1 = *ndimen;
|
|
ctrtes_offset = ctrtes_dim1 * 3 + 1;
|
|
ctrtes -= ctrtes_offset;
|
|
|
|
/* Function Body */
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 3) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMCVCTX", 7L);
|
|
}
|
|
/* Precision. */
|
|
AdvApp2Var_MathBase::mmeps1_(&eps1);
|
|
|
|
/* ****************** CALCULATION OF EVEN COEFFICIENTS *********************
|
|
*/
|
|
/* ------------------------- Initialization -----------------------------
|
|
*/
|
|
|
|
nordr = *nderiv + 1;
|
|
i__1 = nordr;
|
|
for (ncf = 1; ncf <= i__1; ++ncf) {
|
|
tabaux[ncf + tabaux_dim1] = 1.;
|
|
/* L100: */
|
|
}
|
|
|
|
/* ---------------- Calculation of terms corresponding to derivatives -------
|
|
*/
|
|
|
|
i__1 = nordr;
|
|
for (ndv = 2; ndv <= i__1; ++ndv) {
|
|
i__2 = nordr;
|
|
for (ncf = 1; ncf <= i__2; ++ncf) {
|
|
tabaux[ncf + ndv * tabaux_dim1] = tabaux[ncf + (ndv - 1) *
|
|
tabaux_dim1] * (doublereal) ((ncf << 1) - ndv);
|
|
/* L300: */
|
|
}
|
|
/* L200: */
|
|
}
|
|
|
|
/* ------------------ Writing the second member -----------------------
|
|
*/
|
|
|
|
moup1 = 1;
|
|
i__1 = nordr;
|
|
for (ndv = 1; ndv <= i__1; ++ndv) {
|
|
i__2 = *ndimen;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
tabaux[nordr + nd + ndv * tabaux_dim1] = (ctrtes[nd + ((ndv << 1)
|
|
+ 2) * ctrtes_dim1] + moup1 * ctrtes[nd + ((ndv << 1) + 1)
|
|
* ctrtes_dim1]) / 2.;
|
|
/* L500: */
|
|
}
|
|
moup1 = -moup1;
|
|
/* L400: */
|
|
}
|
|
|
|
/* -------------------- Resolution of the system ---------------------------
|
|
*/
|
|
|
|
mmrslw_(&nordr, &nordr, ndimen, &eps1, &tabaux[tabaux_offset], &xmatri[
|
|
xmatri_offset], iercod);
|
|
if (*iercod > 0) {
|
|
goto L9999;
|
|
}
|
|
i__1 = *ndimen;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
i__2 = nordr;
|
|
for (ncf = 1; ncf <= i__2; ++ncf) {
|
|
crvres[(ncf << 1) - 1 + nd * crvres_dim1] = xmatri[ncf + nd *
|
|
xmatri_dim1];
|
|
/* L700: */
|
|
}
|
|
/* L600: */
|
|
}
|
|
|
|
/* ***************** CALCULATION OF UNEVEN COEFFICIENTS ********************
|
|
*/
|
|
/* ------------------------- Initialization -----------------------------
|
|
*/
|
|
|
|
|
|
i__1 = nordr;
|
|
for (ncf = 1; ncf <= i__1; ++ncf) {
|
|
tabaux[ncf + tabaux_dim1] = 1.;
|
|
/* L1100: */
|
|
}
|
|
|
|
/* ---------------- Calculation of terms corresponding to derivatives -------
|
|
*/
|
|
|
|
i__1 = nordr;
|
|
for (ndv = 2; ndv <= i__1; ++ndv) {
|
|
i__2 = nordr;
|
|
for (ncf = 1; ncf <= i__2; ++ncf) {
|
|
tabaux[ncf + ndv * tabaux_dim1] = tabaux[ncf + (ndv - 1) *
|
|
tabaux_dim1] * (doublereal) ((ncf << 1) - ndv + 1);
|
|
/* L1300: */
|
|
}
|
|
/* L1200: */
|
|
}
|
|
|
|
/* ------------------ Writing of the second member -----------------------
|
|
*/
|
|
|
|
moup1 = -1;
|
|
i__1 = nordr;
|
|
for (ndv = 1; ndv <= i__1; ++ndv) {
|
|
i__2 = *ndimen;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
tabaux[nordr + nd + ndv * tabaux_dim1] = (ctrtes[nd + ((ndv << 1)
|
|
+ 2) * ctrtes_dim1] + moup1 * ctrtes[nd + ((ndv << 1) + 1)
|
|
* ctrtes_dim1]) / 2.;
|
|
/* L1500: */
|
|
}
|
|
moup1 = -moup1;
|
|
/* L1400: */
|
|
}
|
|
|
|
/* -------------------- Solution of the system ---------------------------
|
|
*/
|
|
|
|
mmrslw_(&nordr, &nordr, ndimen, &eps1, &tabaux[tabaux_offset], &xmatri[
|
|
xmatri_offset], iercod);
|
|
if (*iercod > 0) {
|
|
goto L9999;
|
|
}
|
|
i__1 = *ndimen;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
i__2 = nordr;
|
|
for (ncf = 1; ncf <= i__2; ++ncf) {
|
|
crvres[(ncf << 1) + nd * crvres_dim1] = xmatri[ncf + nd *
|
|
xmatri_dim1];
|
|
/* L1700: */
|
|
}
|
|
/* L1600: */
|
|
}
|
|
|
|
/* --------------------------- The end ----------------------------------
|
|
*/
|
|
|
|
L9999:
|
|
if (*iercod != 0) {
|
|
AdvApp2Var_SysBase::maermsg_("MMCVCTX", iercod, 7L);
|
|
}
|
|
if (ibb >= 3) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMCVCTX", 7L);
|
|
}
|
|
|
|
return 0 ;
|
|
} /* mmcvctx_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmcvinv_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmcvinv_(integer *ndimax,
|
|
integer *ncoef,
|
|
integer *ndim,
|
|
doublereal *curveo,
|
|
doublereal *curve)
|
|
|
|
{
|
|
/* Initialized data */
|
|
|
|
static char nomprg[8+1] = "MMCVINV ";
|
|
|
|
/* System generated locals */
|
|
integer curve_dim1, curve_offset, curveo_dim1, curveo_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer i__, nd, ibb;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Inversion of arguments of the final curve. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* SMOOTHING,CURVE */
|
|
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
|
|
/* NDIM: Space Dimension. */
|
|
/* NCOEF: Degree of the polynom. */
|
|
/* CURVEO: The curve before inversion. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* CURVE: The curve after inversion. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
/* REFERENCES APPELEES : */
|
|
/* ----------------------- */
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* The name of the routine */
|
|
/* Parameter adjustments */
|
|
curve_dim1 = *ndimax;
|
|
curve_offset = curve_dim1 + 1;
|
|
curve -= curve_offset;
|
|
curveo_dim1 = *ncoef;
|
|
curveo_offset = curveo_dim1 + 1;
|
|
curveo -= curveo_offset;
|
|
|
|
/* Function Body */
|
|
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 2) {
|
|
AdvApp2Var_SysBase::mgenmsg_(nomprg, 6L);
|
|
}
|
|
|
|
i__1 = *ncoef;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
i__2 = *ndim;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
curve[nd + i__ * curve_dim1] = curveo[i__ + nd * curveo_dim1];
|
|
/* L300: */
|
|
}
|
|
}
|
|
|
|
/* L9999: */
|
|
return 0;
|
|
} /* mmcvinv_ */
|
|
|
|
//=======================================================================
|
|
//function : mmcvstd_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmcvstd_(integer *ncofmx,
|
|
integer *ndimax,
|
|
integer *ncoeff,
|
|
integer *ndimen,
|
|
doublereal *crvcan,
|
|
doublereal *courbe)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer courbe_dim1, crvcan_dim1, crvcan_offset, i__1, i__2, i__3;
|
|
|
|
/* Local variables */
|
|
integer ndeg, i__, j, j1, nd, ibb;
|
|
doublereal bid;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Transform curve defined between [-1,1] into [0,1]. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* LIMITATION,RESTRICTION,CURVE */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDIMAX : Dimension of the space. */
|
|
/* NDIMEN : Dimension of the curve. */
|
|
/* NCOEFF : Degree of the curve. */
|
|
/* CRVCAN(NCOFMX,NDIMEN): The curve is defined at the interval [-1,1]. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* CURVE(NDIMAX,NCOEFF): Curve defined at the interval [0,1]. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Name of the program. */
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Provides binomial coefficients (Pascal triangle). */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* Binomial coefficient from 0 to 60. read only . init by block data */
|
|
|
|
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* Binomial coefficients form a triangular matrix. */
|
|
/* This matrix is completed in table CNP by its transposition. */
|
|
/* So: CNP(I,J) = CNP(J,I) for I and J = 0, ..., 60. */
|
|
|
|
/* Initialization is done with block-data MMLLL09.RES, */
|
|
/* created by the program MQINICNP.FOR. */
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
courbe_dim1 = *ndimax;
|
|
--courbe;
|
|
crvcan_dim1 = *ncofmx;
|
|
crvcan_offset = crvcan_dim1;
|
|
crvcan -= crvcan_offset;
|
|
|
|
/* Function Body */
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 3) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMCVSTD", 7L);
|
|
}
|
|
ndeg = *ncoeff - 1;
|
|
|
|
/* ------------------ Construction of the resulting curve ----------------
|
|
*/
|
|
|
|
i__1 = *ndimen;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
i__2 = ndeg;
|
|
for (j = 0; j <= i__2; ++j) {
|
|
bid = 0.;
|
|
i__3 = ndeg;
|
|
for (i__ = j; i__ <= i__3; i__ += 2) {
|
|
bid += crvcan[i__ + nd * crvcan_dim1] * mmcmcnp_.cnp[i__ + j
|
|
* 61];
|
|
/* L410: */
|
|
}
|
|
courbe[nd + j * courbe_dim1] = bid;
|
|
|
|
bid = 0.;
|
|
j1 = j + 1;
|
|
i__3 = ndeg;
|
|
for (i__ = j1; i__ <= i__3; i__ += 2) {
|
|
bid += crvcan[i__ + nd * crvcan_dim1] * mmcmcnp_.cnp[i__ + j
|
|
* 61];
|
|
/* L420: */
|
|
}
|
|
courbe[nd + j * courbe_dim1] -= bid;
|
|
/* L400: */
|
|
}
|
|
/* L300: */
|
|
}
|
|
|
|
/* ------------------- Renormalization of the CURVE -------------------------
|
|
*/
|
|
|
|
bid = 1.;
|
|
i__1 = ndeg;
|
|
for (i__ = 0; i__ <= i__1; ++i__) {
|
|
i__2 = *ndimen;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
courbe[nd + i__ * courbe_dim1] *= bid;
|
|
/* L510: */
|
|
}
|
|
bid *= 2.;
|
|
/* L500: */
|
|
}
|
|
|
|
/* ----------------------------- The end --------------------------------
|
|
*/
|
|
|
|
if (ibb >= 3) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMCVSTD", 7L);
|
|
}
|
|
return 0;
|
|
} /* mmcvstd_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmdrc11_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmdrc11_(integer *iordre,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *courbe,
|
|
doublereal *points,
|
|
doublereal *mfactab)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer courbe_dim1, courbe_offset, points_dim2, points_offset, i__1,
|
|
i__2;
|
|
|
|
/* Local variables */
|
|
|
|
integer ndeg, i__, j, ndgcb, nd, ibb;
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Calculation of successive derivatives of equation CURVE with */
|
|
/* parameters -1, 1 from order 0 to order IORDRE */
|
|
/* included. The calculation is produced without knowing the coefficients of */
|
|
/* derivatives of the curve. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* POSITIONING,EXTREMITIES,CURVE,DERIVATIVE. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* IORDRE : Maximum order of calculation of derivatives. */
|
|
/* NDIMEN : Dimension of the space. */
|
|
/* NCOEFF : Number of coefficients of the curve (degree+1). */
|
|
/* COURBE : Table of coefficients of the curve. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* POINTS : Table of values of consecutive derivatives */
|
|
/* of parameters -1.D0 and 1.D0. */
|
|
/* MFACTAB : Auxiliary table for calculation of factorial(I).
|
|
*/
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
/* None. */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* ---> ATTENTION, the coefficients of the curve are */
|
|
/* in a reverse order. */
|
|
|
|
/* ---> The algorithm of calculation of derivatives is based on */
|
|
/* generalization of Horner scheme : */
|
|
/* k 2 */
|
|
/* Let C(t) = uk.t + ... + u2.t + u1.t + u0 . */
|
|
|
|
|
|
/* a0 = uk, b0 = 0, c0 = 0 and for 1<=j<=k, it is calculated : */
|
|
|
|
/* aj = a(j-1).x + u(k-j) */
|
|
/* bj = b(j-1).x + a(j-1) */
|
|
/* cj = c(j-1).x + b(j-1) */
|
|
|
|
/* So : C(x) = ak, C'(x) = bk, C"(x) = 2.ck . */
|
|
|
|
/* The algorithm is generalized easily for calculation of */
|
|
|
|
/* (n) */
|
|
/* C (x) . */
|
|
/* --------- */
|
|
/* n! */
|
|
|
|
/* Reference : D. KNUTH, "The Art of Computer Programming" */
|
|
/* --------- Vol. 2/Seminumerical Algorithms */
|
|
/* Addison-Wesley Pub. Co. (1969) */
|
|
/* pages 423-425. */
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* Name of the routine */
|
|
|
|
/* Parameter adjustments */
|
|
points_dim2 = *iordre + 1;
|
|
points_offset = (points_dim2 << 1) + 1;
|
|
points -= points_offset;
|
|
courbe_dim1 = *ncoeff;
|
|
courbe_offset = courbe_dim1;
|
|
courbe -= courbe_offset;
|
|
|
|
/* Function Body */
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 2) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMDRC11", 7L);
|
|
}
|
|
|
|
if (*iordre < 0 || *ncoeff < 1) {
|
|
goto L9999;
|
|
}
|
|
|
|
/* ------------------- Initialization of table POINTS -----------------
|
|
*/
|
|
|
|
ndgcb = *ncoeff - 1;
|
|
i__1 = *ndimen;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
points[(nd * points_dim2 << 1) + 1] = courbe[ndgcb + nd * courbe_dim1]
|
|
;
|
|
points[(nd * points_dim2 << 1) + 2] = courbe[ndgcb + nd * courbe_dim1]
|
|
;
|
|
/* L100: */
|
|
}
|
|
|
|
i__1 = *ndimen;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
i__2 = *iordre;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
points[((j + nd * points_dim2) << 1) + 1] = 0.;
|
|
points[((j + nd * points_dim2) << 1) + 2] = 0.;
|
|
/* L400: */
|
|
}
|
|
/* L300: */
|
|
}
|
|
|
|
/* Calculation with parameter -1 and 1 */
|
|
|
|
i__1 = *ndimen;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
i__2 = ndgcb;
|
|
for (ndeg = 1; ndeg <= i__2; ++ndeg) {
|
|
for (i__ = *iordre; i__ >= 1; --i__) {
|
|
points[((i__ + nd * points_dim2) << 1) + 1] = -points[((i__ + nd
|
|
* points_dim2) << 1) + 1] + points[((i__ - 1 + nd *
|
|
points_dim2) << 1) + 1];
|
|
points[((i__ + nd * points_dim2) << 1) + 2] += points[((i__ - 1
|
|
+ nd * points_dim2) << 1) + 2];
|
|
/* L800: */
|
|
}
|
|
points[(nd * points_dim2 << 1) + 1] = -points[(nd * points_dim2 <<
|
|
1) + 1] + courbe[ndgcb - ndeg + nd * courbe_dim1];
|
|
points[(nd * points_dim2 << 1) + 2] += courbe[ndgcb - ndeg + nd *
|
|
courbe_dim1];
|
|
/* L700: */
|
|
}
|
|
/* L600: */
|
|
}
|
|
|
|
/* --------------------- Multiplication by factorial(I) --------------
|
|
*/
|
|
|
|
if (*iordre > 1) {
|
|
mfac_(&mfactab[1], iordre);
|
|
|
|
i__1 = *ndimen;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
i__2 = *iordre;
|
|
for (i__ = 2; i__ <= i__2; ++i__) {
|
|
points[((i__ + nd * points_dim2) << 1) + 1] = mfactab[i__] *
|
|
points[((i__ + nd * points_dim2) << 1) + 1];
|
|
points[((i__ + nd * points_dim2) << 1) + 2] = mfactab[i__] *
|
|
points[((i__ + nd * points_dim2) << 1) + 2];
|
|
/* L1000: */
|
|
}
|
|
/* L900: */
|
|
}
|
|
}
|
|
|
|
/* ---------------------------- End -------------------------------------
|
|
*/
|
|
|
|
L9999:
|
|
if (ibb >= 2) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMDRC11", 7L);
|
|
}
|
|
return 0;
|
|
} /* mmdrc11_ */
|
|
|
|
//=======================================================================
|
|
//function : mmdrvcb_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmdrvcb_(integer *ideriv,
|
|
integer *ndim,
|
|
integer *ncoeff,
|
|
doublereal *courbe,
|
|
doublereal *tparam,
|
|
doublereal *tabpnt,
|
|
integer *iercod)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer courbe_dim1, tabpnt_dim1, i__1, i__2, i__3;
|
|
|
|
/* Local variables */
|
|
integer ndeg, i__, j, nd, ndgcrb, iptpnt, ibb;
|
|
|
|
|
|
/* *********************************************************************** */
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
|
|
/* Calculation of successive derivatives of equation CURVE with */
|
|
/* parameter TPARAM from order 0 to order IDERIV included. */
|
|
/* The calculation is produced without knowing the coefficients of */
|
|
/* derivatives of the CURVE. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* POSITIONING,PARAMETER,CURVE,DERIVATIVE. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* IORDRE : Maximum order of calculation of derivatives. */
|
|
/* NDIMEN : Dimension of the space. */
|
|
/* NCOEFF : Number of coefficients of the curve (degree+1). */
|
|
/* COURBE : Table of coefficients of the curve. */
|
|
/* TPARAM : Value of the parameter where the curve should be evaluated. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* TABPNT : Table of values of consecutive derivatives */
|
|
/* of parameter TPARAM. */
|
|
/* IERCOD : 0 = OK, */
|
|
/* 1 = incoherent input. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
/* None. */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* The algorithm of calculation of derivatives is based on */
|
|
/* generalization of the Horner scheme : */
|
|
/* k 2 */
|
|
/* Let C(t) = uk.t + ... + u2.t + u1.t + u0 . */
|
|
|
|
|
|
/* a0 = uk, b0 = 0, c0 = 0 and for 1<=j<=k, it is calculated : */
|
|
|
|
/* aj = a(j-1).x + u(k-j) */
|
|
/* bj = b(j-1).x + a(j-1) */
|
|
/* cj = c(j-1).x + b(j-1) */
|
|
|
|
/* So, it is obtained : C(x) = ak, C'(x) = bk, C"(x) = 2.ck . */
|
|
|
|
/* The algorithm can be easily generalized for the calculation of */
|
|
|
|
/* (n) */
|
|
/* C (x) . */
|
|
/* --------- */
|
|
/* n! */
|
|
|
|
/* Reference : D. KNUTH, "The Art of Computer Programming" */
|
|
/* --------- Vol. 2/Seminumerical Algorithms */
|
|
/* Addison-Wesley Pub. Co. (1969) */
|
|
/* pages 423-425. */
|
|
|
|
/* ---> To evaluare derivatives at 0 and 1, it is preferable */
|
|
/* to use routine MDRV01.FOR . */
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* Name of the routine */
|
|
|
|
/* Parameter adjustments */
|
|
tabpnt_dim1 = *ndim;
|
|
--tabpnt;
|
|
courbe_dim1 = *ndim;
|
|
--courbe;
|
|
|
|
/* Function Body */
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 2) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMDRVCB", 7L);
|
|
}
|
|
|
|
if (*ideriv < 0 || *ncoeff < 1) {
|
|
*iercod = 1;
|
|
goto L9999;
|
|
}
|
|
*iercod = 0;
|
|
|
|
/* ------------------- Initialization of table TABPNT -----------------
|
|
*/
|
|
|
|
ndgcrb = *ncoeff - 1;
|
|
i__1 = *ndim;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
tabpnt[nd] = courbe[nd + ndgcrb * courbe_dim1];
|
|
/* L100: */
|
|
}
|
|
|
|
if (*ideriv < 1) {
|
|
goto L200;
|
|
}
|
|
iptpnt = *ndim * *ideriv;
|
|
AdvApp2Var_SysBase::mvriraz_(&iptpnt,
|
|
&tabpnt[tabpnt_dim1 + 1]);
|
|
L200:
|
|
|
|
/* ------------------------ Calculation of parameter TPARAM ------------------
|
|
*/
|
|
|
|
i__1 = ndgcrb;
|
|
for (ndeg = 1; ndeg <= i__1; ++ndeg) {
|
|
i__2 = *ndim;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
for (i__ = *ideriv; i__ >= 1; --i__) {
|
|
tabpnt[nd + i__ * tabpnt_dim1] = tabpnt[nd + i__ *
|
|
tabpnt_dim1] * *tparam + tabpnt[nd + (i__ - 1) *
|
|
tabpnt_dim1];
|
|
/* L700: */
|
|
}
|
|
tabpnt[nd] = tabpnt[nd] * *tparam + courbe[nd + (ndgcrb - ndeg) *
|
|
courbe_dim1];
|
|
/* L600: */
|
|
}
|
|
/* L500: */
|
|
}
|
|
|
|
/* --------------------- Multiplication by factorial(I) -------------
|
|
*/
|
|
|
|
i__1 = *ideriv;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
i__2 = i__;
|
|
for (j = 2; j <= i__2; ++j) {
|
|
i__3 = *ndim;
|
|
for (nd = 1; nd <= i__3; ++nd) {
|
|
tabpnt[nd + i__ * tabpnt_dim1] = (doublereal) j * tabpnt[nd +
|
|
i__ * tabpnt_dim1];
|
|
/* L1200: */
|
|
}
|
|
/* L1100: */
|
|
}
|
|
/* L1000: */
|
|
}
|
|
|
|
/* --------------------------- The end ---------------------------------
|
|
*/
|
|
|
|
L9999:
|
|
if (*iercod > 0) {
|
|
AdvApp2Var_SysBase::maermsg_("MMDRVCB", iercod, 7L);
|
|
}
|
|
return 0;
|
|
} /* mmdrvcb_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmdrvck_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmdrvck_(integer *ncoeff,
|
|
integer *ndimen,
|
|
doublereal *courbe,
|
|
integer *ideriv,
|
|
doublereal *tparam,
|
|
doublereal *pntcrb)
|
|
|
|
{
|
|
/* Initialized data */
|
|
|
|
static doublereal mmfack[21] = { 1.,2.,6.,24.,120.,720.,5040.,40320.,
|
|
362880.,3628800.,39916800.,479001600.,6227020800.,87178291200.,
|
|
1.307674368e12,2.0922789888e13,3.55687428096e14,6.402373705728e15,
|
|
1.21645100408832e17,2.43290200817664e18,5.109094217170944e19 };
|
|
|
|
/* System generated locals */
|
|
integer courbe_dim1, courbe_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer i__, j, k, nd;
|
|
doublereal mfactk, bid;
|
|
|
|
|
|
/* IMPLICIT INTEGER (I-N) */
|
|
/* IMPLICIT DOUBLE PRECISION(A-H,O-Z) */
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FONCTION : */
|
|
/* ---------- */
|
|
/* Calculate the value of a derived curve of order IDERIV in */
|
|
/* a point of parameter TPARAM. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* POSITIONING,CURVE,DERIVATIVE of ORDER K. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOEFF : Degree +1 of the curve. */
|
|
/* NDIMEN : Dimension of the space (2 or 3 in general) */
|
|
/* COURBE : Table of coefficients of the curve. */
|
|
/* IDERIV : Required order of derivation : 1=1st derivative, etc... */
|
|
/* TPARAM : Value of parameter of the curve. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* PNTCRB : Point of parameter TPARAM on the derivative of order */
|
|
/* IDERIV of CURVE. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
/* MMCMCNP */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
/* None. */
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* The code below was written basing on the following algorithm :
|
|
*/
|
|
|
|
/* Let P(t) = a1 + a2*t + ... an*t**n. The derivative of order k of P */
|
|
/* (containing n-k coefficients) is calculated as follows : */
|
|
|
|
/* Pk(t) = a(k+1)*CNP(k,k)*k! */
|
|
/* + a(k+2)*CNP(k+1,k)*k! * t */
|
|
/* . */
|
|
/* . */
|
|
/* . */
|
|
/* + a(n)*CNP(n-1,k)*k! * t**(n-k-1). */
|
|
|
|
/* Evaluation is produced following the classic Horner scheme. */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* Factorials (1 to 21) caculated on VAX in R*16 */
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Serves to provide binomial coefficients (Pascal triangle). */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* Binomial Coeff from 0 to 60. read only . init by block data */
|
|
|
|
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* Binomial coefficients form a triangular matrix. */
|
|
/* This matrix is completed in table CNP by its transposition. */
|
|
/* So: CNP(I,J) = CNP(J,I) for I and J = 0, ..., 60. */
|
|
|
|
/* Initialization is done by block-data MMLLL09.RES, */
|
|
/* created by program MQINICNP.FOR. */
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
--pntcrb;
|
|
courbe_dim1 = *ndimen;
|
|
courbe_offset = courbe_dim1 + 1;
|
|
courbe -= courbe_offset;
|
|
|
|
/* Function Body */
|
|
|
|
/* -------------- Case when the order of derivative is greater than -------------------
|
|
*/
|
|
/* ---------------- the degree of the curve ---------------------
|
|
*/
|
|
|
|
if (*ideriv >= *ncoeff) {
|
|
i__1 = *ndimen;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
pntcrb[nd] = 0.;
|
|
/* L100: */
|
|
}
|
|
goto L9999;
|
|
}
|
|
/* **********************************************************************
|
|
*/
|
|
/* General processing*/
|
|
/* **********************************************************************
|
|
*/
|
|
/* --------------------- Calculation of Factorial(IDERIV) ------------------
|
|
*/
|
|
|
|
k = *ideriv;
|
|
if (*ideriv <= 21 && *ideriv > 0) {
|
|
mfactk = mmfack[k - 1];
|
|
} else {
|
|
mfactk = 1.;
|
|
i__1 = k;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
mfactk *= i__;
|
|
/* L200: */
|
|
}
|
|
}
|
|
|
|
/* ------- Calculation of derivative of order IDERIV of CURVE in TPARAM -----
|
|
*/
|
|
/* ---> Attention : binomial coefficient C(n,m) is represented in */
|
|
/* MCCNP by CNP(N,M). */
|
|
|
|
i__1 = *ndimen;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
pntcrb[nd] = courbe[nd + *ncoeff * courbe_dim1] * mmcmcnp_.cnp[*
|
|
ncoeff - 1 + k * 61] * mfactk;
|
|
/* L300: */
|
|
}
|
|
|
|
i__1 = k + 1;
|
|
for (j = *ncoeff - 1; j >= i__1; --j) {
|
|
bid = mmcmcnp_.cnp[j - 1 + k * 61] * mfactk;
|
|
i__2 = *ndimen;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
pntcrb[nd] = pntcrb[nd] * *tparam + courbe[nd + j * courbe_dim1] *
|
|
bid;
|
|
/* L500: */
|
|
}
|
|
/* L400: */
|
|
}
|
|
|
|
/* -------------------------------- The end -----------------------------
|
|
*/
|
|
|
|
L9999:
|
|
|
|
return 0 ;
|
|
|
|
} /* mmdrvck_ */
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmeps1_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmeps1_(doublereal *epsilo)
|
|
|
|
{
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Extraction of EPS1 from COMMON MPRCSN. EPS1 is spatial zero */
|
|
/* equal to 1.D-9 */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* MPRCSN,PRECISON,EPS1. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* None */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* EPSILO : Value of EPS1 (spatial zero (10**-9)) */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* EPS1 is ABSOLUTE spatial zero, so it is necessary */
|
|
/* to use it whenever it is necessary to test if a variable */
|
|
/* is null. For example, if the norm of a vector is lower than */
|
|
/* EPS1, this vector is NULL ! (when one works in */
|
|
/* REAL*8) It is absolutely not advised to test arguments */
|
|
/* compared to EPS1**2. Taking into account the rounding errors inevitable */
|
|
/* during calculations, this causes testing compared to 0.D0. */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Gives tolerances of invalidity in stream */
|
|
/* as well as limits of iterative processes */
|
|
|
|
/* general context, modifiable by the user */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* PARAMETER , TOLERANCE */
|
|
|
|
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* INITIALISATION : profile , **VIA MPRFTX** at input in stream */
|
|
/* loading of default values of the profile in MPRFTX at input */
|
|
/* in stream. They are preserved in local variables of MPRFTX */
|
|
|
|
/* Reset of default values : MDFINT */
|
|
/* Interactive modification by the user : MDBINT */
|
|
|
|
/* ACCESS FUNCTION : MMEPS1 ... EPS1 */
|
|
/* MEPSPB ... EPS3,EPS4 */
|
|
/* MEPSLN ... EPS2, NITERM , NITERR */
|
|
/* MEPSNR ... EPS2 , NITERM */
|
|
/* MITERR ... NITERR */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* NITERM : max nb of iterations */
|
|
/* NITERR : nb of rapid iterations */
|
|
/* EPS1 : tolerance of 3D null distance */
|
|
/* EPS2 : tolerance of parametric null distance */
|
|
/* EPS3 : tolerance to avoid division by 0.. */
|
|
/* EPS4 : angular tolerance */
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
*epsilo = mmprcsn_.eps1;
|
|
|
|
return 0 ;
|
|
} /* mmeps1_ */
|
|
|
|
//=======================================================================
|
|
//function : mmexthi_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmexthi_(integer *ndegre,
|
|
NCollection_Array1<doublereal>& hwgaus)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer i__1;
|
|
|
|
/* Local variables */
|
|
integer iadd, ideb, ndeg2, nmod2, ii, ibb;
|
|
integer kpt;
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FONCTION : */
|
|
/* ---------- */
|
|
/* Extract of common LDGRTL the weight of formulas of */
|
|
/* Gauss quadrature on all roots of Legendre polynoms of degree */
|
|
/* NDEGRE defined on [-1,1]. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* ALL, AB_SPECIFI::COMMON&, EXTRACTION, &WEIGHT, &GAUSS. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDEGRE : Mathematic degree of Legendre polynom. It should have */
|
|
/* 2 <= NDEGRE <= 61. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* HWGAUS : The table of weights of Gauss quadrature formulas */
|
|
/* relative to NDEGRE roots of a polynome de Legendre de */
|
|
/* degre NDEGRE. */
|
|
|
|
/* COMMONS UTILISES : */
|
|
/* ---------------- */
|
|
/* MLGDRTL */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* ATTENTION: The condition on NDEGRE ( 2 <= NDEGRE <= 61) is not */
|
|
/* tested. The caller should make the test. */
|
|
|
|
/* Name of the routine */
|
|
|
|
|
|
/* Common MLGDRTL: */
|
|
/* This common includes POSITIVE roots of Legendre polynims */
|
|
/* AND weights of Gauss quadrature formulas on all */
|
|
/* POSITIVE roots of Legendre polynoms. */
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* The common of Legendre roots. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* BASE LEGENDRE */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* ROOTAB : Table of all roots of Legendre polynoms */
|
|
/* within the interval [0,1]. They are ranked for the degrees increasing from */
|
|
/* 2 to 61. */
|
|
/* HILTAB : Table of Legendre interpolators concerning ROOTAB. */
|
|
/* The adressing is the same. */
|
|
/* HI0TAB : Table of Legendre interpolators for root x=0 */
|
|
/* of polynoms of UNEVEN degree. */
|
|
/* RTLTB0 : Table of Li(uk) where uk are the roots of */
|
|
/* Legendre polynom of EVEN degree. */
|
|
/* RTLTB1 : Table of Li(uk) where uk are the roots of */
|
|
/* Legendre polynom of UNEVEN degree. */
|
|
|
|
|
|
/************************************************************************
|
|
*****/
|
|
|
|
/* Function Body */
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 3) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMEXTHI", 7L);
|
|
}
|
|
|
|
ndeg2 = *ndegre / 2;
|
|
nmod2 = *ndegre % 2;
|
|
|
|
/* Address of Gauss weight associated to the 1st strictly */
|
|
/* positive root of Legendre polynom of degree NDEGRE in MLGDRTL. */
|
|
|
|
iadd = ndeg2 * (ndeg2 - 1) / 2 + 1;
|
|
|
|
/* Index of the 1st HWGAUS element associated to the 1st strictly */
|
|
/* positive root of Legendre polynom of degree NDEGRE. */
|
|
|
|
ideb = (*ndegre + 1) / 2 + 1;
|
|
|
|
/* Reading of weights associated to strictly positive roots. */
|
|
|
|
i__1 = *ndegre;
|
|
for (ii = ideb; ii <= i__1; ++ii) {
|
|
kpt = iadd + ii - ideb;
|
|
hwgaus(ii) = mlgdrtl_.hiltab[kpt + nmod2 * 465 - 1];
|
|
/* L100: */
|
|
}
|
|
|
|
/* For strictly negative roots, the weight is the same. */
|
|
/* i.e HW(1) = HW(NDEGRE), HW(2) = HW(NDEGRE-1), etc... */
|
|
|
|
i__1 = ndeg2;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
hwgaus(ii) = hwgaus(*ndegre + 1 - ii);
|
|
/* L200: */
|
|
}
|
|
|
|
/* Case of uneven NDEGRE, 0 is root of Legendre polynom, */
|
|
/* associated Gauss weights are loaded. */
|
|
|
|
if (nmod2 == 1) {
|
|
hwgaus(ndeg2 + 1) = mlgdrtl_.hi0tab[ndeg2];
|
|
}
|
|
|
|
/* --------------------------- The end ----------------------------------
|
|
*/
|
|
|
|
if (ibb >= 3) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMEXTHI", 7L);
|
|
}
|
|
return 0;
|
|
} /* mmexthi_ */
|
|
|
|
//=======================================================================
|
|
//function : mmextrl_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmextrl_(integer *ndegre,
|
|
NCollection_Array1<doublereal>& rootlg)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1;
|
|
|
|
/* Local variables */
|
|
integer iadd, ideb, ndeg2, nmod2, ii, ibb;
|
|
integer kpt;
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Extract of the Common LDGRTL of Legendre polynom roots */
|
|
/* of degree NDEGRE defined on [-1,1]. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* ALL, AB_SPECIFI::COMMON&, EXTRACTION, &ROOT, &LEGENDRE. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDEGRE : Mathematic degree of Legendre polynom. */
|
|
/* It is required to have 2 <= NDEGRE <= 61. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* ROOTLG : The table of roots of Legendre polynom of degree */
|
|
/* NDEGRE defined on [-1,1]. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
/* MLGDRTL */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* ATTENTION: Condition of NDEGRE ( 2 <= NDEGRE <= 61) is not */
|
|
/* tested. The caller should make the test. */
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
|
|
/* Name of the routine */
|
|
|
|
|
|
/* Common MLGDRTL: */
|
|
/* This common includes POSITIVE roots of Legendre polynoms */
|
|
/* AND the weight of Gauss quadrature formulas on all */
|
|
/* POSITIVE roots of Legendre polynoms. */
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* The common of Legendre roots. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* BASE LEGENDRE */
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* ROOTAB : Table of all roots of Legendre polynoms */
|
|
/* within the interval [0,1]. They are ranked for the degrees increasing from */
|
|
/* 2 to 61. */
|
|
/* HILTAB : Table of Legendre interpolators concerning ROOTAB. */
|
|
/* The adressing is the same. */
|
|
/* HI0TAB : Table of Legendre interpolators for root x=0 */
|
|
/* of polynoms of UNEVEN degree. */
|
|
/* RTLTB0 : Table of Li(uk) where uk are the roots of */
|
|
/* Legendre polynom of EVEN degree. */
|
|
/* RTLTB1 : Table of Li(uk) where uk are the roots of */
|
|
/* Legendre polynom of UNEVEN degree. */
|
|
|
|
|
|
/************************************************************************
|
|
*****/
|
|
|
|
/* Function Body */
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 3) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMEXTRL", 7L);
|
|
}
|
|
|
|
ndeg2 = *ndegre / 2;
|
|
nmod2 = *ndegre % 2;
|
|
|
|
/* Address of the 1st strictly positive root of Legendre polynom */
|
|
/* of degree NDEGRE in MLGDRTL. */
|
|
|
|
iadd = ndeg2 * (ndeg2 - 1) / 2 + 1;
|
|
|
|
/* Indice, in ROOTLG, of the 1st strictly positive root */
|
|
/* of Legendre polynom of degree NDEGRE. */
|
|
|
|
ideb = (*ndegre + 1) / 2 + 1;
|
|
|
|
/* Reading of strictly positive roots. */
|
|
|
|
i__1 = *ndegre;
|
|
for (ii = ideb; ii <= i__1; ++ii) {
|
|
kpt = iadd + ii - ideb;
|
|
rootlg(ii) = mlgdrtl_.rootab[kpt + nmod2 * 465 - 1];
|
|
/* L100: */
|
|
}
|
|
|
|
/* Strictly negative roots are equal to positive roots
|
|
*/
|
|
/* to the sign i.e RT(1) = -RT(NDEGRE), RT(2) = -RT(NDEGRE-1), etc...
|
|
*/
|
|
|
|
i__1 = ndeg2;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
rootlg(ii) = -rootlg(*ndegre + 1 - ii);
|
|
/* L200: */
|
|
}
|
|
|
|
/* Case NDEGRE uneven, 0 is root of Legendre polynom. */
|
|
|
|
if (nmod2 == 1) {
|
|
rootlg(ndeg2 + 1) = 0.;
|
|
}
|
|
|
|
/* -------------------------------- THE END -----------------------------
|
|
*/
|
|
|
|
if (ibb >= 3) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMEXTRL", 7L);
|
|
}
|
|
return 0;
|
|
} /* mmextrl_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmfmca8_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmfmca8_(const integer *ndimen,
|
|
const integer *ncoefu,
|
|
const integer *ncoefv,
|
|
const integer *ndimax,
|
|
const integer *ncfumx,
|
|
const integer *,//ncfvmx,
|
|
doublereal *tabini,
|
|
doublereal *tabres)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer tabini_dim1, tabini_dim2, tabini_offset, tabres_dim1, tabres_dim2,
|
|
tabres_offset;
|
|
|
|
/* Local variables */
|
|
integer i__, j, k, ilong;
|
|
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Expansion of a table containing only most important things into a */
|
|
/* greater data table. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* ALL, MATH_ACCES:: CARREAU&, DECOMPRESSION, &CARREAU */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDIMEN: Dimension of the workspace. */
|
|
/* NCOEFU: Degree +1 of the table by u. */
|
|
/* NCOEFV: Degree +1 of the table by v. */
|
|
/* NDIMAX: Max dimension of the space. */
|
|
/* NCFUMX: Max Degree +1 of the table by u. */
|
|
/* NCFVMX: Max Degree +1 of the table by v. */
|
|
/* TABINI: The table to be decompressed. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* TABRES: Decompressed table. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* The following call : */
|
|
|
|
/* CALL MMFMCA8(NDIMEN,NCOEFU,NCOEFV,NDIMAX,NCFUMX,NCFVMX,TABINI,TABINI)
|
|
*/
|
|
|
|
/* where TABINI is input/output argument, is possible provided */
|
|
/* that the caller has declared TABINI in (NDIMAX,NCFUMX,NCFVMX) */
|
|
|
|
/* ATTENTION : it is not checked that NDIMAX >= NDIMEN, */
|
|
/* NCOEFU >= NCFMXU and NCOEFV >= NCFMXV. */
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
|
|
/* Parameter adjustments */
|
|
tabini_dim1 = *ndimen;
|
|
tabini_dim2 = *ncoefu;
|
|
tabini_offset = tabini_dim1 * (tabini_dim2 + 1) + 1;
|
|
tabini -= tabini_offset;
|
|
tabres_dim1 = *ndimax;
|
|
tabres_dim2 = *ncfumx;
|
|
tabres_offset = tabres_dim1 * (tabres_dim2 + 1) + 1;
|
|
tabres -= tabres_offset;
|
|
|
|
/* Function Body */
|
|
if (*ndimax == *ndimen) {
|
|
goto L1000;
|
|
}
|
|
|
|
/* ----------------------- decompression NDIMAX<>NDIMEN -----------------
|
|
*/
|
|
|
|
for (k = *ncoefv; k >= 1; --k) {
|
|
for (j = *ncoefu; j >= 1; --j) {
|
|
for (i__ = *ndimen; i__ >= 1; --i__) {
|
|
tabres[i__ + (j + k * tabres_dim2) * tabres_dim1] = tabini[
|
|
i__ + (j + k * tabini_dim2) * tabini_dim1];
|
|
/* L300: */
|
|
}
|
|
/* L200: */
|
|
}
|
|
/* L100: */
|
|
}
|
|
goto L9999;
|
|
|
|
/* ----------------------- decompression NDIMAX=NDIMEN ------------------
|
|
*/
|
|
|
|
L1000:
|
|
if (*ncoefu == *ncfumx) {
|
|
goto L2000;
|
|
}
|
|
ilong = (*ndimen << 3) * *ncoefu;
|
|
for (k = *ncoefv; k >= 1; --k) {
|
|
AdvApp2Var_SysBase::mcrfill_(&ilong,
|
|
&tabini[(k * tabini_dim2 + 1) * tabini_dim1 + 1],
|
|
&tabres[(k * tabres_dim2 + 1) * tabres_dim1 + 1]);
|
|
/* L500: */
|
|
}
|
|
goto L9999;
|
|
|
|
/* ----------------- decompression NDIMAX=NDIMEN,NCOEFU=NCFUMX ----------
|
|
*/
|
|
|
|
L2000:
|
|
ilong = (*ndimen << 3) * *ncoefu * *ncoefv;
|
|
AdvApp2Var_SysBase::mcrfill_(&ilong,
|
|
&tabini[tabini_offset],
|
|
&tabres[tabres_offset]);
|
|
goto L9999;
|
|
|
|
/* ---------------------------- The end ---------------------------------
|
|
*/
|
|
|
|
L9999:
|
|
return 0;
|
|
} /* mmfmca8_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmfmca9_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmfmca9_(integer *ndimax,
|
|
integer *ncfumx,
|
|
integer *,//ncfvmx,
|
|
integer *ndimen,
|
|
integer *ncoefu,
|
|
integer *ncoefv,
|
|
doublereal *tabini,
|
|
doublereal *tabres)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer tabini_dim1, tabini_dim2, tabini_offset, tabres_dim1, tabres_dim2,
|
|
tabres_offset, i__1, i__2, i__3;
|
|
|
|
/* Local variables */
|
|
integer i__, j, k, ilong;
|
|
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Compression of a data table in a table */
|
|
/* containing only the main data (the input table is not removed). */
|
|
|
|
/* KEYWORDS: */
|
|
/* ----------- */
|
|
/* ALL, MATH_ACCES:: CARREAU&, COMPRESSION, &CARREAU */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDIMAX: Max dimension of the space. */
|
|
/* NCFUMX: Max degree +1 of the table by u. */
|
|
/* NCFVMX: Max degree +1 of the table by v. */
|
|
/* NDIMEN: Dimension of the workspace. */
|
|
/* NCOEFU: Degree +1 of the table by u. */
|
|
/* NCOEFV: Degree +1 of the table by v. */
|
|
/* TABINI: The table to compress. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* TABRES: The compressed table. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* The following call : */
|
|
|
|
/* CALL MMFMCA9(NDIMAX,NCFUMX,NCFVMX,NDIMEN,NCOEFU,NCOEFV,TABINI,TABINI)
|
|
*/
|
|
|
|
/* where TABINI is input/output argument, is possible provided */
|
|
/* that the caller has checked that : */
|
|
|
|
/* NDIMAX > NDIMEN, */
|
|
/* or NDIMAX = NDIMEN and NCFUMX > NCOEFU */
|
|
/* or NDIMAX = NDIMEN, NCFUMX = NCOEFU and NCFVMX > NCOEFV */
|
|
|
|
/* These conditions are not tested in the program. */
|
|
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
|
|
/* Parameter adjustments */
|
|
tabini_dim1 = *ndimax;
|
|
tabini_dim2 = *ncfumx;
|
|
tabini_offset = tabini_dim1 * (tabini_dim2 + 1) + 1;
|
|
tabini -= tabini_offset;
|
|
tabres_dim1 = *ndimen;
|
|
tabres_dim2 = *ncoefu;
|
|
tabres_offset = tabres_dim1 * (tabres_dim2 + 1) + 1;
|
|
tabres -= tabres_offset;
|
|
|
|
/* Function Body */
|
|
if (*ndimen == *ndimax) {
|
|
goto L1000;
|
|
}
|
|
|
|
/* ----------------------- Compression NDIMEN<>NDIMAX -------------------
|
|
*/
|
|
|
|
i__1 = *ncoefv;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
i__2 = *ncoefu;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
i__3 = *ndimen;
|
|
for (i__ = 1; i__ <= i__3; ++i__) {
|
|
tabres[i__ + (j + k * tabres_dim2) * tabres_dim1] = tabini[
|
|
i__ + (j + k * tabini_dim2) * tabini_dim1];
|
|
/* L300: */
|
|
}
|
|
/* L200: */
|
|
}
|
|
/* L100: */
|
|
}
|
|
goto L9999;
|
|
|
|
/* ----------------------- Compression NDIMEN=NDIMAX --------------------
|
|
*/
|
|
|
|
L1000:
|
|
if (*ncoefu == *ncfumx) {
|
|
goto L2000;
|
|
}
|
|
ilong = (*ndimen << 3) * *ncoefu;
|
|
i__1 = *ncoefv;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
AdvApp2Var_SysBase::mcrfill_(&ilong,
|
|
&tabini[(k * tabini_dim2 + 1) * tabini_dim1 + 1],
|
|
&tabres[(k * tabres_dim2 + 1) * tabres_dim1 + 1]);
|
|
/* L500: */
|
|
}
|
|
goto L9999;
|
|
|
|
/* ----------------- Compression NDIMEN=NDIMAX,NCOEFU=NCFUMX ------------
|
|
*/
|
|
|
|
L2000:
|
|
ilong = (*ndimen << 3) * *ncoefu * *ncoefv;
|
|
AdvApp2Var_SysBase::mcrfill_(&ilong,
|
|
&tabini[tabini_offset],
|
|
&tabres[tabres_offset]);
|
|
goto L9999;
|
|
|
|
/* ---------------------------- The end ---------------------------------
|
|
*/
|
|
|
|
L9999:
|
|
return 0;
|
|
} /* mmfmca9_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmfmcar_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmfmcar_(integer *ndimen,
|
|
integer *ncofmx,
|
|
integer *ncoefu,
|
|
integer *ncoefv,
|
|
doublereal *patold,
|
|
doublereal *upara1,
|
|
doublereal *upara2,
|
|
doublereal *vpara1,
|
|
doublereal *vpara2,
|
|
doublereal *patnew,
|
|
integer *iercod)
|
|
|
|
{
|
|
integer c__8 = 8;
|
|
/* System generated locals */
|
|
integer patold_dim1, patold_dim2, patnew_dim1, patnew_dim2,
|
|
i__1, patold_offset,patnew_offset;
|
|
|
|
/* Local variables */
|
|
doublereal* tbaux = 0;
|
|
integer ksize, numax, kk;
|
|
intptr_t iofst;
|
|
integer ibb, ier;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* LIMITATION OF A SQUARE DEFINED ON (0,1)*(0,1) BETWEEN ISOS */
|
|
/* UPARA1 AND UPARA2 (BY U) AND VPARA1 AND VPARA2 BY V. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* LIMITATION , SQUARE , PARAMETER */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOFMX: MAX NUMBER OF COEFF OF THE SQUARE BY U */
|
|
/* NCOEFU: NUMBER OF COEFF OF THE SQUARE BY U */
|
|
/* NCOEFV: NUMBER OF COEFF OF THE SQUARE BY V */
|
|
/* PATOLD : THE SQUARE IS LIMITED BY UPARA1,UPARA2 AND VPARA1,VPARA2
|
|
.*/
|
|
/* UPARA1 : LOWER LIMIT OF U */
|
|
/* UPARA2 : UPPER LIMIT OF U */
|
|
/* VPARA1 : LOWER LIMIT OF V */
|
|
/* VPARA2 : UPPER LIMIT OF V */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* PATNEW : RELIMITED SQUARE, DEFINED ON (0,1)**2 */
|
|
/* IERCOD : =10 COEFF NB TOO GREAT OR NULL */
|
|
/* =13 PB IN THE DYNAMIC ALLOCATION */
|
|
/* = 0 OK. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* ---> The following call : */
|
|
/* CALL MMFMCAR(NCOFMX,NCOEFU,NCOEFV,PATOLD,UPARA1,UPARA2,VPARA1,VPARA2
|
|
*/
|
|
/* ,PATOLD), */
|
|
/* where PATOLD is input/output argument is absolutely legal. */
|
|
|
|
/* ---> The max number of coeff by u and v of PATOLD is 61 */
|
|
|
|
/* ---> If NCOEFU < NCOFMX, the data is compressed by MMFMCA9 before */
|
|
/* limitation by v to get time during the execution */
|
|
/* of MMARC41 that follows (the square is processed as a curve of
|
|
*/
|
|
/* dimension NDIMEN*NCOEFU possessing NCOEFV coefficients). */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Name of the routine */
|
|
|
|
|
|
/* Parameter adjustments */
|
|
patnew_dim1 = *ndimen;
|
|
patnew_dim2 = *ncofmx;
|
|
patnew_offset = patnew_dim1 * (patnew_dim2 + 1) + 1;
|
|
patnew -= patnew_offset;
|
|
patold_dim1 = *ndimen;
|
|
patold_dim2 = *ncofmx;
|
|
patold_offset = patold_dim1 * (patold_dim2 + 1) + 1;
|
|
patold -= patold_offset;
|
|
|
|
/* Function Body */
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 2) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMFMCAR", 7L);
|
|
}
|
|
*iercod = 0;
|
|
iofst = 0;
|
|
AdvApp2Var_SysBase anAdvApp2Var_SysBase;
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
/* TEST OF COEFFICIENT NUMBERS */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
if (*ncofmx < *ncoefu) {
|
|
*iercod = 10;
|
|
goto L9999;
|
|
}
|
|
if (*ncoefu < 1 || *ncoefu > 61 || *ncoefv < 1 || *ncoefv > 61) {
|
|
*iercod = 10;
|
|
goto L9999;
|
|
}
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
/* CASE WHEN UPARA1=VPARA1=0 AND UPARA2=VPARA2=1 */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
if (*upara1 == 0. && *upara2 == 1. && *vpara1 == 0. && *vpara2 == 1.) {
|
|
ksize = (*ndimen << 3) * *ncofmx * *ncoefv;
|
|
AdvApp2Var_SysBase::mcrfill_(&ksize,
|
|
&patold[patold_offset],
|
|
&patnew[patnew_offset]);
|
|
goto L9999;
|
|
}
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
/* LIMITATION BY U */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
if (*upara1 == 0. && *upara2 == 1.) {
|
|
goto L2000;
|
|
}
|
|
i__1 = *ncoefv;
|
|
for (kk = 1; kk <= i__1; ++kk) {
|
|
mmarc41_(ndimen, ndimen, ncoefu, &patold[(kk * patold_dim2 + 1) *
|
|
patold_dim1 + 1], upara1, upara2, &patnew[(kk * patnew_dim2 +
|
|
1) * patnew_dim1 + 1], iercod);
|
|
/* L100: */
|
|
}
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
/* LIMITATION BY V */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
L2000:
|
|
if (*vpara1 == 0. && *vpara2 == 1.) {
|
|
goto L9999;
|
|
}
|
|
|
|
/* ----------- LIMITATION BY V (WITH COMPRESSION I.E. NCOEFU<NCOFMX) ----
|
|
*/
|
|
|
|
numax = *ndimen * *ncoefu;
|
|
if (*ncofmx != *ncoefu) {
|
|
/* ------------------------- Dynamic allocation -------------------
|
|
---- */
|
|
ksize = *ndimen * *ncoefu * *ncoefv;
|
|
anAdvApp2Var_SysBase.mcrrqst_(&c__8, &ksize, tbaux, &iofst, &ier);
|
|
if (ier > 0) {
|
|
*iercod = 13;
|
|
goto L9900;
|
|
}
|
|
/* --------------- Compression by (NDIMEN,NCOEFU,NCOEFV) ------------
|
|
---- */
|
|
if (*upara1 == 0. && *upara2 == 1.) {
|
|
AdvApp2Var_MathBase::mmfmca9_(ndimen,
|
|
ncofmx,
|
|
ncoefv,
|
|
ndimen,
|
|
ncoefu,
|
|
ncoefv,
|
|
&patold[patold_offset],
|
|
&tbaux[iofst]);
|
|
} else {
|
|
AdvApp2Var_MathBase::mmfmca9_(ndimen,
|
|
ncofmx,
|
|
ncoefv,
|
|
ndimen,
|
|
ncoefu,
|
|
ncoefv,
|
|
&patnew[patnew_offset],
|
|
&tbaux[iofst]);
|
|
}
|
|
/* ------------------------- Limitation by v ------------------------
|
|
---- */
|
|
mmarc41_(&numax, &numax, ncoefv, &tbaux[iofst], vpara1, vpara2, &
|
|
tbaux[iofst], iercod);
|
|
/* --------------------- Expansion of TBAUX into PATNEW -------------
|
|
--- */
|
|
AdvApp2Var_MathBase::mmfmca8_(ndimen, ncoefu, ncoefv, ndimen, ncofmx, ncoefv, &tbaux[iofst]
|
|
, &patnew[patnew_offset]);
|
|
goto L9900;
|
|
|
|
/* -------- LIMITATION BY V (WITHOUT COMPRESSION I.E. NCOEFU=NCOFMX) ---
|
|
---- */
|
|
|
|
} else {
|
|
if (*upara1 == 0. && *upara2 == 1.) {
|
|
mmarc41_(&numax, &numax, ncoefv, &patold[patold_offset], vpara1,
|
|
vpara2, &patnew[patnew_offset], iercod);
|
|
} else {
|
|
mmarc41_(&numax, &numax, ncoefv, &patnew[patnew_offset], vpara1,
|
|
vpara2, &patnew[patnew_offset], iercod);
|
|
}
|
|
goto L9999;
|
|
}
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
/* DESALLOCATION */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
L9900:
|
|
if (iofst != 0) {
|
|
anAdvApp2Var_SysBase.mcrdelt_(&c__8, &ksize, tbaux, &iofst, &ier);
|
|
}
|
|
if (ier > 0) {
|
|
*iercod = 13;
|
|
}
|
|
|
|
/* ------------------------------ The end -------------------------------
|
|
*/
|
|
|
|
L9999:
|
|
if (*iercod > 0) {
|
|
AdvApp2Var_SysBase::maermsg_("MMFMCAR", iercod, 7L);
|
|
}
|
|
if (ibb >= 2) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMFMCAR", 7L);
|
|
}
|
|
return 0;
|
|
} /* mmfmcar_ */
|
|
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmfmcb5_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmfmcb5_(integer *isenmsc,
|
|
integer *ndimax,
|
|
integer *ncf1mx,
|
|
doublereal *courb1,
|
|
integer *ncoeff,
|
|
integer *ncf2mx,
|
|
integer *ndimen,
|
|
doublereal *courb2,
|
|
integer *iercod)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer courb1_dim1, courb1_offset, courb2_dim1, courb2_offset, i__1,
|
|
i__2;
|
|
|
|
/* Local variables */
|
|
integer i__, nboct, nd;
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Reformating (and eventual compression/decompression) of curve */
|
|
/* (ndim,.) by (.,ndim) and vice versa. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* ALL , MATH_ACCES :: */
|
|
/* COURBE&, REORGANISATION,COMPRESSION,INVERSION , &COURBE */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* -------------------- */
|
|
/* ISENMSC : required direction of the transfer : */
|
|
/* 1 : passage of (NDIMEN,.) ---> (.,NDIMEN) direction to AB
|
|
*/
|
|
/* -1 : passage of (.,NDIMEN) ---> (NDIMEN,.) direction to TS,T
|
|
V*/
|
|
/* NDIMAX : format / dimension */
|
|
/* NCF1MX : format by t of COURB1 */
|
|
/* if ISENMSC= 1 : COURB1: The curve to be processed (NDIMAX,.) */
|
|
/* NCOEFF : number of coeff of the curve */
|
|
/* NCF2MX : format by t of COURB2 */
|
|
/* NDIMEN : dimension of the curve and format of COURB2 */
|
|
/* if ISENMSC=-1 : COURB2: The curve to be processed (.,NDIMEN) */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* --------------------- */
|
|
/* if ISENMSC= 1 : COURB2: The resulting curve (.,NDIMEN) */
|
|
/* if ISENMSC=-1 : COURB1: The resulting curve (NDIMAX,.) */
|
|
|
|
/* COMMONS USED : */
|
|
/* ------------------ */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* --------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* allow to process the usual transfers as follows : */
|
|
/* | ---- ISENMSC = 1 ---- | | ---- ISENMSC =-1 ----- | */
|
|
/* TS (3,21) --> (21,3) AB ; AB (21,3) --> (3,21) TS */
|
|
/* TS (3,21) --> (NU,3) AB ; AB (NU,3) --> (3,21) TS */
|
|
/* (3,NU) --> (21,3) AB ; AB (21,3) --> (3,NU) */
|
|
/* (3,NU) --> (NU,3) AB ; AB (NU,3) --> (3,NU) */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* Parameter adjustments */
|
|
courb1_dim1 = *ndimax;
|
|
courb1_offset = courb1_dim1 + 1;
|
|
courb1 -= courb1_offset;
|
|
courb2_dim1 = *ncf2mx;
|
|
courb2_offset = courb2_dim1 + 1;
|
|
courb2 -= courb2_offset;
|
|
|
|
/* Function Body */
|
|
if (*ndimen > *ndimax || *ncoeff > *ncf1mx || *ncoeff > *ncf2mx) {
|
|
goto L9119;
|
|
}
|
|
|
|
if (*ndimen == 1 && *ncf1mx == *ncf2mx) {
|
|
nboct = *ncf2mx << 3;
|
|
if (*isenmsc == 1) {
|
|
AdvApp2Var_SysBase::mcrfill_(&nboct,
|
|
&courb1[courb1_offset],
|
|
&courb2[courb2_offset]);
|
|
}
|
|
if (*isenmsc == -1) {
|
|
AdvApp2Var_SysBase::mcrfill_(&nboct,
|
|
&courb2[courb2_offset],
|
|
&courb1[courb1_offset]);
|
|
}
|
|
*iercod = -3136;
|
|
goto L9999;
|
|
}
|
|
|
|
*iercod = 0;
|
|
if (*isenmsc == 1) {
|
|
i__1 = *ndimen;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
i__2 = *ncoeff;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
courb2[i__ + nd * courb2_dim1] = courb1[nd + i__ *
|
|
courb1_dim1];
|
|
/* L400: */
|
|
}
|
|
/* L500: */
|
|
}
|
|
} else if (*isenmsc == -1) {
|
|
i__1 = *ndimen;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
i__2 = *ncoeff;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
courb1[nd + i__ * courb1_dim1] = courb2[i__ + nd *
|
|
courb2_dim1];
|
|
/* L1400: */
|
|
}
|
|
/* L1500: */
|
|
}
|
|
} else {
|
|
*iercod = 3164;
|
|
}
|
|
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9119:
|
|
*iercod = 3119;
|
|
|
|
L9999:
|
|
if (*iercod != 0) {
|
|
AdvApp2Var_SysBase::maermsg_("MMFMCB5", iercod, 7L);
|
|
}
|
|
return 0;
|
|
} /* mmfmcb5_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmfmtb1_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmfmtb1_(integer *maxsz1,
|
|
doublereal *table1,
|
|
integer *isize1,
|
|
integer *jsize1,
|
|
integer *maxsz2,
|
|
doublereal *table2,
|
|
integer *isize2,
|
|
integer *jsize2,
|
|
integer *iercod)
|
|
{
|
|
integer c__8 = 8;
|
|
|
|
/* System generated locals */
|
|
integer table1_dim1, table1_offset, table2_dim1, table2_offset, i__1,
|
|
i__2;
|
|
|
|
/* Local variables */
|
|
doublereal* work = 0;
|
|
integer ilong, isize, ii, jj, ier = 0;
|
|
intptr_t iofst = 0,iipt, jjpt;
|
|
|
|
|
|
/************************************************************************
|
|
*******/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Inversion of elements of a rectangular table (T1(i,j) */
|
|
/* loaded in T2(j,i)) */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* ALL, MATH_ACCES :: TABLEAU&, INVERSION, &TABLEAU */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* MAXSZ1: Max Nb of elements by the 1st dimension of TABLE1. */
|
|
/* TABLE1: Table of reals by two dimensions. */
|
|
/* ISIZE1: Nb of useful elements of TABLE1 on the 1st dimension */
|
|
/* JSIZE1: Nb of useful elements of TABLE1 on the 2nd dimension */
|
|
/* MAXSZ2: Nb max of elements by the 1st dimension of TABLE2. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* TABLE2: Table of reals by two dimensions, containing the transposition */
|
|
/* of the rectangular table TABLE1. */
|
|
/* ISIZE2: Nb of useful elements of TABLE2 on the 1st dimension */
|
|
/* JSIZE2: Nb of useful elements of TABLE2 on the 2nd dimension */
|
|
/* IERCOD: Erroe coder. */
|
|
/* = 0, ok. */
|
|
/* = 1, error in the dimension of tables */
|
|
/* ether MAXSZ1 < ISIZE1 (table TABLE1 too small). */
|
|
/* or MAXSZ2 < JSIZE1 (table TABLE2 too small). */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* It is possible to use TABLE1 as input and output table i.e. */
|
|
/* call: */
|
|
/* CALL MMFMTB1(MAXSZ1,TABLE1,ISIZE1,JSIZE1,MAXSZ2,TABLE1 */
|
|
/* ,ISIZE2,JSIZE2,IERCOD) */
|
|
/* is valuable. */
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
|
|
/* Parameter adjustments */
|
|
table1_dim1 = *maxsz1;
|
|
table1_offset = table1_dim1 + 1;
|
|
table1 -= table1_offset;
|
|
table2_dim1 = *maxsz2;
|
|
table2_offset = table2_dim1 + 1;
|
|
table2 -= table2_offset;
|
|
AdvApp2Var_SysBase anAdvApp2Var_SysBase;
|
|
|
|
/* Function Body */
|
|
*iercod = 0;
|
|
if (*isize1 > *maxsz1 || *jsize1 > *maxsz2) {
|
|
goto L9100;
|
|
}
|
|
|
|
iofst = 0;
|
|
isize = *maxsz2 * *isize1;
|
|
anAdvApp2Var_SysBase.mcrrqst_(&c__8, &isize, work, &iofst, &ier);
|
|
if (ier > 0) {
|
|
goto L9200;
|
|
}
|
|
|
|
/* DO NOT BE AFRAID OF CRUSHING. */
|
|
|
|
i__1 = *isize1;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
iipt = (ii - 1) * *maxsz2 + iofst;
|
|
i__2 = *jsize1;
|
|
for (jj = 1; jj <= i__2; ++jj) {
|
|
jjpt = iipt + (jj - 1);
|
|
work[jjpt] = table1[ii + jj * table1_dim1];
|
|
/* L200: */
|
|
}
|
|
/* L100: */
|
|
}
|
|
ilong = isize << 3;
|
|
AdvApp2Var_SysBase::mcrfill_(&ilong,
|
|
&work[iofst],
|
|
&table2[table2_offset]);
|
|
|
|
/* -------------- The number of elements of TABLE2 is returned ------------
|
|
*/
|
|
|
|
ii = *isize1;
|
|
*isize2 = *jsize1;
|
|
*jsize2 = ii;
|
|
|
|
goto L9999;
|
|
|
|
/* ------------------------------- THE END ------------------------------
|
|
*/
|
|
/* --> Invalid input. */
|
|
L9100:
|
|
*iercod = 1;
|
|
goto L9999;
|
|
/* --> Pb of allocation. */
|
|
L9200:
|
|
*iercod = 2;
|
|
goto L9999;
|
|
|
|
L9999:
|
|
if (iofst != 0) {
|
|
anAdvApp2Var_SysBase.mcrdelt_(&c__8, &isize, work, &iofst, &ier);
|
|
}
|
|
if (ier > 0) {
|
|
*iercod = 2;
|
|
}
|
|
return 0;
|
|
} /* mmfmtb1_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmgaus1_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmgaus1_(integer *ndimf,
|
|
int (*bfunx) (
|
|
integer *ninteg,
|
|
doublereal *parame,
|
|
doublereal *vfunj1,
|
|
integer *iercod
|
|
),
|
|
|
|
integer *k,
|
|
doublereal *xd,
|
|
doublereal *xf,
|
|
doublereal *saux1,
|
|
doublereal *saux2,
|
|
doublereal *somme,
|
|
integer *niter,
|
|
integer *iercod)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer ndeg;
|
|
doublereal h__[20];
|
|
integer j;
|
|
doublereal t, u[20], x;
|
|
integer idimf;
|
|
doublereal c1x, c2x;
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* -------- */
|
|
|
|
/* Calculate the integral of function BFUNX passed in parameter */
|
|
/* between limits XD and XF . */
|
|
/* The function should be calculated for any value */
|
|
/* of the variable in the given interval.. */
|
|
/* The method GAUSS-LEGENDRE is used. */
|
|
/* For explications refer to the book : */
|
|
/* Complements de mathematiques a l'usage des Ingenieurs de */
|
|
/* l'electrotechnique et des telecommunications. */
|
|
/* Par Andre ANGOT - Collection technique et scientifique du CNET
|
|
*/
|
|
/* page 772 .... */
|
|
/* The degree of LEGENDRE polynoms used is passed in parameter.
|
|
*/
|
|
/* KEYWORDS : */
|
|
/* --------- */
|
|
/* INTEGRATION,LEGENDRE,GAUSS */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
|
|
/* NDIMF : Dimension of the function */
|
|
/* BFUNX : Function to integrate passed as argument */
|
|
/* Should be declared as EXTERNAL in the call routine. */
|
|
/* SUBROUTINE BFUNX(NDIMF,X,VAL,IER) */
|
|
/* REAL *8 X,VAL */
|
|
/* K : Parameter determining the degree of the LEGENDRE polynom that
|
|
*/
|
|
/* can take a value between 0 and 10. */
|
|
/* The degree of the polynom is equal to 4 k, that is 4, 8,
|
|
*/
|
|
/* 12, 16, 20, 24, 28, 32, 36 and 40. */
|
|
/* If K is not correct, the degree is set to 40 directly.
|
|
*/
|
|
/* XD : Lower limit of the interval of integration. */
|
|
/* XF : Upper limit of the interval of integration. */
|
|
/* SAUX1 : Auxiliary table */
|
|
/* SAUX2 : Auxiliary table */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
|
|
/* SOMME : Value of the integral */
|
|
/* NITER : Number of iterations to be carried out. */
|
|
/* It is equal to the degree of the polynom. */
|
|
|
|
/* IER : Error code : */
|
|
/* < 0 ==> Attention - Warning */
|
|
/* = 0 ==> Everything is OK */
|
|
/* > 0 ==> Critical error - Apply special processing */
|
|
/* ==> Error in the calculation of BFUNX (return code */
|
|
/* of this routine */
|
|
|
|
/* If error => SUM = 0 */
|
|
|
|
/* COMMONS USED : */
|
|
/* ----------------- */
|
|
|
|
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
|
|
/* Type Name */
|
|
/* @ BFUNX MVGAUS0 */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* --------------------------------- */
|
|
|
|
/* See the explanations detailed in the listing */
|
|
/* Use of the GAUSS method (orthogonal polynoms) */
|
|
/* The symmetry of roots of these polynomes is used */
|
|
/* Depending on K, the degree of the interpolated polynom grows.
|
|
*/
|
|
/* If you wish to calculate the integral with a given precision, */
|
|
/* loop on k varying from 1 to 10 and test the difference of 2
|
|
*/
|
|
/* consecutive iterations. Stop the loop if this difference is less that */
|
|
/* an epsilon value set to 10E-6 for example. */
|
|
/* If S1 and S2 are 2 successive iterations, test following this example :
|
|
*/
|
|
|
|
/* AF=DABS(S1-S2) */
|
|
/* AS=DABS(S2) */
|
|
/* If AS < 1 test if FS < eps otherwise test if AF/AS < eps
|
|
*/
|
|
/* -- ----- ----- */
|
|
/* > */
|
|
/************************************************************************
|
|
******/
|
|
/* DECLARATIONS */
|
|
/************************************************************************
|
|
******/
|
|
|
|
|
|
|
|
/* ****** General Initialization */
|
|
|
|
/* Parameter adjustments */
|
|
--somme;
|
|
--saux2;
|
|
--saux1;
|
|
|
|
/* Function Body */
|
|
AdvApp2Var_SysBase::mvriraz_(ndimf,
|
|
&somme[1]);
|
|
*iercod = 0;
|
|
|
|
/* ****** Loading of coefficients U and H ** */
|
|
/* -------------------------------------------- */
|
|
|
|
mvgaus0_(k, u, h__, &ndeg, iercod);
|
|
if (*iercod > 0) {
|
|
goto L9999;
|
|
}
|
|
|
|
/* ****** C1X => Medium interval point [XD,XF] */
|
|
/* ****** C2X => 1/2 amplitude interval [XD,XF] */
|
|
|
|
c1x = (*xf + *xd) * .5;
|
|
c2x = (*xf - *xd) * .5;
|
|
|
|
/* ---------------------------------------- */
|
|
/* ****** Integration for degree NDEG ** */
|
|
/* ---------------------------------------- */
|
|
|
|
i__1 = ndeg;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
t = c2x * u[j - 1];
|
|
|
|
x = c1x + t;
|
|
(*bfunx)(ndimf, &x, &saux1[1], iercod);
|
|
if (*iercod != 0) {
|
|
goto L9999;
|
|
}
|
|
|
|
x = c1x - t;
|
|
(*bfunx)(ndimf, &x, &saux2[1], iercod);
|
|
if (*iercod != 0) {
|
|
goto L9999;
|
|
}
|
|
|
|
i__2 = *ndimf;
|
|
for (idimf = 1; idimf <= i__2; ++idimf) {
|
|
somme[idimf] += h__[j - 1] * (saux1[idimf] + saux2[idimf]);
|
|
}
|
|
|
|
}
|
|
|
|
*niter = ndeg << 1;
|
|
i__1 = *ndimf;
|
|
for (idimf = 1; idimf <= i__1; ++idimf) {
|
|
somme[idimf] *= c2x;
|
|
}
|
|
|
|
/* ****** End of sub-program ** */
|
|
|
|
L9999:
|
|
|
|
return 0 ;
|
|
} /* mmgaus1_ */
|
|
//=======================================================================
|
|
//function : mmherm0_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmherm0_(doublereal *debfin,
|
|
integer *iercod)
|
|
{
|
|
integer c__576 = 576;
|
|
integer c__6 = 6;
|
|
|
|
|
|
/* System generated locals */
|
|
integer i__1, i__2;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
doublereal amat[36] /* was [6][6] */;
|
|
integer iord[2];
|
|
doublereal prod;
|
|
integer iord1, iord2;
|
|
doublereal miden[36] /* was [6][6] */;
|
|
integer ncmat;
|
|
doublereal epspi, d1, d2;
|
|
integer ii, jj, pp, ncf;
|
|
doublereal cof[6];
|
|
integer iof[2], ier;
|
|
doublereal mat[36] /* was [6][6] */;
|
|
integer cot;
|
|
doublereal abid[72] /* was [12][6] */;
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* INIT OF COEFFS. OF POLYNOMS OF HERMIT INTERPOLATION */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* MATH_ACCES :: HERMITE */
|
|
|
|
/* INPUT ARGUMENTS */
|
|
/* -------------------- */
|
|
/* DEBFIN : PARAMETERS DEFINING THE CONSTRAINTS */
|
|
/* DEBFIN(1) : FIRST PARAMETER */
|
|
/* DEBFIN(2) : SECOND PARAMETER */
|
|
|
|
/* ONE SHOULD HAVE: */
|
|
/* ABS (DEBFIN(I)) < 100 */
|
|
/* and */
|
|
/* (ABS(DEBFIN(1)+ABS(DEBFIN(2))) > 1/100 */
|
|
/* (for overflows) */
|
|
|
|
/* ABS(DEBFIN(2)-DEBFIN(1)) / (ABS(DEBFIN(1)+ABS(DEBFIN(2))) > 1/100
|
|
*/
|
|
/* (for the conditioning) */
|
|
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* --------------------- */
|
|
|
|
/* IERCOD : Error code : 0 : O.K. */
|
|
/* 1 : value of DEBFIN */
|
|
/* are unreasonable */
|
|
/* -1 : init was already done */
|
|
/* (OK but no processing) */
|
|
|
|
/* COMMONS USED : */
|
|
/* ------------------ */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
/* Type Name */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* This program initializes the coefficients of Hermit polynoms */
|
|
/* that are read later by MMHERM1 */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Used to STORE coefficients of Hermit interpolation polynoms */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* HERMITE */
|
|
|
|
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* The coefficients of hermit polynoms are calculated by */
|
|
/* the routine MMHERM0 and read by the routine MMHERM1 */
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/* NBCOEF is the size of CMHERM (see below) */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* Data checking */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* Parameter adjustments */
|
|
--debfin;
|
|
|
|
/* Function Body */
|
|
d1 = advapp_abs(debfin[1]);
|
|
if (d1 > (float)100.) {
|
|
goto L9101;
|
|
}
|
|
|
|
d2 = advapp_abs(debfin[2]);
|
|
if (d2 > (float)100.) {
|
|
goto L9101;
|
|
}
|
|
|
|
d2 = d1 + d2;
|
|
if (d2 < (float).01) {
|
|
goto L9101;
|
|
}
|
|
|
|
d1 = (d__1 = debfin[2] - debfin[1], advapp_abs(d__1));
|
|
if (d1 / d2 < (float).01) {
|
|
goto L9101;
|
|
}
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* Initialization */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
*iercod = 0;
|
|
|
|
epspi = 1e-10;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* IS IT ALREADY INITIALIZED ? */
|
|
|
|
d1 = advapp_abs(debfin[1]) + advapp_abs(debfin[2]);
|
|
d1 *= 16111959;
|
|
|
|
if (debfin[1] != mmcmher_.tdebut) {
|
|
goto L100;
|
|
}
|
|
if (debfin[2] != mmcmher_.tfinal) {
|
|
goto L100;
|
|
}
|
|
if (d1 != mmcmher_.verifi) {
|
|
goto L100;
|
|
}
|
|
|
|
|
|
goto L9001;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* CALCULATION */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
L100:
|
|
|
|
/* Init. matrix identity : */
|
|
|
|
ncmat = 36;
|
|
AdvApp2Var_SysBase::mvriraz_(&ncmat,
|
|
miden);
|
|
|
|
for (ii = 1; ii <= 6; ++ii) {
|
|
miden[ii + ii * 6 - 7] = 1.;
|
|
/* L110: */
|
|
}
|
|
|
|
|
|
|
|
/* Init to 0 of table CMHERM */
|
|
|
|
AdvApp2Var_SysBase::mvriraz_(&c__576, mmcmher_.cmherm);
|
|
|
|
/* Calculation by solution of linear systems */
|
|
|
|
for (iord1 = -1; iord1 <= 2; ++iord1) {
|
|
for (iord2 = -1; iord2 <= 2; ++iord2) {
|
|
|
|
iord[0] = iord1;
|
|
iord[1] = iord2;
|
|
|
|
|
|
iof[0] = 0;
|
|
iof[1] = iord[0] + 1;
|
|
|
|
|
|
ncf = iord[0] + iord[1] + 2;
|
|
|
|
/* Calculate matrix MAT to invert: */
|
|
|
|
for (cot = 1; cot <= 2; ++cot) {
|
|
|
|
|
|
if (iord[cot - 1] > -1) {
|
|
prod = 1.;
|
|
i__1 = ncf;
|
|
for (jj = 1; jj <= i__1; ++jj) {
|
|
cof[jj - 1] = 1.;
|
|
/* L200: */
|
|
}
|
|
}
|
|
|
|
i__1 = iord[cot - 1] + 1;
|
|
for (pp = 1; pp <= i__1; ++pp) {
|
|
|
|
ii = pp + iof[cot - 1];
|
|
|
|
prod = 1.;
|
|
|
|
i__2 = pp - 1;
|
|
for (jj = 1; jj <= i__2; ++jj) {
|
|
mat[ii + jj * 6 - 7] = (float)0.;
|
|
/* L300: */
|
|
}
|
|
|
|
i__2 = ncf;
|
|
for (jj = pp; jj <= i__2; ++jj) {
|
|
|
|
/* everything is done in these 3 lines
|
|
*/
|
|
|
|
mat[ii + jj * 6 - 7] = cof[jj - 1] * prod;
|
|
cof[jj - 1] *= jj - pp;
|
|
prod *= debfin[cot];
|
|
|
|
/* L400: */
|
|
}
|
|
/* L500: */
|
|
}
|
|
|
|
/* L1000: */
|
|
}
|
|
|
|
/* Inversion */
|
|
|
|
if (ncf >= 1) {
|
|
AdvApp2Var_MathBase::mmmrslwd_(&c__6, &ncf, &ncf, mat, miden, &epspi, abid, amat, &
|
|
ier);
|
|
if (ier > 0) {
|
|
goto L9101;
|
|
}
|
|
}
|
|
|
|
for (cot = 1; cot <= 2; ++cot) {
|
|
i__1 = iord[cot - 1] + 1;
|
|
for (pp = 1; pp <= i__1; ++pp) {
|
|
i__2 = ncf;
|
|
for (ii = 1; ii <= i__2; ++ii) {
|
|
mmcmher_.cmherm[ii + (pp + (cot + ((iord1 + (iord2 <<
|
|
2)) << 1)) * 3) * 6 + 155] = amat[ii + (pp +
|
|
iof[cot - 1]) * 6 - 7];
|
|
/* L1300: */
|
|
}
|
|
/* L1400: */
|
|
}
|
|
/* L1500: */
|
|
}
|
|
|
|
/* L2000: */
|
|
}
|
|
/* L2010: */
|
|
}
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* The initialized flag is located: */
|
|
|
|
mmcmher_.tdebut = debfin[1];
|
|
mmcmher_.tfinal = debfin[2];
|
|
|
|
d1 = advapp_abs(debfin[1]) + advapp_abs(debfin[2]);
|
|
mmcmher_.verifi = d1 * 16111959;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9101:
|
|
*iercod = 1;
|
|
goto L9999;
|
|
|
|
L9001:
|
|
*iercod = -1;
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9999:
|
|
|
|
AdvApp2Var_SysBase::maermsg_("MMHERM0", iercod, 7L);
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
return 0 ;
|
|
} /* mmherm0_ */
|
|
|
|
//=======================================================================
|
|
//function : mmherm1_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmherm1_(doublereal *debfin,
|
|
integer *ordrmx,
|
|
integer *iordre,
|
|
doublereal *hermit,
|
|
integer *iercod)
|
|
{
|
|
/* System generated locals */
|
|
integer hermit_dim1, hermit_dim2, hermit_offset;
|
|
|
|
/* Local variables */
|
|
integer nbval;
|
|
doublereal d1;
|
|
integer cot;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* reading of coeffs. of HERMIT interpolation polynoms */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* MATH_ACCES :: HERMIT */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* -------------------- */
|
|
/* DEBFIN : PARAMETES DEFINING THE CONSTRAINTS */
|
|
/* DEBFIN(1) : FIRST PARAMETER */
|
|
/* DEBFIN(2) : SECOND PARAMETER */
|
|
|
|
/* Should be equal to the corresponding arguments during the */
|
|
/* last call to MMHERM0 for the initialization of coeffs. */
|
|
|
|
/* ORDRMX : indicates the dimensioning of HERMIT: */
|
|
/* there is no choice : ORDRMX should be equal to the value */
|
|
/* of PARAMETER IORDMX of INCLUDE MMCMHER, or 2 for the moment */
|
|
|
|
/* IORDRE (2) : Orders of constraints in each corresponding parameter DEBFIN(I) */
|
|
/* should be between -1 (no constraints) and ORDRMX. */
|
|
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* --------------------- */
|
|
|
|
/* HERMIT : HERMIT(1:IORDRE(1)+IORDRE(2)+2, j, cote) are the */
|
|
/* coefficients in the canonic base of Hermit polynom */
|
|
/* corresponding to orders IORDRE with parameters DEBFIN for */
|
|
/* the constraint of order j on DEBFIN(cote). j is between 0 and IORDRE(cote). */
|
|
|
|
|
|
/* IERCOD : Error code : */
|
|
/* -1: O.K but necessary to reinitialize the coefficients */
|
|
/* (info for optimization) */
|
|
/* 0 : O.K. */
|
|
/* 1 : Error in MMHERM0 */
|
|
/* 2 : arguments invalid */
|
|
|
|
/* COMMONS USED : */
|
|
/* ------------------ */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
/* Type Name */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* This program reads coefficients of Hermit polynoms */
|
|
/* that were earlier initialized by MMHERM0 */
|
|
|
|
/* PMN : initialisation is no more done by the caller. */
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Serves to STORE the coefficients of Hermit interpolation polynoms */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* HERMITE */
|
|
|
|
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* the coefficients of Hetmit polynoms are calculated by */
|
|
/* routine MMHERM0 and read by routine MMHERM1 */
|
|
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/* NBCOEF is the size of CMHERM (see lower) */
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* Initializations */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
--debfin;
|
|
hermit_dim1 = (*ordrmx << 1) + 2;
|
|
hermit_dim2 = *ordrmx + 1;
|
|
hermit_offset = hermit_dim1 * hermit_dim2 + 1;
|
|
hermit -= hermit_offset;
|
|
--iordre;
|
|
|
|
/* Function Body */
|
|
*iercod = 0;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* Data Checking */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
if (*ordrmx != 2) {
|
|
goto L9102;
|
|
}
|
|
|
|
for (cot = 1; cot <= 2; ++cot) {
|
|
if (iordre[cot] < -1) {
|
|
goto L9102;
|
|
}
|
|
if (iordre[cot] > *ordrmx) {
|
|
goto L9102;
|
|
}
|
|
/* L100: */
|
|
}
|
|
|
|
|
|
/* IS-IT CORRECTLY INITIALIZED ? */
|
|
|
|
d1 = advapp_abs(debfin[1]) + advapp_abs(debfin[2]);
|
|
d1 *= 16111959;
|
|
|
|
/* OTHERWISE IT IS INITIALIZED */
|
|
|
|
if (debfin[1] != mmcmher_.tdebut || debfin[2] != mmcmher_.tfinal || d1
|
|
!= mmcmher_.verifi) {
|
|
*iercod = -1;
|
|
mmherm0_(&debfin[1], iercod);
|
|
if (*iercod > 0) {
|
|
goto L9101;
|
|
}
|
|
}
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* READING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
nbval = 36;
|
|
|
|
AdvApp2Var_SysBase::msrfill_(&nbval, &mmcmher_.cmherm[((((iordre[1] + (iordre[2] << 2)) << 1)
|
|
+ 1) * 3 + 1) * 6 + 156], &hermit[hermit_offset]);
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9101:
|
|
*iercod = 1;
|
|
goto L9999;
|
|
|
|
L9102:
|
|
*iercod = 2;
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9999:
|
|
|
|
AdvApp2Var_SysBase::maermsg_("MMHERM1", iercod, 7L);
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
return 0 ;
|
|
} /* mmherm1_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmhjcan_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmhjcan_(integer *ndimen,
|
|
integer *ncourb,
|
|
integer *ncftab,
|
|
integer *orcont,
|
|
integer *ncflim,
|
|
doublereal *tcbold,
|
|
doublereal *tdecop,
|
|
doublereal *tcbnew,
|
|
integer *iercod)
|
|
|
|
{
|
|
integer c__2 = 2;
|
|
integer c__21 = 21;
|
|
/* System generated locals */
|
|
integer tcbold_dim1, tcbold_dim2, tcbold_offset, tcbnew_dim1, tcbnew_dim2,
|
|
tcbnew_offset, i__1, i__2, i__3, i__4, i__5;
|
|
|
|
|
|
/* Local variables */
|
|
logical ldbg;
|
|
integer ndeg;
|
|
doublereal taux1[21];
|
|
integer d__, e, i__, k;
|
|
doublereal mfact;
|
|
integer ncoeff;
|
|
doublereal tjacap[21];
|
|
integer iordre[2];
|
|
doublereal hermit[36]/* was [6][3][2] */, ctenor, bornes[2];
|
|
integer ier;
|
|
integer aux1, aux2;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* CONVERSION OF TABLE TCBOLD OF POLYNOMIAL CURVE COEFFICIENTS */
|
|
/* EXPRESSED IN HERMIT JACOBI BASE, INTO A */
|
|
/* TABLE OF COEFFICIENTS TCBNEW OF COURVES EXPRESSED IN THE CANONIC BASE */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* CANNONIC, HERMIT, JACCOBI */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* -------------------- */
|
|
/* ORDHER : ORDER OF HERMIT POLYNOMS OR ORDER OF CONTINUITY */
|
|
/* NCOEFS : NUMBER OF COEFFICIENTS OF A POLYNOMIAL CURVE */
|
|
/* FOR ONE OF ITS NDIM COMPONENTS;(DEGREE+1 OF THE CURVE)
|
|
*/
|
|
/* NDIM : DIMENSION OF THE CURVE */
|
|
/* CBHEJA : TABLE OF COEFFICIENTS OF THE CURVE IN THE BASE */
|
|
/* HERMIT JACOBI */
|
|
/* (H(0,-1),..,H(ORDHER,-1),H(0,1),..,H(ORDHER,1), */
|
|
/* JA(ORDHER+1,2*ORDHER+2),....,JA(ORDHER+1,NCOEFS-1) */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* --------------------- */
|
|
/* CBRCAN : TABLE OF COEFFICIENTS OF THE CURVE IN THE CANONIC BASE */
|
|
/* (1, t, ...) */
|
|
|
|
/* COMMONS USED : */
|
|
/* ------------------ */
|
|
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* --------------------- */
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Providesinteger constants from 0 to 1000 */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* ALL, INTEGER */
|
|
|
|
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* INITIALIZATION */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
--ncftab;
|
|
tcbnew_dim1 = *ndimen;
|
|
tcbnew_dim2 = *ncflim;
|
|
tcbnew_offset = tcbnew_dim1 * (tcbnew_dim2 + 1) + 1;
|
|
tcbnew -= tcbnew_offset;
|
|
tcbold_dim1 = *ndimen;
|
|
tcbold_dim2 = *ncflim;
|
|
tcbold_offset = tcbold_dim1 * (tcbold_dim2 + 1) + 1;
|
|
tcbold -= tcbold_offset;
|
|
|
|
/* Function Body */
|
|
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 2;
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMHJCAN", 7L);
|
|
}
|
|
*iercod = 0;
|
|
|
|
bornes[0] = -1.;
|
|
bornes[1] = 1.;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
if (*orcont > 2) {
|
|
goto L9101;
|
|
}
|
|
if (*ncflim > 21) {
|
|
goto L9101;
|
|
}
|
|
|
|
/* CALCULATION OF HERMIT POLYNOMS IN THE CANONIC BASE ON (-1,1) */
|
|
|
|
|
|
iordre[0] = *orcont;
|
|
iordre[1] = *orcont;
|
|
mmherm1_(bornes, &c__2, iordre, hermit, &ier);
|
|
if (ier > 0) {
|
|
goto L9102;
|
|
}
|
|
|
|
|
|
aux1 = *orcont + 1;
|
|
aux2 = aux1 << 1;
|
|
|
|
i__1 = *ncourb;
|
|
for (e = 1; e <= i__1; ++e) {
|
|
|
|
ctenor = (tdecop[e] - tdecop[e - 1]) / 2;
|
|
ncoeff = ncftab[e];
|
|
ndeg = ncoeff - 1;
|
|
if (ncoeff > 21) {
|
|
goto L9101;
|
|
}
|
|
|
|
i__2 = *ndimen;
|
|
for (d__ = 1; d__ <= i__2; ++d__) {
|
|
|
|
/* CONVERSION OF THE COEFFICIENTS OF THE PART OF THE CURVE EXPRESSED */
|
|
/* IN HERMIT BASE, INTO THE CANONIC BASE */
|
|
|
|
AdvApp2Var_SysBase::mvriraz_(&ncoeff, taux1);
|
|
|
|
i__3 = aux2;
|
|
for (k = 1; k <= i__3; ++k) {
|
|
i__4 = aux1;
|
|
for (i__ = 1; i__ <= i__4; ++i__) {
|
|
i__5 = i__ - 1;
|
|
mfact = AdvApp2Var_MathBase::pow__di(&ctenor, &i__5);
|
|
taux1[k - 1] += (tcbold[d__ + (i__ + e * tcbold_dim2) *
|
|
tcbold_dim1] * hermit[k + (i__ + 2) * 6 - 19] +
|
|
tcbold[d__ + (i__ + aux1 + e * tcbold_dim2) *
|
|
tcbold_dim1] * hermit[k + (i__ + 5) * 6 - 19]) *
|
|
mfact;
|
|
}
|
|
}
|
|
|
|
|
|
i__3 = ncoeff;
|
|
for (i__ = aux2 + 1; i__ <= i__3; ++i__) {
|
|
taux1[i__ - 1] = tcbold[d__ + (i__ + e * tcbold_dim2) *
|
|
tcbold_dim1];
|
|
}
|
|
|
|
/* CONVERSION OF THE COEFFICIENTS OF THE PART OF THE CURVE EXPRESSED */
|
|
/* IN CANONIC-JACOBI BASE, INTO THE CANONIC BASE */
|
|
|
|
|
|
|
|
AdvApp2Var_MathBase::mmapcmp_(&minombr_.nbr[1], &c__21, &ncoeff, taux1, tjacap);
|
|
AdvApp2Var_MathBase::mmjacan_(orcont, &ndeg, tjacap, taux1);
|
|
|
|
/* RECOPY THE COEFS RESULTING FROM THE CONVERSION IN THE TABLE */
|
|
/* OF RESULTS */
|
|
|
|
i__3 = ncoeff;
|
|
for (i__ = 1; i__ <= i__3; ++i__) {
|
|
tcbnew[d__ + (i__ + e * tcbnew_dim2) * tcbnew_dim1] = taux1[
|
|
i__ - 1];
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* PROCESSING OF ERRORS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9101:
|
|
*iercod = 1;
|
|
goto L9999;
|
|
L9102:
|
|
*iercod = 2;
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* RETURN CALLING PROGRAM */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9999:
|
|
|
|
AdvApp2Var_SysBase::maermsg_("MMHJCAN", iercod, 7L);
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMHJCAN", 7L);
|
|
}
|
|
return 0 ;
|
|
} /* mmhjcan_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mminltt_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mminltt_(integer *ncolmx,
|
|
integer *nlgnmx,
|
|
doublereal *tabtri,
|
|
integer *nbrcol,
|
|
integer *nbrlgn,
|
|
doublereal *ajoute,
|
|
doublereal *,//epseg,
|
|
integer *iercod)
|
|
{
|
|
/* System generated locals */
|
|
integer tabtri_dim1, tabtri_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
logical idbg;
|
|
integer icol, ilgn, nlgn, noct, inser;
|
|
doublereal epsega = 0.;
|
|
integer ibb;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* . Insert a line in a table parsed without redundance */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* TOUS,MATH_ACCES :: TABLEAU&,INSERTION,&TABLEAU */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* -------------------- */
|
|
/* . NCOLMX : Number of columns in the table */
|
|
/* . NLGNMX : Number of lines in the table */
|
|
/* . TABTRI : Table parsed by lines without redundances */
|
|
/* . NBRCOL : Number of columns used */
|
|
/* . NBRLGN : Number of lines used */
|
|
/* . AJOUTE : Line to be added */
|
|
/* . EPSEGA : Epsilon to test the redundance */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* --------------------- */
|
|
/* . TABTRI : Table parsed by lines without redundances */
|
|
/* . NBRLGN : Number of lines used */
|
|
/* . IERCOD : 0 -> No problem */
|
|
/* 1 -> The table is full */
|
|
|
|
/* COMMONS USED : */
|
|
/* ------------------ */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* --------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* . The line is inserted only if there is no line with all
|
|
*/
|
|
/* elements equl to those which are planned to be insered, to epsilon. */
|
|
|
|
/* . Level of de debug = 3 */
|
|
|
|
|
|
/**/
|
|
/* DECLARATIONS , CONTROL OF INPUT ARGUMENTS , INITIALIZATION */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* --- Parameters */
|
|
|
|
|
|
/* --- Functions */
|
|
|
|
|
|
/* --- Local variables */
|
|
|
|
|
|
/* --- Messages */
|
|
|
|
/* Parameter adjustments */
|
|
tabtri_dim1 = *ncolmx;
|
|
tabtri_offset = tabtri_dim1 + 1;
|
|
tabtri -= tabtri_offset;
|
|
--ajoute;
|
|
|
|
/* Function Body */
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
idbg = ibb >= 3;
|
|
if (idbg) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMINLTT", 7L);
|
|
}
|
|
|
|
/* --- Control arguments */
|
|
|
|
if (*nbrlgn >= *nlgnmx) {
|
|
goto L9001;
|
|
}
|
|
|
|
/* -------------------- */
|
|
/* *** INITIALIZATION */
|
|
/* -------------------- */
|
|
|
|
*iercod = 0;
|
|
|
|
/* ---------------------------- */
|
|
/* *** SEARCH OF REDUNDANCE */
|
|
/* ---------------------------- */
|
|
|
|
i__1 = *nbrlgn;
|
|
for (ilgn = 1; ilgn <= i__1; ++ilgn) {
|
|
if (tabtri[ilgn * tabtri_dim1 + 1] >= ajoute[1] - epsega) {
|
|
if (tabtri[ilgn * tabtri_dim1 + 1] <= ajoute[1] + epsega) {
|
|
i__2 = *nbrcol;
|
|
for (icol = 1; icol <= i__2; ++icol) {
|
|
if (tabtri[icol + ilgn * tabtri_dim1] < ajoute[icol] -
|
|
epsega || tabtri[icol + ilgn * tabtri_dim1] >
|
|
ajoute[icol] + epsega) {
|
|
goto L20;
|
|
}
|
|
/* L10: */
|
|
}
|
|
goto L9999;
|
|
} else {
|
|
goto L30;
|
|
}
|
|
}
|
|
L20:
|
|
;
|
|
}
|
|
|
|
/* ----------------------------------- */
|
|
/* *** SEARCH OF THE INSERTION POINT */
|
|
/* ----------------------------------- */
|
|
|
|
L30:
|
|
|
|
i__1 = *nbrlgn;
|
|
for (ilgn = 1; ilgn <= i__1; ++ilgn) {
|
|
i__2 = *nbrcol;
|
|
for (icol = 1; icol <= i__2; ++icol) {
|
|
if (tabtri[icol + ilgn * tabtri_dim1] < ajoute[icol]) {
|
|
goto L50;
|
|
}
|
|
if (tabtri[icol + ilgn * tabtri_dim1] > ajoute[icol]) {
|
|
goto L70;
|
|
}
|
|
/* L60: */
|
|
}
|
|
L50:
|
|
;
|
|
}
|
|
|
|
ilgn = *nbrlgn + 1;
|
|
|
|
/* -------------- */
|
|
/* *** INSERTION */
|
|
/* -------------- */
|
|
|
|
L70:
|
|
|
|
inser = ilgn;
|
|
++(*nbrlgn);
|
|
|
|
/* --- Shift lower */
|
|
|
|
nlgn = *nbrlgn - inser;
|
|
if (nlgn > 0) {
|
|
noct = (*ncolmx << 3) * nlgn;
|
|
AdvApp2Var_SysBase::mcrfill_(&noct,
|
|
&tabtri[inser * tabtri_dim1 + 1],
|
|
&tabtri[(inser + 1)* tabtri_dim1 + 1]);
|
|
}
|
|
|
|
/* --- Copy line */
|
|
|
|
noct = *nbrcol << 3;
|
|
AdvApp2Var_SysBase::mcrfill_(&noct,
|
|
&ajoute[1],
|
|
&tabtri[inser * tabtri_dim1 + 1]);
|
|
|
|
goto L9999;
|
|
|
|
/* ******************************************************************** */
|
|
/* OUTPUT ERROR , RETURN CALLING PROGRAM , MESSAGES */
|
|
/* ******************************************************************** */
|
|
|
|
/* --- The table is already full */
|
|
|
|
L9001:
|
|
*iercod = 1;
|
|
|
|
/* --- End */
|
|
|
|
L9999:
|
|
if (*iercod != 0) {
|
|
AdvApp2Var_SysBase::maermsg_("MMINLTT", iercod, 7L);
|
|
}
|
|
if (idbg) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMINLTT", 7L);
|
|
}
|
|
return 0 ;
|
|
} /* mminltt_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmjacan_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmjacan_(const integer *ideriv,
|
|
integer *ndeg,
|
|
doublereal *poljac,
|
|
doublereal *polcan)
|
|
{
|
|
/* System generated locals */
|
|
integer poljac_dim1, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer iptt, i__, j, ibb;
|
|
doublereal bid;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Routine of transfer of Jacobi normalized to canonic [-1,1], */
|
|
/* the tables are ranked by even, then by uneven degree. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* LEGENDRE,JACOBI,PASSAGE. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* IDERIV : Order of Jacobi between -1 and 2. */
|
|
/* NDEG : The true degree of the polynom. */
|
|
/* POLJAC : The polynom in the Jacobi base. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* POLCAN : The curve expressed in the canonic base [-1,1]. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Name of the routine */
|
|
|
|
/* Matrices of conversion */
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* MATRIX OF TRANSFORMATION OF LEGENDRE BASE */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* MATH */
|
|
|
|
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* Legendre common / Restricted Casteljau. */
|
|
|
|
/* 0:1 0 Concerns the even terms, 1 the uneven terms. */
|
|
/* CANPLG : Matrix of passage to canonic from Jacobi with calculated parities */
|
|
/* PLGCAN : Matrix of passage from Jacobi to canonic with calculated parities */
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
poljac_dim1 = *ndeg / 2 + 1;
|
|
|
|
/* Function Body */
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 5) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMJACAN", 7L);
|
|
}
|
|
|
|
/* ----------------- Expression of terms of even degree ----------------
|
|
*/
|
|
|
|
i__1 = *ndeg / 2;
|
|
for (i__ = 0; i__ <= i__1; ++i__) {
|
|
bid = 0.;
|
|
iptt = i__ * 31 - (i__ + 1) * i__ / 2 + 1;
|
|
i__2 = *ndeg / 2;
|
|
for (j = i__; j <= i__2; ++j) {
|
|
bid += mmjcobi_.plgcan[iptt + j + *ideriv * 992 + 991] * poljac[
|
|
j];
|
|
/* L310: */
|
|
}
|
|
polcan[i__ * 2] = bid;
|
|
/* L300: */
|
|
}
|
|
|
|
/* --------------- Expression of terms of uneven degree ----------------
|
|
*/
|
|
|
|
if (*ndeg == 0) {
|
|
goto L9999;
|
|
}
|
|
|
|
i__1 = (*ndeg - 1) / 2;
|
|
for (i__ = 0; i__ <= i__1; ++i__) {
|
|
bid = 0.;
|
|
iptt = i__ * 31 - (i__ + 1) * i__ / 2 + 1;
|
|
i__2 = (*ndeg - 1) / 2;
|
|
for (j = i__; j <= i__2; ++j) {
|
|
bid += mmjcobi_.plgcan[iptt + j + ((*ideriv << 1) + 1) * 496 +
|
|
991] * poljac[j + poljac_dim1];
|
|
/* L410: */
|
|
}
|
|
polcan[(i__ << 1) + 1] = bid;
|
|
/* L400: */
|
|
}
|
|
|
|
/* -------------------------------- The end -----------------------------
|
|
*/
|
|
|
|
L9999:
|
|
if (ibb >= 5) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMJACAN", 7L);
|
|
}
|
|
return 0;
|
|
} /* mmjacan_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmjaccv_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmjaccv_(const integer *ncoef,
|
|
const integer *ndim,
|
|
const integer *ider,
|
|
const doublereal *crvlgd,
|
|
doublereal *polaux,
|
|
doublereal *crvcan)
|
|
|
|
{
|
|
/* Initialized data */
|
|
|
|
static char nomprg[8+1] = "MMJACCV ";
|
|
|
|
/* System generated locals */
|
|
integer crvlgd_dim1, crvlgd_offset, crvcan_dim1, crvcan_offset,
|
|
polaux_dim1, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer ndeg, i__, nd, ii, ibb;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Passage from the normalized Jacobi base to the canonic base. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* SMOOTHING, BASE, LEGENDRE */
|
|
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDIM: Space Dimension. */
|
|
/* NCOEF: Degree +1 of the polynom. */
|
|
/* IDER: Order of Jacobi polynoms. */
|
|
/* CRVLGD : Curve in the base of Jacobi. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* POLAUX : Auxilliary space. */
|
|
/* CRVCAN : The curve in the canonic base [-1,1] */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* > */
|
|
/* *********************************************************************
|
|
*/
|
|
|
|
/* Name of the routine */
|
|
/* Parameter adjustments */
|
|
polaux_dim1 = (*ncoef - 1) / 2 + 1;
|
|
crvcan_dim1 = *ncoef - 1 + 1;
|
|
crvcan_offset = crvcan_dim1;
|
|
crvcan -= crvcan_offset;
|
|
crvlgd_dim1 = *ncoef - 1 + 1;
|
|
crvlgd_offset = crvlgd_dim1;
|
|
crvlgd -= crvlgd_offset;
|
|
|
|
/* Function Body */
|
|
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 3) {
|
|
AdvApp2Var_SysBase::mgenmsg_(nomprg, 6L);
|
|
}
|
|
|
|
ndeg = *ncoef - 1;
|
|
|
|
i__1 = *ndim;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
/* Loading of the auxilliary table. */
|
|
ii = 0;
|
|
i__2 = ndeg / 2;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
polaux[i__] = crvlgd[ii + nd * crvlgd_dim1];
|
|
ii += 2;
|
|
/* L310: */
|
|
}
|
|
|
|
ii = 1;
|
|
if (ndeg >= 1) {
|
|
i__2 = (ndeg - 1) / 2;
|
|
for (i__ = 0; i__ <= i__2; ++i__) {
|
|
polaux[i__ + polaux_dim1] = crvlgd[ii + nd * crvlgd_dim1];
|
|
ii += 2;
|
|
/* L320: */
|
|
}
|
|
}
|
|
/* Call the routine of base change. */
|
|
AdvApp2Var_MathBase::mmjacan_(ider, &ndeg, polaux, &crvcan[nd * crvcan_dim1]);
|
|
/* L300: */
|
|
}
|
|
|
|
|
|
/* L9999: */
|
|
return 0;
|
|
} /* mmjaccv_ */
|
|
|
|
//=======================================================================
|
|
//function : mmloncv_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmloncv_(integer *ndimax,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *courbe,
|
|
doublereal *tdebut,
|
|
doublereal *tfinal,
|
|
doublereal *xlongc,
|
|
integer *iercod)
|
|
|
|
{
|
|
/* Initialized data */
|
|
|
|
integer kgar = 0;
|
|
|
|
/* System generated locals */
|
|
integer courbe_dim1, courbe_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
doublereal tran;
|
|
integer ngaus = 0;
|
|
doublereal c1, c2, d1, d2,
|
|
wgaus[20] = {0.}, uroot[20] = {0.}, x1, x2, dd;
|
|
integer ii, jj, kk;
|
|
doublereal som;
|
|
doublereal der1, der2;
|
|
|
|
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : Length of an arc of curve on a given interval */
|
|
/* ---------- for a function the mathematic representation */
|
|
/* which of is a multidimensional polynom. */
|
|
/* The polynom is a set of polynoms the coefficients which of are ranked */
|
|
/* in a table with 2 indices, each line relative to 1 polynom. */
|
|
/* The polynom is defined by its coefficients ordered by increasing
|
|
* power of the variable. */
|
|
/* All polynoms have the same number of coefficients (and the same degree). */
|
|
|
|
/* KEYWORDS : LENGTH, CURVE */
|
|
/* ----------- */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* -------------------- */
|
|
|
|
/* NDIMAX : Max number of lines of tables (max number of polynoms). */
|
|
/* NDIMEN : Dimension of the polynom (Nomber of polynoms). */
|
|
/* NCOEFF : Number of coefficients of the polynom (no limitation) */
|
|
/* This is degree + 1 */
|
|
/* COURBE : Coefficients of the polynom ordered by increasing power */
|
|
/* Dimension to (NDIMAX,NCOEFF). */
|
|
/* TDEBUT : Lower limit of integration for length calculation. */
|
|
/* TFINAL : Upper limit of integration for length calculation. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* --------------------- */
|
|
/* XLONGC : Length of arc of curve */
|
|
|
|
/* IERCOD : Error code : */
|
|
/* = 0 ==> All is OK */
|
|
/* = 1 ==> NDIMEN or NCOEFF negative or null */
|
|
/* = 2 ==> Pb loading Legendre roots and Gauss weight */
|
|
/* by MVGAUS0. */
|
|
|
|
/* If error => XLONGC = 0 */
|
|
|
|
/* COMMONS USED : */
|
|
/* ------------------ */
|
|
|
|
/* .Neant. */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
/* Type Name */
|
|
/* MAERMSG R*8 DSQRT I*4 MIN */
|
|
/* MVGAUS0 */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* See VGAUSS to understand well the technique. */
|
|
/* Actually SQRT (dpi^2) is integrated for i=1,nbdime */
|
|
/* Calculation of the derivative is included in the code to avoid an additional */
|
|
/* call of the routine. */
|
|
|
|
/* The integrated function is strictly increasing, it */
|
|
/* is not necessary to use a high degree for the GAUSS method GAUSS. */
|
|
|
|
/* The degree of LEGENDRE polynom results from the degree of the */
|
|
/* polynom to be integrated. It can vary from 4 to 40 (with step of 4). */
|
|
|
|
/* The precision (relative) of integration is of order 1.D-8. */
|
|
|
|
/* ATTENTION : if TDEBUT > TFINAL, the length is NEGATIVE. */
|
|
|
|
/* Attention : the precision of the result is not controlled. */
|
|
/* If you wish to control it, use MMCGLC1, taking into account that */
|
|
/* the performance (in time) will be worse. */
|
|
|
|
/* >=====================================================================
|
|
*/
|
|
|
|
/* ATTENTION : SAVE KGAR WGAUS and UROOT EVENTUALLY */
|
|
/* ,IERXV */
|
|
/* INTEGER I1,I20 */
|
|
/* PARAMETER (I1=1,I20=20) */
|
|
|
|
/* Parameter adjustments */
|
|
courbe_dim1 = *ndimax;
|
|
courbe_offset = courbe_dim1 + 1;
|
|
courbe -= courbe_offset;
|
|
|
|
/* Function Body */
|
|
|
|
/* ****** General initialization ** */
|
|
|
|
*iercod = 999999;
|
|
*xlongc = 0.;
|
|
|
|
/* ****** Initialization of UROOT, WGAUS, NGAUS and KGAR ** */
|
|
|
|
/* CALL MXVINIT(IERXV,'INTEGER',I1,KGAR,'INTEGER',I1,NGAUS */
|
|
/* 1 ,'DOUBLE PRECISION',I20,UROOT,'DOUBLE PRECISION',I20,WGAUS) */
|
|
/* IF (IERXV.GT.0) KGAR=0 */
|
|
|
|
/* ****** Test the equity of limits ** */
|
|
|
|
if (*tdebut == *tfinal) {
|
|
*iercod = 0;
|
|
goto L9900;
|
|
}
|
|
|
|
/* ****** Test the dimension and the number of coefficients ** */
|
|
|
|
if (*ndimen <= 0 || *ncoeff <= 0) {
|
|
*iercod = 1;
|
|
goto L9900;
|
|
}
|
|
|
|
/* ****** Calculate the optimal degree ** */
|
|
|
|
kk = *ncoeff / 4 + 1;
|
|
kk = advapp_min(kk,10);
|
|
|
|
/* ****** Return the coefficients for the integral (DEGRE=4*KK) */
|
|
/* if KK <> KGAR. */
|
|
|
|
if (kk != kgar) {
|
|
mvgaus0_(&kk, uroot, wgaus, &ngaus, iercod);
|
|
if (*iercod > 0) {
|
|
kgar = 0;
|
|
*iercod = 2;
|
|
goto L9900;
|
|
}
|
|
kgar = kk;
|
|
}
|
|
|
|
/* C1 => Point medium interval */
|
|
/* C2 => 1/2 amplitude interval */
|
|
|
|
c1 = (*tfinal + *tdebut) * .5;
|
|
c2 = (*tfinal - *tdebut) * .5;
|
|
|
|
/* ----------------------------------------------------------- */
|
|
/* ****** Integration - Loop on GAUSS intervals ** */
|
|
/* ----------------------------------------------------------- */
|
|
|
|
som = 0.;
|
|
|
|
i__1 = ngaus;
|
|
for (jj = 1; jj <= i__1; ++jj) {
|
|
|
|
/* ****** Integration taking the symmetry into account ** */
|
|
|
|
tran = c2 * uroot[jj - 1];
|
|
x1 = c1 + tran;
|
|
x2 = c1 - tran;
|
|
|
|
/* ****** Derivation on the dimension of the space ** */
|
|
|
|
der1 = 0.;
|
|
der2 = 0.;
|
|
i__2 = *ndimen;
|
|
for (kk = 1; kk <= i__2; ++kk) {
|
|
d1 = (*ncoeff - 1) * courbe[kk + *ncoeff * courbe_dim1];
|
|
d2 = d1;
|
|
for (ii = *ncoeff - 1; ii >= 2; --ii) {
|
|
dd = (ii - 1) * courbe[kk + ii * courbe_dim1];
|
|
d1 = d1 * x1 + dd;
|
|
d2 = d2 * x2 + dd;
|
|
/* L100: */
|
|
}
|
|
der1 += d1 * d1;
|
|
der2 += d2 * d2;
|
|
/* L200: */
|
|
}
|
|
|
|
/* ****** Integration ** */
|
|
|
|
som += wgaus[jj - 1] * c2 * (sqrt(der1) + sqrt(der2));
|
|
|
|
/* ****** End of loop on GAUSS intervals ** */
|
|
|
|
/* L300: */
|
|
}
|
|
|
|
/* ****** Work ended ** */
|
|
|
|
*xlongc = som;
|
|
|
|
/* ****** It is forced IERCOD = 0 ** */
|
|
|
|
*iercod = 0;
|
|
|
|
/* ****** Final processing ** */
|
|
|
|
L9900:
|
|
|
|
/* ****** Save UROOT, WGAUS, NGAUS and KGAR ** */
|
|
|
|
/* CALL MXVSAVE(IERXV,'INTEGER',I1,KGAR,'INTEGER',I1,NGAUS */
|
|
/* 1 ,'DOUBLE PRECISION',I20,UROOT,'DOUBLE PRECISION',I20,WGAUS) */
|
|
/* IF (IERXV.GT.0) KGAR=0 */
|
|
|
|
/* ****** End of sub-program ** */
|
|
|
|
if (*iercod != 0) {
|
|
AdvApp2Var_SysBase::maermsg_("MMLONCV", iercod, 7L);
|
|
}
|
|
return 0 ;
|
|
} /* mmloncv_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmpobas_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmpobas_(doublereal *tparam,
|
|
integer *iordre,
|
|
integer *ncoeff,
|
|
integer *nderiv,
|
|
doublereal *valbas,
|
|
integer *iercod)
|
|
|
|
{
|
|
integer c__2 = 2;
|
|
integer c__1 = 1;
|
|
|
|
|
|
/* Initialized data */
|
|
|
|
doublereal moin11[2] = { -1.,1. };
|
|
|
|
/* System generated locals */
|
|
integer valbas_dim1, i__1;
|
|
|
|
/* Local variables */
|
|
doublereal vjacc[80], herm[24];
|
|
NCollection_Array1<doublereal> vjac (vjacc[0], 1, 80);
|
|
integer iord[2];
|
|
doublereal wval[4];
|
|
integer nwcof, iunit;
|
|
doublereal wpoly[7];
|
|
integer ii, jj, iorjac;
|
|
doublereal hermit[36] /* was [6][3][2] */;
|
|
integer kk1, kk2, kk3;
|
|
integer khe, ier;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Position on the polynoms of base hermit-Jacobi */
|
|
/* and their succesive derivatives */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* PUBLIC, POSITION, HERMIT, JACOBI */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* -------------------- */
|
|
/* TPARAM : Parameter for which the position is found. */
|
|
/* IORDRE : Orderof hermit-Jacobi (-1,0,1, ou 2) */
|
|
/* NCOEFF : Number of coefficients of polynoms (Nb of value to calculate) */
|
|
/* NDERIV : Number of derivative to calculate (0<= N <=3) */
|
|
/* 0 -> Position simple on base functions */
|
|
/* N -> Position on base functions and derivative */
|
|
/* of order 1 to N */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* --------------------- */
|
|
/* VALBAS (NCOEFF, 0:NDERIV) : calculated value */
|
|
/* i */
|
|
/* d vj(t) = VALBAS(J, I) */
|
|
/* -- i */
|
|
/* dt */
|
|
|
|
/* IERCOD : Error code */
|
|
/* 0 : Ok */
|
|
/* 1 : Incoherence of input arguments */
|
|
|
|
/* COMMONS USED : */
|
|
/* -------------- */
|
|
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ------------------- */
|
|
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
/* DECLARATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* Parameter adjustments */
|
|
valbas_dim1 = *ncoeff;
|
|
--valbas;
|
|
|
|
/* Function Body */
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* INITIALIZATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
*iercod = 0;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
if (*nderiv > 3) {
|
|
goto L9101;
|
|
}
|
|
if (*ncoeff > 20) {
|
|
goto L9101;
|
|
}
|
|
if (*iordre > 2) {
|
|
goto L9101;
|
|
}
|
|
|
|
iord[0] = *iordre;
|
|
iord[1] = *iordre;
|
|
iorjac = (*iordre + 1) << 1;
|
|
|
|
/* (1) Generic Calculations .... */
|
|
|
|
/* (1.a) Calculation of hermit polynoms */
|
|
|
|
if (*iordre >= 0) {
|
|
mmherm1_(moin11, &c__2, iord, hermit, &ier);
|
|
if (ier > 0) {
|
|
goto L9102;
|
|
}
|
|
}
|
|
|
|
/* (1.b) Evaluation of hermit polynoms */
|
|
|
|
jj = 1;
|
|
iunit = *nderiv + 1;
|
|
khe = (*iordre + 1) * iunit;
|
|
|
|
if (*nderiv > 0) {
|
|
|
|
i__1 = *iordre;
|
|
for (ii = 0; ii <= i__1; ++ii) {
|
|
mmdrvcb_(nderiv, &c__1, &iorjac, &hermit[(ii + 3) * 6 - 18],
|
|
tparam, &herm[jj - 1], &ier);
|
|
if (ier > 0) {
|
|
goto L9102;
|
|
}
|
|
|
|
mmdrvcb_(nderiv, &c__1, &iorjac, &hermit[(ii + 6) * 6 - 18],
|
|
tparam, &herm[jj + khe - 1], &ier);
|
|
if (ier > 0) {
|
|
goto L9102;
|
|
}
|
|
jj += iunit;
|
|
}
|
|
|
|
} else {
|
|
|
|
i__1 = *iordre;
|
|
for (ii = 0; ii <= i__1; ++ii) {
|
|
AdvApp2Var_MathBase::mmpocrb_(&c__1, &iorjac, &hermit[(ii + 3) * 6 - 18], &c__1,
|
|
tparam, &herm[jj - 1]);
|
|
|
|
AdvApp2Var_MathBase::mmpocrb_(&c__1, &iorjac, &hermit[(ii + 6) * 6 - 18], &c__1,
|
|
tparam, &herm[jj + khe - 1]);
|
|
jj += iunit;
|
|
}
|
|
}
|
|
|
|
/* (1.c) Evaluation of Jacobi polynoms */
|
|
|
|
ii = *ncoeff - iorjac;
|
|
|
|
mmpojac_(tparam, &iorjac, &ii, nderiv, vjac, &ier);
|
|
if (ier > 0) {
|
|
goto L9102;
|
|
}
|
|
|
|
/* (1.d) Evaluation of W(t) */
|
|
|
|
/* Computing MAX */
|
|
i__1 = iorjac + 1;
|
|
nwcof = advapp_max(i__1,1);
|
|
AdvApp2Var_SysBase::mvriraz_(&nwcof,
|
|
wpoly);
|
|
wpoly[0] = 1.;
|
|
if (*iordre == 2) {
|
|
wpoly[2] = -3.;
|
|
wpoly[4] = 3.;
|
|
wpoly[6] = -1.;
|
|
} else if (*iordre == 1) {
|
|
wpoly[2] = -2.;
|
|
wpoly[4] = 1.;
|
|
} else if (*iordre == 0) {
|
|
wpoly[2] = -1.;
|
|
}
|
|
|
|
mmdrvcb_(nderiv, &c__1, &nwcof, wpoly, tparam, wval, &ier);
|
|
if (ier > 0) {
|
|
goto L9102;
|
|
}
|
|
|
|
kk1 = *ncoeff - iorjac;
|
|
kk2 = kk1 << 1;
|
|
kk3 = kk1 * 3;
|
|
|
|
/* (2) Evaluation of order 0 */
|
|
|
|
jj = 1;
|
|
i__1 = iorjac;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
valbas[ii] = herm[jj - 1];
|
|
jj += iunit;
|
|
}
|
|
|
|
i__1 = kk1;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
valbas[ii + iorjac] = wval[0] * vjac(ii);
|
|
}
|
|
|
|
/* (3) Evaluation of order 1 */
|
|
|
|
if (*nderiv >= 1) {
|
|
jj = 2;
|
|
i__1 = iorjac;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
valbas[ii + valbas_dim1] = herm[jj - 1];
|
|
jj += iunit;
|
|
}
|
|
|
|
|
|
i__1 = kk1;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
valbas[ii + iorjac + valbas_dim1] = wval[0] * vjac(ii + kk1)
|
|
+ wval[1] * vjac(ii);
|
|
}
|
|
}
|
|
|
|
/* (4) Evaluation of order 2 */
|
|
|
|
if (*nderiv >= 2) {
|
|
jj = 3;
|
|
i__1 = iorjac;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
valbas[ii + (valbas_dim1 << 1)] = herm[jj - 1];
|
|
jj += iunit;
|
|
}
|
|
|
|
i__1 = kk1;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
valbas[ii + iorjac + (valbas_dim1 << 1)] = wval[0] * vjac(ii +
|
|
kk2) + wval[1] * 2 * vjac(ii + kk1) + wval[2] *
|
|
vjac(ii);
|
|
}
|
|
}
|
|
|
|
/* (5) Evaluation of order 3 */
|
|
|
|
if (*nderiv >= 3) {
|
|
jj = 4;
|
|
i__1 = iorjac;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
valbas[ii + valbas_dim1 * 3] = herm[jj - 1];
|
|
jj += iunit;
|
|
}
|
|
|
|
i__1 = kk1;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
valbas[ii + iorjac + valbas_dim1 * 3] = wval[0] * vjac(ii + kk3)
|
|
+ wval[1] * 3 * vjac(ii + kk2) + wval[2] * 3 *
|
|
vjac(ii + kk1) + wval[3] * vjac(ii);
|
|
}
|
|
}
|
|
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* ERROR PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9101:
|
|
*iercod = 1;
|
|
goto L9999;
|
|
|
|
L9102:
|
|
*iercod = 2;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* RETURN CALLING PROGRAM */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9999:
|
|
|
|
if (*iercod > 0) {
|
|
AdvApp2Var_SysBase::maermsg_("MMPOBAS", iercod, 7L);
|
|
}
|
|
return 0 ;
|
|
} /* mmpobas_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmpocrb_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmpocrb_(integer *ndimax,
|
|
integer *ncoeff,
|
|
doublereal *courbe,
|
|
integer *ndim,
|
|
doublereal *tparam,
|
|
doublereal *pntcrb)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer courbe_dim1, courbe_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer ncof2;
|
|
integer isize, nd, kcf, ncf;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* CALCULATE THE COORDINATES OF A POINT OF A CURVE OF GIVEN PARAMETER */
|
|
/* TPARAM ( IN 2D, 3D OR MORE) */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* TOUS , MATH_ACCES :: COURBE&,PARAMETRE& , POSITIONNEMENT , &POINT
|
|
*/
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDIMAX : format / dimension of the curve */
|
|
/* NCOEFF : Nb of coefficients of the curve */
|
|
/* COURBE : Matrix of coefficients of the curve */
|
|
/* NDIM : Dimension useful of the workspace */
|
|
/* TPARAM : Value of the parameter where the point is calculated */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* PNTCRB : Coordinates of the calculated point */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* .Neant. */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
/* Type Name */
|
|
/* MIRAZ MVPSCR2 MVPSCR3 */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
courbe_dim1 = *ndimax;
|
|
courbe_offset = courbe_dim1 + 1;
|
|
courbe -= courbe_offset;
|
|
--pntcrb;
|
|
|
|
/* Function Body */
|
|
isize = *ndim << 3;
|
|
AdvApp2Var_SysBase::miraz_(&isize,
|
|
&pntcrb[1]);
|
|
|
|
if (*ncoeff <= 0) {
|
|
goto L9999;
|
|
}
|
|
|
|
/* optimal processing 3d */
|
|
|
|
if (*ndim == 3 && *ndimax == 3) {
|
|
mvpscr3_(ncoeff, &courbe[courbe_offset], tparam, &pntcrb[1]);
|
|
|
|
/* optimal processing 2d */
|
|
|
|
} else if (*ndim == 2 && *ndimax == 2) {
|
|
mvpscr2_(ncoeff, &courbe[courbe_offset], tparam, &pntcrb[1]);
|
|
|
|
/* Any dimension - scheme of HORNER */
|
|
|
|
} else if (*tparam == 0.) {
|
|
i__1 = *ndim;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
pntcrb[nd] = courbe[nd + courbe_dim1];
|
|
/* L100: */
|
|
}
|
|
} else if (*tparam == 1.) {
|
|
i__1 = *ncoeff;
|
|
for (ncf = 1; ncf <= i__1; ++ncf) {
|
|
i__2 = *ndim;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
pntcrb[nd] += courbe[nd + ncf * courbe_dim1];
|
|
/* L300: */
|
|
}
|
|
/* L200: */
|
|
}
|
|
} else {
|
|
ncof2 = *ncoeff + 2;
|
|
i__1 = *ndim;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
i__2 = *ncoeff;
|
|
for (ncf = 2; ncf <= i__2; ++ncf) {
|
|
kcf = ncof2 - ncf;
|
|
pntcrb[nd] = (pntcrb[nd] + courbe[nd + kcf * courbe_dim1]) * *
|
|
tparam;
|
|
/* L500: */
|
|
}
|
|
pntcrb[nd] += courbe[nd + courbe_dim1];
|
|
/* L400: */
|
|
}
|
|
}
|
|
|
|
L9999:
|
|
return 0 ;
|
|
} /* mmpocrb_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmmpocur_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmmpocur_(integer *ncofmx,
|
|
integer *ndim,
|
|
integer *ndeg,
|
|
doublereal *courbe,
|
|
doublereal *tparam,
|
|
doublereal *tabval)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer courbe_dim1, courbe_offset, i__1;
|
|
|
|
/* Local variables */
|
|
integer i__, nd;
|
|
doublereal fu;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Position of a point on curve (ncofmx,ndim). */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* TOUS , AB_SPECIFI :: COURBE&,POLYNOME&,POSITIONNEMENT,&POINT */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOFMX: Format / degree of the CURVE. */
|
|
/* NDIM : Dimension of the space. */
|
|
/* NDEG : Degree of the polynom. */
|
|
/* COURBE: Coefficients of the curve. */
|
|
/* TPARAM: Parameter on the curve */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* TABVAL(NDIM): The resulting point (or table of values) */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
--tabval;
|
|
courbe_dim1 = *ncofmx;
|
|
courbe_offset = courbe_dim1 + 1;
|
|
courbe -= courbe_offset;
|
|
|
|
/* Function Body */
|
|
if (*ndeg < 1) {
|
|
i__1 = *ndim;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
tabval[nd] = 0.;
|
|
/* L290: */
|
|
}
|
|
} else {
|
|
i__1 = *ndim;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
fu = courbe[*ndeg + nd * courbe_dim1];
|
|
for (i__ = *ndeg - 1; i__ >= 1; --i__) {
|
|
fu = fu * *tparam + courbe[i__ + nd * courbe_dim1];
|
|
/* L120: */
|
|
}
|
|
tabval[nd] = fu;
|
|
/* L300: */
|
|
}
|
|
}
|
|
return 0 ;
|
|
} /* mmmpocur_ */
|
|
|
|
//=======================================================================
|
|
//function : mmpojac_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmpojac_(doublereal *tparam,
|
|
integer *iordre,
|
|
integer *ncoeff,
|
|
integer *nderiv,
|
|
NCollection_Array1<doublereal>& valjac,
|
|
integer *iercod)
|
|
|
|
{
|
|
integer c__2 = 2;
|
|
|
|
/* System generated locals */
|
|
integer valjac_dim1, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
doublereal cofa, cofb, denom, tnorm[100];
|
|
integer ii, jj, kk1, kk2;
|
|
doublereal aux1, aux2;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Positioning on Jacobi polynoms and their derivatives */
|
|
/* successive by a recurrent algorithm */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* RESERVE, POSITIONING, JACOBI */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* -------------------- */
|
|
/* TPARAM : Parameter for which positioning is done. */
|
|
/* IORDRE : Order of hermit-?? (-1,0,1, or 2) */
|
|
/* NCOEFF : Number of coeeficients of polynoms (Nb of value to */
|
|
/* calculate) */
|
|
/* NDERIV : Number of derivative to calculate (0<= N <=3) */
|
|
/* 0 -> Position simple on jacobi functions */
|
|
/* N -> Position on jacobi functions and their */
|
|
/* derivatives of order 1 to N. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* --------------------- */
|
|
/* VALJAC (NCOEFF, 0:NDERIV) : the calculated values */
|
|
/* i */
|
|
/* d vj(t) = VALJAC(J, I) */
|
|
/* -- i */
|
|
/* dt */
|
|
|
|
/* IERCOD : Error Code */
|
|
/* 0 : Ok */
|
|
/* 1 : Incoherence of input arguments */
|
|
|
|
/* COMMONS USED : */
|
|
/* ------------------ */
|
|
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* --------------------- */
|
|
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
/* DECLARATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* static varaibles */
|
|
|
|
|
|
|
|
/* Parameter adjustments */
|
|
valjac_dim1 = *ncoeff;
|
|
|
|
/* Function Body */
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* INITIALISATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
*iercod = 0;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* Processing */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
if (*nderiv > 3) {
|
|
goto L9101;
|
|
}
|
|
if (*ncoeff > 100) {
|
|
goto L9101;
|
|
}
|
|
|
|
/* --- Calculation of norms */
|
|
|
|
/* IF (NCOEFF.GT.NBCOF) THEN */
|
|
i__1 = *ncoeff;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
kk1 = ii - 1;
|
|
aux2 = 1.;
|
|
i__2 = *iordre;
|
|
for (jj = 1; jj <= i__2; ++jj) {
|
|
aux2 = aux2 * (doublereal) (kk1 + *iordre + jj) / (doublereal) (
|
|
kk1 + jj);
|
|
}
|
|
i__2 = (*iordre << 1) + 1;
|
|
tnorm[ii - 1] = sqrt(aux2 * (kk1 * 2. + (*iordre << 1) + 1) / pow__ii(&
|
|
c__2, &i__2));
|
|
}
|
|
|
|
/* END IF */
|
|
|
|
/* --- Trivial Positions ----- */
|
|
|
|
valjac(1) = 1.;
|
|
aux1 = (doublereal) (*iordre + 1);
|
|
valjac(2) = aux1 * *tparam;
|
|
|
|
if (*nderiv >= 1) {
|
|
valjac(valjac_dim1 + 1) = 0.;
|
|
valjac(valjac_dim1 + 2) = aux1;
|
|
|
|
if (*nderiv >= 2) {
|
|
valjac((valjac_dim1 << 1) + 1) = 0.;
|
|
valjac((valjac_dim1 << 1) + 2) = 0.;
|
|
|
|
if (*nderiv >= 3) {
|
|
valjac(valjac_dim1 * 3 + 1) = 0.;
|
|
valjac(valjac_dim1 * 3 + 2) = 0.;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* --- Positioning by recurrence */
|
|
|
|
i__1 = *ncoeff;
|
|
for (ii = 3; ii <= i__1; ++ii) {
|
|
|
|
kk1 = ii - 1;
|
|
kk2 = ii - 2;
|
|
aux1 = (doublereal) (*iordre + kk2);
|
|
aux2 = aux1 * 2;
|
|
cofa = aux2 * (aux2 + 1) * (aux2 + 2);
|
|
cofb = (aux2 + 2) * -2. * aux1 * aux1;
|
|
denom = kk1 * 2. * (kk2 + (*iordre << 1) + 1) * aux2;
|
|
denom = 1. / denom;
|
|
|
|
/* --> Pi(t) */
|
|
valjac(ii) = (cofa * *tparam * valjac(kk1) + cofb * valjac(kk2)) *
|
|
denom;
|
|
/* --> P'i(t) */
|
|
if (*nderiv >= 1) {
|
|
valjac(ii + valjac_dim1) = (cofa * *tparam * valjac(kk1 +
|
|
valjac_dim1) + cofa * valjac(kk1) + cofb * valjac(kk2 +
|
|
valjac_dim1)) * denom;
|
|
/* --> P''i(t) */
|
|
if (*nderiv >= 2) {
|
|
valjac(ii + (valjac_dim1 << 1)) = (cofa * *tparam * valjac(
|
|
kk1 + (valjac_dim1 << 1)) + cofa * 2 * valjac(kk1 +
|
|
valjac_dim1) + cofb * valjac(kk2 + (valjac_dim1 << 1))
|
|
) * denom;
|
|
}
|
|
/* --> P'i(t) */
|
|
if (*nderiv >= 3) {
|
|
valjac(ii + valjac_dim1 * 3) = (cofa * *tparam * valjac(kk1 +
|
|
valjac_dim1 * 3) + cofa * 3 * valjac(kk1 + (
|
|
valjac_dim1 << 1)) + cofb * valjac(kk2 + valjac_dim1 *
|
|
3)) * denom;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ---> Normalization */
|
|
|
|
i__1 = *ncoeff;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
i__2 = *nderiv;
|
|
for (jj = 0; jj <= i__2; ++jj) {
|
|
valjac(ii + jj * valjac_dim1) = tnorm[ii - 1] * valjac(ii + jj *
|
|
valjac_dim1);
|
|
}
|
|
}
|
|
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* PROCESSING OF ERRORS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9101:
|
|
*iercod = 1;
|
|
goto L9999;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* RETURN CALLING PROGRAM */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9999:
|
|
|
|
if (*iercod > 0) {
|
|
AdvApp2Var_SysBase::maermsg_("MMPOJAC", iercod, 7L);
|
|
}
|
|
return 0 ;
|
|
} /* mmpojac_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmposui_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmposui_(integer *dimmat,
|
|
integer *,//nistoc,
|
|
integer *aposit,
|
|
integer *posuiv,
|
|
integer *iercod)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer i__1, i__2;
|
|
|
|
/* Local variables */
|
|
logical ldbg;
|
|
integer imin, jmin, i__, j, k;
|
|
logical trouve;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* FILL THE TABLE OF POSITIONING POSUIV WHICH ALLOWS TO */
|
|
/* PARSE BY COLUMN THE INFERIOR TRIANGULAR PART OF THE */
|
|
/* MATRIX IN FORM OF PROFILE */
|
|
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* RESERVE, MATRIX, PROFILE */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* -------------------- */
|
|
|
|
/* NISTOC: NUMBER OF COEFFICIENTS IN THE PROFILE */
|
|
/* DIMMAT: NUMBER OF LINE OF THE SYMMETRIC SQUARE MATRIX */
|
|
/* APOSIT: TABLE OF POSITIONING OF STORAGE TERMS */
|
|
/* APOSIT(1,I) CONTAINS THE NUMBER OF TERMES-1 ON LINE */
|
|
/* I IN THE PROFILE OF THE MATRIX */
|
|
/* APOSIT(2,I) CONTAINS THE INDEX OF STORAGE OF DIAGONAL TERM */
|
|
/* OF LINE I */
|
|
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* --------------------- */
|
|
/* POSUIV: POSUIV(K) (WHERE K IS THE INDEX OF STORAGE OF MAT(I,J)) */
|
|
/* CONTAINS THE SMALLEST NUMBER IMIN>I OF THE LINE THAT */
|
|
/* POSSESSES A TERM MAT(IMIN,J) THAT IS IN THE PROFILE. */
|
|
/* IF THERE IS NO TERM MAT(IMIN,J) IN THE PROFILE THEN POSUIV(K)=-1 */
|
|
|
|
|
|
/* COMMONS USED : */
|
|
/* ------------------ */
|
|
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* --------------------- */
|
|
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* DECLARATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* INITIALIZATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
aposit -= 3;
|
|
--posuiv;
|
|
|
|
/* Function Body */
|
|
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 2;
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMPOSUI", 7L);
|
|
}
|
|
*iercod = 0;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
i__1 = *dimmat;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
jmin = i__ - aposit[(i__ << 1) + 1];
|
|
i__2 = i__;
|
|
for (j = jmin; j <= i__2; ++j) {
|
|
imin = i__ + 1;
|
|
trouve = FALSE_;
|
|
while(! trouve && imin <= *dimmat) {
|
|
if (imin - aposit[(imin << 1) + 1] <= j) {
|
|
trouve = TRUE_;
|
|
} else {
|
|
++imin;
|
|
}
|
|
}
|
|
k = aposit[(i__ << 1) + 2] - i__ + j;
|
|
if (trouve) {
|
|
posuiv[k] = imin;
|
|
} else {
|
|
posuiv[k] = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* ERROR PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* RETURN CALLING PROGRAM */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9999:
|
|
|
|
/* ___ DESALLOCATION, ... */
|
|
|
|
AdvApp2Var_SysBase::maermsg_("MMPOSUI", iercod, 7L);
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMPOSUI", 7L);
|
|
}
|
|
return 0 ;
|
|
} /* mmposui_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmresol_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmresol_(integer *hdimen,
|
|
integer *gdimen,
|
|
integer *hnstoc,
|
|
integer *gnstoc,
|
|
integer *mnstoc,
|
|
doublereal *matsyh,
|
|
doublereal *matsyg,
|
|
doublereal *vecsyh,
|
|
doublereal *vecsyg,
|
|
integer *hposit,
|
|
integer *hposui,
|
|
integer *gposit,
|
|
integer *mmposui,
|
|
integer *mposit,
|
|
doublereal *vecsol,
|
|
integer *iercod)
|
|
|
|
{
|
|
integer c__100 = 100;
|
|
|
|
/* System generated locals */
|
|
integer i__1, i__2;
|
|
|
|
/* Local variables */
|
|
logical ldbg;
|
|
doublereal* mcho = 0;
|
|
integer jmin, jmax, i__, j, k, l;
|
|
intptr_t iofv1, iofv2, iofv3, iofv4;
|
|
doublereal *v1 = 0, *v2 = 0, *v3 = 0, *v4 = 0;
|
|
integer deblig, dimhch;
|
|
doublereal* hchole = 0;
|
|
intptr_t iofmch, iofmam, iofhch;
|
|
doublereal* matsym = 0;
|
|
integer ier;
|
|
integer aux;
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* SOLUTION OF THE SYSTEM */
|
|
/* H t(G) V B */
|
|
/* = */
|
|
/* G 0 L C */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* RESERVE, SOLUTION, SYSTEM, LAGRANGIAN */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* -------------------- */
|
|
/* HDIMEN: NOMBER OF LINE (OR COLUMN) OF THE HESSIAN MATRIX */
|
|
/* GDIMEN: NOMBER OF LINE OF THE MATRIX OF CONSTRAINTS */
|
|
/* HNSTOC: NOMBErS OF TERMS IN THE PROFILE OF HESSIAN MATRIX
|
|
*/
|
|
/* GNSTOC: NOMBERS OF TERMS IN THE PROFILE OF THE MATRIX OF CONSTRAINTS */
|
|
/* MNSTOC: NOMBERS OF TERMS IN THE PROFILE OF THE MATRIX M= G H t(G) */
|
|
/* where H IS THE HESSIAN MATRIX AND G IS THE MATRIX OF CONSTRAINTS */
|
|
/* MATSYH: TRIANGULAR INFERIOR PART OF THE HESSIAN MATRIX */
|
|
/* IN FORM OF PROFILE */
|
|
/* MATSYG: MATRIX OF CONSTRAINTS IN FORM OF PROFILE */
|
|
/* VECSYH: VECTOR OF THE SECOND MEMBER ASSOCIATED TO MATSYH */
|
|
/* VECSYG: VECTOR OF THE SECOND MEMBER ASSOCIATED TO MATSYG */
|
|
/* HPOSIT: TABLE OF POSITIONING OF THE HESSIAN MATRIX */
|
|
/* HPOSIT(1,I) CONTAINS THE NUMBER OF TERMS -1 */
|
|
/* WHICH ARE IN THE PROFILE AT LINE I */
|
|
/* HPOSIT(2,I) CONTAINS THE INDEX OF STORAGE OF TERM */
|
|
/* DIAGONAL OF THE MATRIX AT LINE I */
|
|
/* HPOSUI: TABLE ALLOWING TO PARSE THE HESSIAN MATRIX BY COLUMN */
|
|
/* IN FORM OF PROFILE */
|
|
/* HPOSUI(K) CONTAINS THE NUMBER OF LINE IMIN FOLLOWING THE CURRENT LINE*/
|
|
/* I WHERE H(I,J)=MATSYH(K) AS IT EXISTS IN THE */
|
|
/* SAME COLUMN J A TERM IN THE PROFILE OF LINE IMIN */
|
|
/* IF SUCH TERM DOES NOT EXIST IMIN=-1 */
|
|
/* GPOSIT: TABLE OF POSITIONING OF THE MATRIX OF CONSTRAINTS */
|
|
/* GPOSIT(1,I) CONTAINS THE NUMBER OF TERMS OF LINE I */
|
|
/* WHICH ARE IN THE PROFILE */
|
|
/* GPOSIT(2,I) CONTAINS THE INDEX OF STORAGE OF THE LAST TERM */
|
|
/* OF LINE I WHICH IS IN THE PROFILE */
|
|
/* GPOSIT(3,I) CONTAINS THE NUMBER OF COLUMN CORRESPONDING */
|
|
/* TO THE FIRST TERM OF LINE I WHICH IS IN THE PROFILE */
|
|
/* MMPOSUI, MPOSIT: SAME STRUCTURE AS HPOSUI, BUT FOR MATRIX */
|
|
/* M=G H t(G) */
|
|
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* --------------------- */
|
|
/* VECSOL: VECTOR SOLUTION V OF THE SYSTEM */
|
|
/* IERCOD: ERROR CODE */
|
|
|
|
/* COMMONS USED : */
|
|
/* ------------------ */
|
|
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* --------------------- */
|
|
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
/* DECLARATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* INITIALISATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
--vecsol;
|
|
hposit -= 3;
|
|
--vecsyh;
|
|
--hposui;
|
|
--matsyh;
|
|
--matsyg;
|
|
--vecsyg;
|
|
gposit -= 4;
|
|
--mmposui;
|
|
mposit -= 3;
|
|
|
|
/* Function Body */
|
|
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 2;
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMRESOL", 7L);
|
|
}
|
|
*iercod = 0;
|
|
iofhch = 0;
|
|
iofv1 = 0;
|
|
iofv2 = 0;
|
|
iofv3 = 0;
|
|
iofv4 = 0;
|
|
iofmam = 0;
|
|
iofmch = 0;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Dynamic allocation */
|
|
AdvApp2Var_SysBase anAdvApp2Var_SysBase;
|
|
anAdvApp2Var_SysBase.macrar8_(hdimen, &c__100, v1, &iofv1, &ier);
|
|
if (ier > 0) {
|
|
goto L9102;
|
|
}
|
|
dimhch = hposit[(*hdimen << 1) + 2];
|
|
anAdvApp2Var_SysBase.macrar8_(&dimhch, &c__100, hchole, &iofhch, &ier);
|
|
if (ier > 0) {
|
|
goto L9102;
|
|
}
|
|
|
|
/* solution of system 1 H V1 = b */
|
|
/* where H=MATSYH and b=VECSYH */
|
|
|
|
mmchole_(hnstoc, hdimen, &matsyh[1], &hposit[3], &hposui[1], &hchole[
|
|
iofhch], &ier);
|
|
if (ier > 0) {
|
|
goto L9101;
|
|
}
|
|
mmrslss_(hnstoc, hdimen, &hchole[iofhch], &hposit[3], &hposui[1], &vecsyh[
|
|
1], &v1[iofv1], &ier);
|
|
if (ier > 0) {
|
|
goto L9102;
|
|
}
|
|
|
|
/* Case when there are constraints */
|
|
|
|
if (*gdimen > 0) {
|
|
|
|
/* Calculate the vector of the second member V2=G H(-1) b -c = G v1-c */
|
|
/* of system of unknown Lagrangian vector MULTIP */
|
|
/* where G=MATSYG */
|
|
/* c=VECSYG */
|
|
|
|
anAdvApp2Var_SysBase.macrar8_(gdimen, &c__100, v2, &iofv2, &ier);
|
|
if (ier > 0) {
|
|
goto L9102;
|
|
}
|
|
anAdvApp2Var_SysBase.macrar8_(hdimen, &c__100, v3, &iofv3, &ier);
|
|
if (ier > 0) {
|
|
goto L9102;
|
|
}
|
|
anAdvApp2Var_SysBase.macrar8_(gdimen, &c__100, v4, &iofv4, &ier);
|
|
if (ier > 0) {
|
|
goto L9102;
|
|
}
|
|
anAdvApp2Var_SysBase.macrar8_(mnstoc, &c__100, matsym, &iofmam, &ier);
|
|
if (ier > 0) {
|
|
goto L9102;
|
|
}
|
|
|
|
deblig = 1;
|
|
mmatvec_(gdimen, hdimen, &gposit[4], gnstoc, &matsyg[1], &v1[iofv1], &
|
|
deblig, &v2[iofv2], &ier);
|
|
if (ier > 0) {
|
|
goto L9101;
|
|
}
|
|
i__1 = *gdimen;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
v2[i__ + iofv2 - 1] -= vecsyg[i__];
|
|
}
|
|
|
|
/* Calculate the matrix M= G H(-1) t(G) */
|
|
/* RESOL DU SYST 2 : H qi = gi */
|
|
/* where is a vector column of t(G) */
|
|
/* qi=v3 */
|
|
/* then calculate G qi */
|
|
/* then construct M in form of profile */
|
|
|
|
|
|
|
|
i__1 = *gdimen;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
AdvApp2Var_SysBase::mvriraz_(hdimen, &v1[iofv1]);
|
|
AdvApp2Var_SysBase::mvriraz_(hdimen, &v3[iofv3]);
|
|
AdvApp2Var_SysBase::mvriraz_(gdimen, &v4[iofv4]);
|
|
jmin = gposit[i__ * 3 + 3];
|
|
jmax = gposit[i__ * 3 + 1] + gposit[i__ * 3 + 3] - 1;
|
|
aux = gposit[i__ * 3 + 2] - gposit[i__ * 3 + 1] - jmin + 1;
|
|
i__2 = jmax;
|
|
for (j = jmin; j <= i__2; ++j) {
|
|
k = j + aux;
|
|
v1[j + iofv1 - 1] = matsyg[k];
|
|
}
|
|
mmrslss_(hnstoc, hdimen, &hchole[iofhch], &hposit[3], &hposui[1],
|
|
&v1[iofv1], &v3[iofv3], &ier);
|
|
if (ier > 0) {
|
|
goto L9101;
|
|
}
|
|
|
|
deblig = i__;
|
|
mmatvec_(gdimen, hdimen, &gposit[4], gnstoc, &matsyg[1], &v3[
|
|
iofv3], &deblig, &v4[iofv4], &ier);
|
|
if (ier > 0) {
|
|
goto L9101;
|
|
}
|
|
|
|
k = mposit[(i__ << 1) + 2];
|
|
matsym[k + iofmam - 1] = v4[i__ + iofv4 - 1];
|
|
while(mmposui[k] > 0) {
|
|
l = mmposui[k];
|
|
k = mposit[(l << 1) + 2] - l + i__;
|
|
matsym[k + iofmam - 1] = v4[l + iofv4 - 1];
|
|
}
|
|
}
|
|
|
|
|
|
/* SOLVE SYST 3 M L = V2 */
|
|
/* WITH L=V4 */
|
|
|
|
|
|
AdvApp2Var_SysBase::mvriraz_(gdimen, &v4[iofv4]);
|
|
anAdvApp2Var_SysBase.macrar8_(mnstoc, &c__100, mcho, &iofmch, &ier);
|
|
if (ier > 0) {
|
|
goto L9102;
|
|
}
|
|
mmchole_(mnstoc, gdimen, &matsym[iofmam], &mposit[3], &mmposui[1], &
|
|
mcho[iofmch], &ier);
|
|
if (ier > 0) {
|
|
goto L9101;
|
|
}
|
|
mmrslss_(mnstoc, gdimen, &mcho[iofmch], &mposit[3], &mmposui[1], &v2[
|
|
iofv2], &v4[iofv4], &ier);
|
|
if (ier > 0) {
|
|
goto L9102;
|
|
}
|
|
|
|
|
|
/* CALCULATE THE VECTOR OF THE SECOND MEMBER OF THE SYSTEM Hx = b - t(G) L
|
|
*/
|
|
/* = V1 */
|
|
|
|
AdvApp2Var_SysBase::mvriraz_(hdimen, &v1[iofv1]);
|
|
mmtmave_(gdimen, hdimen, &gposit[4], gnstoc, &matsyg[1], &v4[iofv4], &
|
|
v1[iofv1], &ier);
|
|
if (ier > 0) {
|
|
goto L9101;
|
|
}
|
|
i__1 = *hdimen;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
v1[i__ + iofv1 - 1] = vecsyh[i__] - v1[i__ + iofv1 - 1];
|
|
}
|
|
|
|
/* RESOL SYST 4 Hx = b - t(G) L */
|
|
|
|
|
|
mmrslss_(hnstoc, hdimen, &hchole[iofhch], &hposit[3], &hposui[1], &v1[
|
|
iofv1], &vecsol[1], &ier);
|
|
if (ier > 0) {
|
|
goto L9102;
|
|
}
|
|
} else {
|
|
i__1 = *hdimen;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
vecsol[i__] = v1[i__ + iofv1 - 1];
|
|
}
|
|
}
|
|
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* PROCESSING OF ERRORS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
L9101:
|
|
*iercod = 1;
|
|
goto L9999;
|
|
|
|
L9102:
|
|
AdvApp2Var_SysBase::mswrdbg_("MMRESOL : PROBLEM WITH DIMMAT", 30L);
|
|
*iercod = 2;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* RETURN CALLING PROGRAM */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9999:
|
|
|
|
/* ___ DESALLOCATION, ... */
|
|
anAdvApp2Var_SysBase.macrdr8_(hdimen, &c__100, v1, &iofv1, &ier);
|
|
if (*iercod == 0 && ier > 0) {
|
|
*iercod = 3;
|
|
}
|
|
anAdvApp2Var_SysBase.macrdr8_(&dimhch, &c__100, hchole, &iofhch, &ier);
|
|
if (*iercod == 0 && ier > 0) {
|
|
*iercod = 3;
|
|
}
|
|
anAdvApp2Var_SysBase.macrdr8_(gdimen, &c__100, v2, &iofv2, &ier);
|
|
if (*iercod == 0 && ier > 0) {
|
|
*iercod = 3;
|
|
}
|
|
anAdvApp2Var_SysBase.macrdr8_(hdimen, &c__100, v3, &iofv3, &ier);
|
|
if (*iercod == 0 && ier > 0) {
|
|
*iercod = 3;
|
|
}
|
|
anAdvApp2Var_SysBase.macrdr8_(gdimen, &c__100, v4, &iofv4, &ier);
|
|
if (*iercod == 0 && ier > 0) {
|
|
*iercod = 3;
|
|
}
|
|
anAdvApp2Var_SysBase.macrdr8_(mnstoc, &c__100, matsym, &iofmam, &ier);
|
|
if (*iercod == 0 && ier > 0) {
|
|
*iercod = 3;
|
|
}
|
|
anAdvApp2Var_SysBase.macrdr8_(mnstoc, &c__100, mcho, &iofmch, &ier);
|
|
if (*iercod == 0 && ier > 0) {
|
|
*iercod = 3;
|
|
}
|
|
|
|
AdvApp2Var_SysBase::maermsg_("MMRESOL", iercod, 7L);
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMRESOL", 7L);
|
|
}
|
|
return 0 ;
|
|
} /* mmresol_ */
|
|
|
|
//=======================================================================
|
|
//function : mmrslss_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmrslss_(integer *,//mxcoef,
|
|
integer *dimens,
|
|
doublereal *smatri,
|
|
integer *sposit,
|
|
integer *posuiv,
|
|
doublereal *mscnmbr,
|
|
doublereal *soluti,
|
|
integer *iercod)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1, i__2;
|
|
|
|
/* Local variables */
|
|
logical ldbg;
|
|
integer i__, j;
|
|
doublereal somme;
|
|
integer pointe, ptcour;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FuNCTION : */
|
|
/* ---------- T */
|
|
/* Solves linear system SS x = b where S is a */
|
|
/* triangular lower matrix given in form of profile */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* RESERVE, MATRICE_PROFILE, RESOLUTION, CHOLESKI */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* -------------------- */
|
|
/* MXCOEF : Maximum number of non-null coefficient in the matrix */
|
|
/* DIMENS : Dimension of the matrix */
|
|
/* SMATRI(MXCOEF) : Values of coefficients of the matrix */
|
|
/* SPOSIT(2,DIMENS): */
|
|
/* SPOSIT(1,*) : Distance diagonal-extremity of the line */
|
|
/* SPOSIT(2,*) : Position of diagonal terms in AMATRI */
|
|
/* POSUIV(MXCOEF): first line inferior not out of profile */
|
|
/* MSCNMBR(DIMENS): Vector second member of the equation */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* --------------------- */
|
|
/* SOLUTI(NDIMEN) : Result vector */
|
|
/* IERCOD : Error code 0 : ok */
|
|
|
|
/* COMMONS USED : */
|
|
/* ------------------ */
|
|
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* --------------------- */
|
|
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* T */
|
|
/* SS is the decomposition of choleski of a symmetric matrix */
|
|
/* defined postive, that can result from routine MMCHOLE. */
|
|
|
|
/* For a full matrix it is possible to use MRSLMSC */
|
|
|
|
/* LEVEL OF DEBUG = 4 */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
/* DECLARATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* INITIALISATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
--posuiv;
|
|
--smatri;
|
|
--soluti;
|
|
--mscnmbr;
|
|
sposit -= 3;
|
|
|
|
/* Function Body */
|
|
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 4;
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMRSLSS", 7L);
|
|
}
|
|
*iercod = 0;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* ----- Solution of Sw = b */
|
|
|
|
i__1 = *dimens;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
pointe = sposit[(i__ << 1) + 2];
|
|
somme = 0.;
|
|
i__2 = i__ - 1;
|
|
for (j = i__ - sposit[(i__ << 1) + 1]; j <= i__2; ++j) {
|
|
somme += smatri[pointe - (i__ - j)] * soluti[j];
|
|
}
|
|
|
|
soluti[i__] = (mscnmbr[i__] - somme) / smatri[pointe];
|
|
}
|
|
/* T */
|
|
/* ----- Solution of S u = w */
|
|
|
|
for (i__ = *dimens; i__ >= 1; --i__) {
|
|
|
|
pointe = sposit[(i__ << 1) + 2];
|
|
j = posuiv[pointe];
|
|
somme = 0.;
|
|
while(j > 0) {
|
|
ptcour = sposit[(j << 1) + 2] - (j - i__);
|
|
somme += smatri[ptcour] * soluti[j];
|
|
j = posuiv[ptcour];
|
|
}
|
|
|
|
soluti[i__] = (soluti[i__] - somme) / smatri[pointe];
|
|
}
|
|
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* ERROR PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* RETURN PROGRAM CALLING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9999:
|
|
|
|
AdvApp2Var_SysBase::maermsg_("MMRSLSS", iercod, 7L);
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMRSLSS", 7L);
|
|
}
|
|
return 0 ;
|
|
} /* mmrslss_ */
|
|
|
|
//=======================================================================
|
|
//function : mmrslw_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmrslw_(integer *normax,
|
|
integer *nordre,
|
|
integer *ndimen,
|
|
doublereal *epspiv,
|
|
doublereal *abmatr,
|
|
doublereal *xmatri,
|
|
integer *iercod)
|
|
{
|
|
/* System generated locals */
|
|
integer abmatr_dim1, abmatr_offset, xmatri_dim1, xmatri_offset, i__1,
|
|
i__2, i__3;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer kpiv;
|
|
doublereal pivot;
|
|
integer ii, jj, kk;
|
|
doublereal akj;
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Solution of a linear system A.x = B of N equations to N */
|
|
/* unknown by Gauss method (partial pivot) or : */
|
|
/* A is matrix NORDRE * NORDRE, */
|
|
/* B is matrix NORDRE (lines) * NDIMEN (columns), */
|
|
/* x is matrix NORDRE (lines) * NDIMEN (columns). */
|
|
/* In this program, A and B are stored in matrix ABMATR */
|
|
/* the lines and columns which of were inverted. ABMATR(k,j) is */
|
|
/* term A(j,k) if k <= NORDRE, B(j,k-NORDRE) otherwise (see example). */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* TOUS, MATH_ACCES::EQUATION&, MATRICE&, RESOLUTION, GAUSS, &SOLUTION */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NORMAX : Max size of the first index of XMATRI. This argument */
|
|
/* serves only for the declaration of dimension of XMATRI and should be */
|
|
/* above or equal to NORDRE. */
|
|
/* NORDRE : Order of the matrix i.e. number of equations and */
|
|
/* unknown quantities of the linear system to be solved. */
|
|
/* NDIMEN : Number of the second member. */
|
|
/* EPSPIV : Minimal value of a pivot. If during the calculation */
|
|
/* the absolute value of the pivot is below EPSPIV, the */
|
|
/* system of equations is declared singular. EPSPIV should */
|
|
/* be a "small" real. */
|
|
|
|
/* ABMATR(NORDRE+NDIMEN,NORDRE) : Auxiliary matrix containing */
|
|
/* matrix A and matrix B. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* XMATRI : Matrix containing NORDRE*NDIMEN solutions. */
|
|
/* IERCOD=0 shows that all solutions are calculated. */
|
|
/* IERCOD=1 shows that the matrix is of lower rank than NORDRE */
|
|
/* (the system is singular). */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* ATTENTION : the indices of line and column are inverted */
|
|
/* compared to usual indices. */
|
|
/* System : */
|
|
/* a1*x + b1*y = c1 */
|
|
/* a2*x + b2*y = c2 */
|
|
/* should be represented by matrix ABMATR : */
|
|
|
|
/* ABMATR(1,1) = a1 ABMATR(1,2) = a2 */
|
|
/* ABMATR(2,1) = b1 ABMATR(2,2) = b2 */
|
|
/* ABMATR(3,1) = c1 ABMATR(3,2) = c2 */
|
|
|
|
/* To solve this system, it is necessary to set : */
|
|
|
|
/* NORDRE = 2 (there are 2 equations with 2 unknown values), */
|
|
/* NDIMEN = 1 (there is only one second member), */
|
|
/* any NORMAX can be taken >= NORDRE. */
|
|
|
|
/* To use this routine, it is recommended to use one of */
|
|
/* interfaces : MMRSLWI or MMMRSLWD. */
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* Name of the routine */
|
|
|
|
/* INTEGER IBB,MNFNDEB */
|
|
|
|
/* IBB=MNFNDEB() */
|
|
/* IF (IBB.GE.2) CALL MGENMSG(NOMPR) */
|
|
/* Parameter adjustments */
|
|
xmatri_dim1 = *normax;
|
|
xmatri_offset = xmatri_dim1 + 1;
|
|
xmatri -= xmatri_offset;
|
|
abmatr_dim1 = *nordre + *ndimen;
|
|
abmatr_offset = abmatr_dim1 + 1;
|
|
abmatr -= abmatr_offset;
|
|
|
|
/* Function Body */
|
|
*iercod = 0;
|
|
|
|
/* *********************************************************************
|
|
*/
|
|
/* Triangulation of matrix ABMATR. */
|
|
/* *********************************************************************
|
|
*/
|
|
|
|
i__1 = *nordre;
|
|
for (kk = 1; kk <= i__1; ++kk) {
|
|
|
|
/* ---------- Find max pivot in column KK. ------------
|
|
--- */
|
|
|
|
pivot = *epspiv;
|
|
kpiv = 0;
|
|
i__2 = *nordre;
|
|
for (jj = kk; jj <= i__2; ++jj) {
|
|
akj = (d__1 = abmatr[kk + jj * abmatr_dim1], advapp_abs(d__1));
|
|
if (akj > pivot) {
|
|
pivot = akj;
|
|
kpiv = jj;
|
|
}
|
|
/* L100: */
|
|
}
|
|
if (kpiv == 0) {
|
|
goto L9900;
|
|
}
|
|
|
|
/* --------- Swapping of line KPIV with line KK. ------
|
|
--- */
|
|
|
|
if (kpiv != kk) {
|
|
i__2 = *nordre + *ndimen;
|
|
for (jj = kk; jj <= i__2; ++jj) {
|
|
akj = abmatr[jj + kk * abmatr_dim1];
|
|
abmatr[jj + kk * abmatr_dim1] = abmatr[jj + kpiv *
|
|
abmatr_dim1];
|
|
abmatr[jj + kpiv * abmatr_dim1] = akj;
|
|
/* L200: */
|
|
}
|
|
}
|
|
|
|
/* ---------- Removal and triangularization. -----------
|
|
--- */
|
|
|
|
pivot = -abmatr[kk + kk * abmatr_dim1];
|
|
i__2 = *nordre;
|
|
for (ii = kk + 1; ii <= i__2; ++ii) {
|
|
akj = abmatr[kk + ii * abmatr_dim1] / pivot;
|
|
i__3 = *nordre + *ndimen;
|
|
for (jj = kk + 1; jj <= i__3; ++jj) {
|
|
abmatr[jj + ii * abmatr_dim1] += akj * abmatr[jj + kk *
|
|
abmatr_dim1];
|
|
/* L400: */
|
|
}
|
|
/* L300: */
|
|
}
|
|
|
|
|
|
/* L1000: */
|
|
}
|
|
|
|
/* *********************************************************************
|
|
*/
|
|
/* Solution of the system of triangular equations. */
|
|
/* Matrix ABMATR(NORDRE+JJ,II), contains second members */
|
|
/* of the system for 1<=j<=NDIMEN and 1<=i<=NORDRE. */
|
|
/* *********************************************************************
|
|
*/
|
|
|
|
|
|
/* ---------------- Calculation of solutions by ascending. -----------------
|
|
*/
|
|
|
|
for (kk = *nordre; kk >= 1; --kk) {
|
|
pivot = abmatr[kk + kk * abmatr_dim1];
|
|
i__1 = *ndimen;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
akj = abmatr[ii + *nordre + kk * abmatr_dim1];
|
|
i__2 = *nordre;
|
|
for (jj = kk + 1; jj <= i__2; ++jj) {
|
|
akj -= abmatr[jj + kk * abmatr_dim1] * xmatri[jj + ii *
|
|
xmatri_dim1];
|
|
/* L800: */
|
|
}
|
|
xmatri[kk + ii * xmatri_dim1] = akj / pivot;
|
|
/* L700: */
|
|
}
|
|
/* L600: */
|
|
}
|
|
goto L9999;
|
|
|
|
/* ------If the absolute value of a pivot is smaller than -------- */
|
|
/* ---------- EPSPIV: return the code of error. ------------
|
|
*/
|
|
|
|
L9900:
|
|
*iercod = 1;
|
|
|
|
|
|
|
|
L9999:
|
|
if (*iercod > 0) {
|
|
AdvApp2Var_SysBase::maermsg_("MMRSLW ", iercod, 7L);
|
|
}
|
|
/* IF (IBB.GE.2) CALL MGSOMSG(NOMPR) */
|
|
return 0 ;
|
|
} /* mmrslw_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmmrslwd_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmmrslwd_(integer *normax,
|
|
integer *nordre,
|
|
integer *ndim,
|
|
doublereal *amat,
|
|
doublereal *bmat,
|
|
doublereal *epspiv,
|
|
doublereal *aaux,
|
|
doublereal *xmat,
|
|
integer *iercod)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer amat_dim1, amat_offset, bmat_dim1, bmat_offset, xmat_dim1,
|
|
xmat_offset, aaux_dim1, aaux_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer i__, j;
|
|
integer ibb;
|
|
|
|
/* IMPLICIT DOUBLE PRECISION (A-H,O-Z) */
|
|
/* IMPLICIT INTEGER (I-N) */
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Solution of a linear system by Gauss method where */
|
|
/* the second member is a table of vectors. Method of partial pivot. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* ALL, MATH_ACCES :: */
|
|
/* SYSTEME&,EQUATION&, RESOLUTION,GAUSS ,&VECTEUR */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NORMAX : Max. Dimension of AMAT. */
|
|
/* NORDRE : Order of the matrix. */
|
|
/* NDIM : Number of columns of BMAT and XMAT. */
|
|
/* AMAT(NORMAX,NORDRE) : The processed matrix. */
|
|
/* BMAT(NORMAX,NDIM) : The matrix of second member. */
|
|
/* XMAT(NORMAX,NDIM) : The matrix of solutions. */
|
|
/* EPSPIV : Min value of a pivot. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* AAUX(NORDRE+NDIM,NORDRE) : Auxiliary matrix. */
|
|
/* XMAT(NORMAX,NDIM) : Matrix of solutions. */
|
|
/* IERCOD=0 shows that solutions in XMAT are valid. */
|
|
/* IERCOD=1 shows that matrix AMAT is of lower rank than NORDRE. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* .Neant. */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
/* Type Name */
|
|
/* MAERMSG MGENMSG MGSOMSG */
|
|
/* MMRSLW I*4 MNFNDEB */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* ATTENTION : lines and columns are located in usual order : */
|
|
/* 1st index = index line */
|
|
/* 2nd index = index column */
|
|
/* Example, the system : */
|
|
/* a1*x + b1*y = c1 */
|
|
/* a2*x + b2*y = c2 */
|
|
/* is represented by matrix AMAT : */
|
|
|
|
/* AMAT(1,1) = a1 AMAT(2,1) = a2 */
|
|
/* AMAT(1,2) = b1 AMAT(2,2) = b2 */
|
|
|
|
/* The first index is the index of line, the second index */
|
|
/* is the index of columns (Compare with MMRSLWI which is faster). */
|
|
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* Name of the routine */
|
|
|
|
/* Parameter adjustments */
|
|
amat_dim1 = *normax;
|
|
amat_offset = amat_dim1 + 1;
|
|
amat -= amat_offset;
|
|
xmat_dim1 = *normax;
|
|
xmat_offset = xmat_dim1 + 1;
|
|
xmat -= xmat_offset;
|
|
aaux_dim1 = *nordre + *ndim;
|
|
aaux_offset = aaux_dim1 + 1;
|
|
aaux -= aaux_offset;
|
|
bmat_dim1 = *normax;
|
|
bmat_offset = bmat_dim1 + 1;
|
|
bmat -= bmat_offset;
|
|
|
|
/* Function Body */
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 3) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMMRSLW", 7L);
|
|
}
|
|
|
|
/* Initialization of the auxiliary matrix. */
|
|
|
|
i__1 = *nordre;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
i__2 = *nordre;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
aaux[j + i__ * aaux_dim1] = amat[i__ + j * amat_dim1];
|
|
/* L200: */
|
|
}
|
|
/* L100: */
|
|
}
|
|
|
|
/* Second member. */
|
|
|
|
i__1 = *nordre;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
i__2 = *ndim;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
aaux[j + *nordre + i__ * aaux_dim1] = bmat[i__ + j * bmat_dim1];
|
|
/* L400: */
|
|
}
|
|
/* L300: */
|
|
}
|
|
|
|
/* Solution of the system of equations. */
|
|
|
|
mmrslw_(normax, nordre, ndim, epspiv, &aaux[aaux_offset], &xmat[
|
|
xmat_offset], iercod);
|
|
|
|
|
|
if (*iercod != 0) {
|
|
AdvApp2Var_SysBase::maermsg_("MMMRSLW", iercod, 7L);
|
|
}
|
|
if (ibb >= 3) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMMRSLW", 7L);
|
|
}
|
|
return 0 ;
|
|
} /* mmmrslwd_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmrtptt_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmrtptt_(integer *ndglgd,
|
|
doublereal *rtlegd)
|
|
|
|
{
|
|
integer ideb, nmod2, nsur2, ilong, ibb;
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Extracts from Common LDGRTL the STRICTLY positive roots of the */
|
|
/* Legendre polynom of degree NDGLGD, for 2 <= NDGLGD <= 61. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* TOUS, AB_SPECIFI::COMMON&, EXTRACTION, &RACINE, &LEGENDRE. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDGLGD : Mathematic degree of Legendre polynom. */
|
|
/* This degree should be above or equal to 2 and */
|
|
/* below or equal to 61. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* RTLEGD : The table of strictly positive roots of */
|
|
/* Legendre polynom of degree NDGLGD. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* ATTENTION: the condition on NDEGRE ( 2 <= NDEGRE <= 61) is not */
|
|
/* tested. The caller should make the test. */
|
|
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
/* Nome of the routine */
|
|
|
|
|
|
/* Common MLGDRTL: */
|
|
/* This common includes POSITIVE roots of Legendre polynoms */
|
|
/* AND the weight of Gauss quadrature formulas on all */
|
|
/* POSITIVE roots of Legendre polynoms. */
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* The common of Legendre roots. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* BASE LEGENDRE */
|
|
|
|
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* ROOTAB : Table of all rotts of Legendre polynoms */
|
|
/* between [0,1]. They are ranked for degrees increasing from 2 to 61. */
|
|
/* HILTAB : Table of Legendre interpolators concerning ROOTAB. */
|
|
/* The address is the same. */
|
|
/* HI0TAB : Table of Legendre interpolators for root x=0 */
|
|
/* the polynoms of UNEVEN degree. */
|
|
/* RTLTB0 : Table of Li(uk) where uk are roots of a */
|
|
/* Legendre polynom of EVEN degree. */
|
|
/* RTLTB1 : Table of Li(uk) where uk are roots of a */
|
|
/* Legendre polynom of UNEVEN degree. */
|
|
|
|
|
|
/************************************************************************
|
|
*****/
|
|
/* Parameter adjustments */
|
|
--rtlegd;
|
|
|
|
/* Function Body */
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 3) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMRTPTT", 7L);
|
|
}
|
|
if (*ndglgd < 2) {
|
|
goto L9999;
|
|
}
|
|
|
|
nsur2 = *ndglgd / 2;
|
|
nmod2 = *ndglgd % 2;
|
|
|
|
ilong = nsur2 << 3;
|
|
ideb = nsur2 * (nsur2 - 1) / 2 + 1;
|
|
AdvApp2Var_SysBase::mcrfill_(&ilong,
|
|
&mlgdrtl_.rootab[ideb + nmod2 * 465 - 1],
|
|
&rtlegd[1]);
|
|
|
|
/* ----------------------------- The end --------------------------------
|
|
*/
|
|
|
|
L9999:
|
|
if (ibb >= 3) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMRTPTT", 7L);
|
|
}
|
|
return 0;
|
|
} /* mmrtptt_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmsrre2_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmsrre2_(doublereal *tparam,
|
|
integer *nbrval,
|
|
doublereal *tablev,
|
|
doublereal *epsil,
|
|
integer *numint,
|
|
integer *itypen,
|
|
integer *iercod)
|
|
{
|
|
/* System generated locals */
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer ideb, ifin, imil, ibb;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* -------- */
|
|
|
|
/* Find the interval corresponding to a valueb given in */
|
|
/* increasing order of real numbers with double precision. */
|
|
|
|
/* KEYWORDS : */
|
|
/* --------- */
|
|
/* TOUS,MATH_ACCES::TABLEAU&,POINT&,CORRESPONDANCE,&RANG */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
|
|
/* TPARAM : Value to be tested. */
|
|
/* NBRVAL : Size of TABLEV */
|
|
/* TABLEV : Table of reals. */
|
|
/* EPSIL : Epsilon of precision */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
|
|
/* NUMINT : Number of the interval (between 1 and NBRVAL-1). */
|
|
/* ITYPEN : = 0 TPARAM is inside the interval NUMINT */
|
|
/* = 1 : TPARAM corresponds to the lower limit of */
|
|
/* the provided interval. */
|
|
/* = 2 : TPARAM corresponds to the upper limit of */
|
|
/* the provided interval. */
|
|
|
|
/* IERCOD : Error code. */
|
|
/* = 0 : OK */
|
|
/* = 1 : TABLEV does not contain enough elements. */
|
|
/* = 2 : TPARAM out of limits of TABLEV. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* --------------------------------- */
|
|
/* There are NBRVAL values in TABLEV which stands for NBRVAL-1 intervals. */
|
|
/* One searches the interval containing TPARAM by */
|
|
/* dichotomy. Complexity of the algorithm : Log(n)/Log(2).(RBD). */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* Initialisations */
|
|
|
|
/* Parameter adjustments */
|
|
--tablev;
|
|
|
|
/* Function Body */
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 6) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMSRRE2", 7L);
|
|
}
|
|
|
|
*iercod = 0;
|
|
*numint = 0;
|
|
*itypen = 0;
|
|
ideb = 1;
|
|
ifin = *nbrval;
|
|
|
|
/* TABLEV should contain at least two values */
|
|
|
|
if (*nbrval < 2) {
|
|
*iercod = 1;
|
|
goto L9999;
|
|
}
|
|
|
|
/* TPARAM should be between extreme limits of TABLEV. */
|
|
|
|
if (*tparam < tablev[1] || *tparam > tablev[*nbrval]) {
|
|
*iercod = 2;
|
|
goto L9999;
|
|
}
|
|
|
|
/* ----------------------- SEARCH OF THE INTERVAL --------------------
|
|
*/
|
|
|
|
L1000:
|
|
|
|
/* Test end of loop (found). */
|
|
|
|
if (ideb + 1 == ifin) {
|
|
*numint = ideb;
|
|
goto L2000;
|
|
}
|
|
|
|
/* Find by dichotomy on increasing values of TABLEV. */
|
|
|
|
imil = (ideb + ifin) / 2;
|
|
if (*tparam >= tablev[ideb] && *tparam <= tablev[imil]) {
|
|
ifin = imil;
|
|
} else {
|
|
ideb = imil;
|
|
}
|
|
|
|
goto L1000;
|
|
|
|
/* -------------- TEST IF TPARAM IS NOT A VALUE --------- */
|
|
/* ------------------------OF TABLEV UP TO EPSIL ----------------------
|
|
*/
|
|
|
|
L2000:
|
|
if ((d__1 = *tparam - tablev[ideb], advapp_abs(d__1)) < *epsil) {
|
|
*itypen = 1;
|
|
goto L9999;
|
|
}
|
|
if ((d__1 = *tparam - tablev[ifin], advapp_abs(d__1)) < *epsil) {
|
|
*itypen = 2;
|
|
goto L9999;
|
|
}
|
|
|
|
/* --------------------------- THE END ----------------------------------
|
|
*/
|
|
|
|
L9999:
|
|
if (*iercod > 0) {
|
|
AdvApp2Var_SysBase::maermsg_("MMSRRE2", iercod, 7L);
|
|
}
|
|
if (ibb >= 6) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMSRRE2", 7L);
|
|
}
|
|
return 0 ;
|
|
} /* mmsrre2_ */
|
|
|
|
//=======================================================================
|
|
//function : mmtmave_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmtmave_(integer *nligne,
|
|
integer *ncolon,
|
|
integer *gposit,
|
|
integer *,//gnstoc,
|
|
doublereal *gmatri,
|
|
doublereal *vecin,
|
|
doublereal *vecout,
|
|
integer *iercod)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer i__1, i__2;
|
|
|
|
/* Local variables */
|
|
logical ldbg;
|
|
integer imin, imax, i__, j, k;
|
|
doublereal somme;
|
|
integer aux;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* t */
|
|
/* CREATES PRODUCT G V */
|
|
/* WHERE THE MATRIX IS IN FORM OF PROFILE */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* RESERVE, PRODUCT, MATRIX, PROFILE, VECTOR */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* -------------------- */
|
|
/* NLIGNE : NUMBER OF LINE OF THE MATRIX */
|
|
/* NCOLON : NOMBER OF COLUMN OF THE MATRIX */
|
|
/* GPOSIT: TABLE OF POSITIONING OF TERMS OF STORAGE */
|
|
/* GPOSIT(1,I) CONTAINS THE NUMBER of TERMS-1 ON LINE */
|
|
/* I IN THE PROFILE OF THE MATRIX */
|
|
/* GPOSIT(2,I) CONTAINS THE INDEX OF STORAGE OF THE DIAGONAL TERM*/
|
|
/* OF LINE I */
|
|
/* GPOSIT(3,I) CONTAINS THE INDEX COLUMN OF THE FIRST TERM OF */
|
|
/* PROFILE OF LINE I */
|
|
/* GNSTOC : NOMBER OF TERM IN THE PROFILE OF GMATRI */
|
|
/* GMATRI : MATRIX OF CONSTRAINTS IN FORM OF PROFILE */
|
|
/* VECIN : INPUT VECTOR */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* --------------------- */
|
|
/* VECOUT : VECTOR PRODUCT */
|
|
/* IERCOD : ERROR CODE */
|
|
|
|
|
|
/* COMMONS USED : */
|
|
/* ------------------ */
|
|
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* --------------------- */
|
|
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
/* DECLARATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* INITIALISATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
--vecin;
|
|
gposit -= 4;
|
|
--vecout;
|
|
--gmatri;
|
|
|
|
/* Function Body */
|
|
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 2;
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMTMAVE", 7L);
|
|
}
|
|
*iercod = 0;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
i__1 = *ncolon;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
somme = 0.;
|
|
i__2 = *nligne;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
imin = gposit[j * 3 + 3];
|
|
imax = gposit[j * 3 + 1] + gposit[j * 3 + 3] - 1;
|
|
aux = gposit[j * 3 + 2] - gposit[j * 3 + 1] - imin + 1;
|
|
if (imin <= i__ && i__ <= imax) {
|
|
k = i__ + aux;
|
|
somme += gmatri[k] * vecin[j];
|
|
}
|
|
}
|
|
vecout[i__] = somme;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* ERROR PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* RETURN CALLING PROGRAM */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9999:
|
|
|
|
/* ___ DESALLOCATION, ... */
|
|
|
|
AdvApp2Var_SysBase::maermsg_("MMTMAVE", iercod, 7L);
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMTMAVE", 7L);
|
|
}
|
|
return 0 ;
|
|
} /* mmtmave_ */
|
|
|
|
//=======================================================================
|
|
//function : mmtrpj0_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmtrpj0_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *epsi3d,
|
|
doublereal *crvlgd,
|
|
doublereal *ycvmax,
|
|
doublereal *epstrc,
|
|
integer *ncfnew)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer crvlgd_dim1, crvlgd_offset, i__1, i__2;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer ncut, i__;
|
|
doublereal bidon, error;
|
|
integer nd;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Lowers the degree of a curve defined on (-1,1) in the direction of */
|
|
/* Legendre with a given precision. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* LEGENDRE, POLYGON, TRUNCATION, CURVE, SMOOTHING. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOFMX : Max Nb of coeff. of the curve (dimensioning). */
|
|
/* NDIMEN : Dimension of the space. */
|
|
/* NCOEFF : Degree +1 of the polynom. */
|
|
/* EPSI3D : Precision required for the approximation. */
|
|
/* CRVLGD : The curve the degree which of it is required to lower. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* EPSTRC : Precision of the approximation. */
|
|
/* NCFNEW : Degree +1 of the resulting polynom. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* ------- Minimum degree that can be attained : Stop at 1 (RBD) ---------
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
--ycvmax;
|
|
crvlgd_dim1 = *ncofmx;
|
|
crvlgd_offset = crvlgd_dim1 + 1;
|
|
crvlgd -= crvlgd_offset;
|
|
|
|
/* Function Body */
|
|
*ncfnew = 1;
|
|
/* ------------------- Init for error calculation -----------------------
|
|
*/
|
|
i__1 = *ndimen;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
ycvmax[i__] = 0.;
|
|
/* L100: */
|
|
}
|
|
*epstrc = 0.;
|
|
error = 0.;
|
|
|
|
/* Cutting of coefficients. */
|
|
|
|
ncut = 2;
|
|
/* ------ Loop on the series of Legendre :NCOEFF --> 2 (RBD) -----------
|
|
*/
|
|
i__1 = ncut;
|
|
for (i__ = *ncoeff; i__ >= i__1; --i__) {
|
|
/* Factor of renormalization. */
|
|
bidon = ((i__ - 1) * 2. + 1.) / 2.;
|
|
bidon = sqrt(bidon);
|
|
i__2 = *ndimen;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
ycvmax[nd] += (d__1 = crvlgd[i__ + nd * crvlgd_dim1], advapp_abs(d__1)) *
|
|
bidon;
|
|
/* L310: */
|
|
}
|
|
/* Cutting is stopped if the norm becomes too great. */
|
|
error = AdvApp2Var_MathBase::mzsnorm_(ndimen, &ycvmax[1]);
|
|
if (error > *epsi3d) {
|
|
*ncfnew = i__;
|
|
goto L9999;
|
|
}
|
|
|
|
/* --- Max error cumulee when the I-th coeff is removed. */
|
|
|
|
*epstrc = error;
|
|
|
|
/* L300: */
|
|
}
|
|
|
|
/* --------------------------------- End --------------------------------
|
|
*/
|
|
|
|
L9999:
|
|
return 0;
|
|
} /* mmtrpj0_ */
|
|
|
|
//=======================================================================
|
|
//function : mmtrpj2_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmtrpj2_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *epsi3d,
|
|
doublereal *crvlgd,
|
|
doublereal *ycvmax,
|
|
doublereal *epstrc,
|
|
integer *ncfnew)
|
|
|
|
{
|
|
/* Initialized data */
|
|
|
|
static doublereal xmaxj[57] = { .9682458365518542212948163499456,
|
|
.986013297183269340427888048593603,
|
|
1.07810420343739860362585159028115,
|
|
1.17325804490920057010925920756025,
|
|
1.26476561266905634732910520370741,
|
|
1.35169950227289626684434056681946,
|
|
1.43424378958284137759129885012494,
|
|
1.51281316274895465689402798226634,
|
|
1.5878364329591908800533936587012,
|
|
1.65970112228228167018443636171226,
|
|
1.72874345388622461848433443013543,
|
|
1.7952515611463877544077632304216,
|
|
1.85947199025328260370244491818047,
|
|
1.92161634324190018916351663207101,
|
|
1.98186713586472025397859895825157,
|
|
2.04038269834980146276967984252188,
|
|
2.09730119173852573441223706382076,
|
|
2.15274387655763462685970799663412,
|
|
2.20681777186342079455059961912859,
|
|
2.25961782459354604684402726624239,
|
|
2.31122868752403808176824020121524,
|
|
2.36172618435386566570998793688131,
|
|
2.41117852396114589446497298177554,
|
|
2.45964731268663657873849811095449,
|
|
2.50718840313973523778244737914028,
|
|
2.55385260994795361951813645784034,
|
|
2.59968631659221867834697883938297,
|
|
2.64473199258285846332860663371298,
|
|
2.68902863641518586789566216064557,
|
|
2.73261215675199397407027673053895,
|
|
2.77551570192374483822124304745691,
|
|
2.8177699459714315371037628127545,
|
|
2.85940333797200948896046563785957,
|
|
2.90044232019793636101516293333324,
|
|
2.94091151970640874812265419871976,
|
|
2.98083391718088702956696303389061,
|
|
3.02023099621926980436221568258656,
|
|
3.05912287574998661724731962377847,
|
|
3.09752842783622025614245706196447,
|
|
3.13546538278134559341444834866301,
|
|
3.17295042316122606504398054547289,
|
|
3.2099992681699613513775259670214,
|
|
3.24662674946606137764916854570219,
|
|
3.28284687953866689817670991319787,
|
|
3.31867291347259485044591136879087,
|
|
3.35411740487202127264475726990106,
|
|
3.38919225660177218727305224515862,
|
|
3.42390876691942143189170489271753,
|
|
3.45827767149820230182596660024454,
|
|
3.49230918177808483937957161007792,
|
|
3.5260130200285724149540352829756,
|
|
3.55939845146044235497103883695448,
|
|
3.59247431368364585025958062194665,
|
|
3.62524904377393592090180712976368,
|
|
3.65773070318071087226169680450936,
|
|
3.68992700068237648299565823810245,
|
|
3.72184531357268220291630708234186 };
|
|
|
|
/* System generated locals */
|
|
integer crvlgd_dim1, crvlgd_offset, i__1, i__2;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer ncut, i__;
|
|
doublereal bidon, error;
|
|
integer ia, nd;
|
|
doublereal bid, eps1;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Lower the degree of a curve defined on (-1,1) in the direction of */
|
|
/* Legendre with a given precision. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* LEGENDRE, POLYGON, TRUNCATION, CURVE, SMOOTHING. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOFMX : Max nb of coeff. of the curve (dimensioning). */
|
|
/* NDIMEN : Dimension of the space. */
|
|
/* NCOEFF : Degree +1 of the polynom. */
|
|
/* EPSI3D : Precision required for the approximation. */
|
|
/* CRVLGD : The curve the degree which of will be lowered. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* YCVMAX : Auxiliary table (error max on each dimension).
|
|
*/
|
|
/* EPSTRC : Precision of the approximation. */
|
|
/* NCFNEW : Degree +1 of the resulting polynom. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* Parameter adjustments */
|
|
--ycvmax;
|
|
crvlgd_dim1 = *ncofmx;
|
|
crvlgd_offset = crvlgd_dim1 + 1;
|
|
crvlgd -= crvlgd_offset;
|
|
|
|
/* Function Body */
|
|
|
|
|
|
|
|
/* Minimum degree that can be reached : Stop at IA (RBD). -------------
|
|
*/
|
|
ia = 2;
|
|
*ncfnew = ia;
|
|
/* Init for calculation of error. */
|
|
i__1 = *ndimen;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
ycvmax[i__] = 0.;
|
|
/* L100: */
|
|
}
|
|
*epstrc = 0.;
|
|
error = 0.;
|
|
|
|
/* Cutting of coefficients. */
|
|
|
|
ncut = ia + 1;
|
|
/* ------ Loop on the series of Jacobi :NCOEFF --> IA+1 (RBD) ----------
|
|
*/
|
|
i__1 = ncut;
|
|
for (i__ = *ncoeff; i__ >= i__1; --i__) {
|
|
/* Factor of renormalization. */
|
|
bidon = xmaxj[i__ - ncut];
|
|
i__2 = *ndimen;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
ycvmax[nd] += (d__1 = crvlgd[i__ + nd * crvlgd_dim1], advapp_abs(d__1)) *
|
|
bidon;
|
|
/* L310: */
|
|
}
|
|
/* One stops to cut if the norm becomes too great. */
|
|
error = AdvApp2Var_MathBase::mzsnorm_(ndimen, &ycvmax[1]);
|
|
if (error > *epsi3d) {
|
|
*ncfnew = i__;
|
|
goto L400;
|
|
}
|
|
|
|
/* --- Max error cumulated when the I-th coeff is removed. */
|
|
|
|
*epstrc = error;
|
|
|
|
/* L300: */
|
|
}
|
|
|
|
/* ------- Cutting of zero coeffs of interpolation (RBD) -------
|
|
*/
|
|
|
|
L400:
|
|
if (*ncfnew == ia) {
|
|
AdvApp2Var_MathBase::mmeps1_(&eps1);
|
|
for (i__ = ia; i__ >= 2; --i__) {
|
|
bid = 0.;
|
|
i__1 = *ndimen;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
bid += (d__1 = crvlgd[i__ + nd * crvlgd_dim1], advapp_abs(d__1));
|
|
/* L600: */
|
|
}
|
|
if (bid > eps1) {
|
|
*ncfnew = i__;
|
|
goto L9999;
|
|
}
|
|
/* L500: */
|
|
}
|
|
/* --- If all coeffs can be removed, this is a point. */
|
|
*ncfnew = 1;
|
|
}
|
|
|
|
/* --------------------------------- End --------------------------------
|
|
*/
|
|
|
|
L9999:
|
|
return 0;
|
|
} /* mmtrpj2_ */
|
|
|
|
//=======================================================================
|
|
//function : mmtrpj4_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmtrpj4_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *epsi3d,
|
|
doublereal *crvlgd,
|
|
doublereal *ycvmax,
|
|
doublereal *epstrc,
|
|
integer *ncfnew)
|
|
{
|
|
/* Initialized data */
|
|
|
|
static doublereal xmaxj[55] = { 1.1092649593311780079813740546678,
|
|
1.05299572648705464724876659688996,
|
|
1.0949715351434178709281698645813,
|
|
1.15078388379719068145021100764647,
|
|
1.2094863084718701596278219811869,
|
|
1.26806623151369531323304177532868,
|
|
1.32549784426476978866302826176202,
|
|
1.38142537365039019558329304432581,
|
|
1.43575531950773585146867625840552,
|
|
1.48850442653629641402403231015299,
|
|
1.53973611681876234549146350844736,
|
|
1.58953193485272191557448229046492,
|
|
1.63797820416306624705258190017418,
|
|
1.68515974143594899185621942934906,
|
|
1.73115699602477936547107755854868,
|
|
1.77604489805513552087086912113251,
|
|
1.81989256661534438347398400420601,
|
|
1.86276344480103110090865609776681,
|
|
1.90471563564740808542244678597105,
|
|
1.94580231994751044968731427898046,
|
|
1.98607219357764450634552790950067,
|
|
2.02556989246317857340333585562678,
|
|
2.06433638992049685189059517340452,
|
|
2.10240936014742726236706004607473,
|
|
2.13982350649113222745523925190532,
|
|
2.17661085564771614285379929798896,
|
|
2.21280102016879766322589373557048,
|
|
2.2484214321456956597803794333791,
|
|
2.28349755104077956674135810027654,
|
|
2.31805304852593774867640120860446,
|
|
2.35210997297725685169643559615022,
|
|
2.38568889602346315560143377261814,
|
|
2.41880904328694215730192284109322,
|
|
2.45148841120796359750021227795539,
|
|
2.48374387161372199992570528025315,
|
|
2.5155912654873773953959098501893,
|
|
2.54704548720896557684101746505398,
|
|
2.57812056037881628390134077704127,
|
|
2.60882970619319538196517982945269,
|
|
2.63918540521920497868347679257107,
|
|
2.66919945330942891495458446613851,
|
|
2.69888301230439621709803756505788,
|
|
2.72824665609081486737132853370048,
|
|
2.75730041251405791603760003778285,
|
|
2.78605380158311346185098508516203,
|
|
2.81451587035387403267676338931454,
|
|
2.84269522483114290814009184272637,
|
|
2.87060005919012917988363332454033,
|
|
2.89823818258367657739520912946934,
|
|
2.92561704377132528239806135133273,
|
|
2.95274375377994262301217318010209,
|
|
2.97962510678256471794289060402033,
|
|
3.00626759936182712291041810228171,
|
|
3.03267744830655121818899164295959,
|
|
3.05886060707437081434964933864149 };
|
|
|
|
/* System generated locals */
|
|
integer crvlgd_dim1, crvlgd_offset, i__1, i__2;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer ncut, i__;
|
|
doublereal bidon, error;
|
|
integer ia, nd;
|
|
doublereal bid, eps1;
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Lowers the degree of a curve defined on (-1,1) in the direction of */
|
|
/* Legendre with a given precision. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* LEGENDRE, POLYGON, TRONCATION, CURVE, SMOOTHING. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOFMX : Max nb of coeff. of the curve (dimensioning). */
|
|
/* NDIMEN : Dimension of the space. */
|
|
/* NCOEFF : Degree +1 of the polynom. */
|
|
/* EPSI3D : Precision required for the approximation. */
|
|
/* CRVLGD : The curve which wishes to lower the degree. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* YCVMAX : Auxiliary table (max error on each dimension).
|
|
*/
|
|
/* EPSTRC : Precision of the approximation. */
|
|
/* NCFNEW : Degree +1 of the resulting polynom. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* Parameter adjustments */
|
|
--ycvmax;
|
|
crvlgd_dim1 = *ncofmx;
|
|
crvlgd_offset = crvlgd_dim1 + 1;
|
|
crvlgd -= crvlgd_offset;
|
|
|
|
/* Function Body */
|
|
|
|
|
|
|
|
/* Minimum degree that can be reached : Stop at IA (RBD). -------------
|
|
*/
|
|
ia = 4;
|
|
*ncfnew = ia;
|
|
/* Init for error calculation. */
|
|
i__1 = *ndimen;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
ycvmax[i__] = 0.;
|
|
/* L100: */
|
|
}
|
|
*epstrc = 0.;
|
|
error = 0.;
|
|
|
|
/* Cutting of coefficients. */
|
|
|
|
ncut = ia + 1;
|
|
/* ------ Loop on the series of Jacobi :NCOEFF --> IA+1 (RBD) ----------
|
|
*/
|
|
i__1 = ncut;
|
|
for (i__ = *ncoeff; i__ >= i__1; --i__) {
|
|
/* Factor of renormalization. */
|
|
bidon = xmaxj[i__ - ncut];
|
|
i__2 = *ndimen;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
ycvmax[nd] += (d__1 = crvlgd[i__ + nd * crvlgd_dim1], advapp_abs(d__1)) *
|
|
bidon;
|
|
/* L310: */
|
|
}
|
|
/* Stop cutting if the norm becomes too great. */
|
|
error = AdvApp2Var_MathBase::mzsnorm_(ndimen, &ycvmax[1]);
|
|
if (error > *epsi3d) {
|
|
*ncfnew = i__;
|
|
goto L400;
|
|
}
|
|
|
|
/* -- Error max cumulated when the I-eme coeff is removed. */
|
|
|
|
*epstrc = error;
|
|
|
|
/* L300: */
|
|
}
|
|
|
|
/* ------- Cutting of zero coeffs of the pole of interpolation (RBD) -------
|
|
*/
|
|
|
|
L400:
|
|
if (*ncfnew == ia) {
|
|
AdvApp2Var_MathBase::mmeps1_(&eps1);
|
|
for (i__ = ia; i__ >= 2; --i__) {
|
|
bid = 0.;
|
|
i__1 = *ndimen;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
bid += (d__1 = crvlgd[i__ + nd * crvlgd_dim1], advapp_abs(d__1));
|
|
/* L600: */
|
|
}
|
|
if (bid > eps1) {
|
|
*ncfnew = i__;
|
|
goto L9999;
|
|
}
|
|
/* L500: */
|
|
}
|
|
/* --- If all coeffs can be removed, this is a point. */
|
|
*ncfnew = 1;
|
|
}
|
|
|
|
/* --------------------------------- End --------------------------------
|
|
*/
|
|
|
|
L9999:
|
|
return 0;
|
|
} /* mmtrpj4_ */
|
|
|
|
//=======================================================================
|
|
//function : mmtrpj6_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mmtrpj6_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *epsi3d,
|
|
doublereal *crvlgd,
|
|
doublereal *ycvmax,
|
|
doublereal *epstrc,
|
|
integer *ncfnew)
|
|
|
|
{
|
|
/* Initialized data */
|
|
|
|
static doublereal xmaxj[53] = { 1.21091229812484768570102219548814,
|
|
1.11626917091567929907256116528817,
|
|
1.1327140810290884106278510474203,
|
|
1.1679452722668028753522098022171,
|
|
1.20910611986279066645602153641334,
|
|
1.25228283758701572089625983127043,
|
|
1.29591971597287895911380446311508,
|
|
1.3393138157481884258308028584917,
|
|
1.3821288728999671920677617491385,
|
|
1.42420414683357356104823573391816,
|
|
1.46546895108549501306970087318319,
|
|
1.50590085198398789708599726315869,
|
|
1.54550385142820987194251585145013,
|
|
1.58429644271680300005206185490937,
|
|
1.62230484071440103826322971668038,
|
|
1.65955905239130512405565733793667,
|
|
1.69609056468292429853775667485212,
|
|
1.73193098017228915881592458573809,
|
|
1.7671112206990325429863426635397,
|
|
1.80166107681586964987277458875667,
|
|
1.83560897003644959204940535551721,
|
|
1.86898184653271388435058371983316,
|
|
1.90180515174518670797686768515502,
|
|
1.93410285411785808749237200054739,
|
|
1.96589749778987993293150856865539,
|
|
1.99721027139062501070081653790635,
|
|
2.02806108474738744005306947877164,
|
|
2.05846864831762572089033752595401,
|
|
2.08845055210580131460156962214748,
|
|
2.11802334209486194329576724042253,
|
|
2.14720259305166593214642386780469,
|
|
2.17600297710595096918495785742803,
|
|
2.20443832785205516555772788192013,
|
|
2.2325216999457379530416998244706,
|
|
2.2602654243075083168599953074345,
|
|
2.28768115912702794202525264301585,
|
|
2.3147799369092684021274946755348,
|
|
2.34157220782483457076721300512406,
|
|
2.36806787963276257263034969490066,
|
|
2.39427635443992520016789041085844,
|
|
2.42020656255081863955040620243062,
|
|
2.44586699364757383088888037359254,
|
|
2.47126572552427660024678584642791,
|
|
2.49641045058324178349347438430311,
|
|
2.52130850028451113942299097584818,
|
|
2.54596686772399937214920135190177,
|
|
2.5703922285006754089328998222275,
|
|
2.59459096001908861492582631591134,
|
|
2.61856915936049852435394597597773,
|
|
2.64233265984385295286445444361827,
|
|
2.66588704638685848486056711408168,
|
|
2.68923766976735295746679957665724,
|
|
2.71238965987606292679677228666411 };
|
|
|
|
/* System generated locals */
|
|
integer crvlgd_dim1, crvlgd_offset, i__1, i__2;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer ncut, i__;
|
|
doublereal bidon, error;
|
|
integer ia, nd;
|
|
doublereal bid, eps1;
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Lowers the degree of a curve defined on (-1,1) in the direction of */
|
|
/* Legendre to a given precision. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* LEGENDRE,POLYGON,TRUNCATION,CURVE,SMOOTHING. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOFMX : Max nb of coeff. of the curve (dimensioning). */
|
|
/* NDIMEN : Dimension of the space. */
|
|
/* NCOEFF : Degree +1 of the polynom. */
|
|
/* EPSI3D : Precision required for the approximation. */
|
|
/* CRVLGD : The curve the degree which of will be lowered. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* YCVMAX : Auxiliary table (max error on each dimension). */
|
|
/* EPSTRC : Precision of the approximation. */
|
|
/* NCFNEW : Degree +1 of the resulting polynom. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* Parameter adjustments */
|
|
--ycvmax;
|
|
crvlgd_dim1 = *ncofmx;
|
|
crvlgd_offset = crvlgd_dim1 + 1;
|
|
crvlgd -= crvlgd_offset;
|
|
|
|
/* Function Body */
|
|
|
|
|
|
|
|
/* Minimum degree that can be reached : Stop at IA (RBD). -------------
|
|
*/
|
|
ia = 6;
|
|
*ncfnew = ia;
|
|
/* Init for error calculation. */
|
|
i__1 = *ndimen;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
ycvmax[i__] = 0.;
|
|
/* L100: */
|
|
}
|
|
*epstrc = 0.;
|
|
error = 0.;
|
|
|
|
/* Cutting of coefficients. */
|
|
|
|
ncut = ia + 1;
|
|
/* ------ Loop on the series of Jacobi :NCOEFF --> IA+1 (RBD) ----------
|
|
*/
|
|
i__1 = ncut;
|
|
for (i__ = *ncoeff; i__ >= i__1; --i__) {
|
|
/* Factor of renormalization. */
|
|
bidon = xmaxj[i__ - ncut];
|
|
i__2 = *ndimen;
|
|
for (nd = 1; nd <= i__2; ++nd) {
|
|
ycvmax[nd] += (d__1 = crvlgd[i__ + nd * crvlgd_dim1], advapp_abs(d__1)) *
|
|
bidon;
|
|
/* L310: */
|
|
}
|
|
/* Stop cutting if the norm becomes too great. */
|
|
error = AdvApp2Var_MathBase::mzsnorm_(ndimen, &ycvmax[1]);
|
|
if (error > *epsi3d) {
|
|
*ncfnew = i__;
|
|
goto L400;
|
|
}
|
|
|
|
/* --- Max error cumulated when the I-th coeff is removed. */
|
|
|
|
*epstrc = error;
|
|
|
|
/* L300: */
|
|
}
|
|
|
|
/* ------- Cutting of zero coeff. of the pole of interpolation (RBD) -------
|
|
*/
|
|
|
|
L400:
|
|
if (*ncfnew == ia) {
|
|
AdvApp2Var_MathBase::mmeps1_(&eps1);
|
|
for (i__ = ia; i__ >= 2; --i__) {
|
|
bid = 0.;
|
|
i__1 = *ndimen;
|
|
for (nd = 1; nd <= i__1; ++nd) {
|
|
bid += (d__1 = crvlgd[i__ + nd * crvlgd_dim1], advapp_abs(d__1));
|
|
/* L600: */
|
|
}
|
|
if (bid > eps1) {
|
|
*ncfnew = i__;
|
|
goto L9999;
|
|
}
|
|
/* L500: */
|
|
}
|
|
/* --- If all coeffs can be removed, this is a point. */
|
|
*ncfnew = 1;
|
|
}
|
|
|
|
/* --------------------------------- End --------------------------------
|
|
*/
|
|
|
|
L9999:
|
|
return 0;
|
|
} /* mmtrpj6_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmtrpjj_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmtrpjj_(integer *ncofmx,
|
|
integer *ndimen,
|
|
integer *ncoeff,
|
|
doublereal *epsi3d,
|
|
integer *iordre,
|
|
doublereal *crvlgd,
|
|
doublereal *ycvmax,
|
|
doublereal *errmax,
|
|
integer *ncfnew)
|
|
{
|
|
/* System generated locals */
|
|
integer crvlgd_dim1, crvlgd_offset;
|
|
|
|
/* Local variables */
|
|
integer ia;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Lower the degree of a curve defined on (-1,1) in the direction of */
|
|
/* Legendre with a given precision. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* LEGENDRE, POLYGON, TRUNCATION, CURVE, SMOOTHING. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOFMX : Max Nb coeff. of the curve (dimensioning). */
|
|
/* NDIMEN : Dimension of the space. */
|
|
/* NCOEFF : Degree +1 of the polynom. */
|
|
/* EPSI3D : Precision required for the approximation. */
|
|
/* IORDRE : Order of continuity at the extremities. */
|
|
/* CRVLGD : The curve the degree which of should be lowered. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* ERRMAX : Precision of the approximation. */
|
|
/* NCFNEW : Degree +1 of the resulting polynom. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* Parameter adjustments */
|
|
--ycvmax;
|
|
crvlgd_dim1 = *ncofmx;
|
|
crvlgd_offset = crvlgd_dim1 + 1;
|
|
crvlgd -= crvlgd_offset;
|
|
|
|
/* Function Body */
|
|
ia = (*iordre + 1) << 1;
|
|
|
|
if (ia == 0) {
|
|
mmtrpj0_(ncofmx, ndimen, ncoeff, epsi3d, &crvlgd[crvlgd_offset], &
|
|
ycvmax[1], errmax, ncfnew);
|
|
} else if (ia == 2) {
|
|
mmtrpj2_(ncofmx, ndimen, ncoeff, epsi3d, &crvlgd[crvlgd_offset], &
|
|
ycvmax[1], errmax, ncfnew);
|
|
} else if (ia == 4) {
|
|
mmtrpj4_(ncofmx, ndimen, ncoeff, epsi3d, &crvlgd[crvlgd_offset], &
|
|
ycvmax[1], errmax, ncfnew);
|
|
} else {
|
|
mmtrpj6_(ncofmx, ndimen, ncoeff, epsi3d, &crvlgd[crvlgd_offset], &
|
|
ycvmax[1], errmax, ncfnew);
|
|
}
|
|
|
|
/* ------------------------ End -----------------------------------------
|
|
*/
|
|
|
|
return 0;
|
|
} /* mmtrpjj_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmunivt_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmunivt_(integer *ndimen,
|
|
doublereal *vector,
|
|
doublereal *vecnrm,
|
|
doublereal *epsiln,
|
|
integer *iercod)
|
|
{
|
|
|
|
doublereal c_b2 = 10.;
|
|
|
|
/* System generated locals */
|
|
integer i__1;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer nchif, iunit = 1, izero;
|
|
doublereal vnorm;
|
|
integer ii;
|
|
doublereal bid;
|
|
doublereal eps0;
|
|
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* CALCULATE THE NORMAL VECTOR BASING ON ANY VECTOR */
|
|
/* WITH PRECISION GIVEN BY THE USER. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* ALL, MATH_ACCES :: */
|
|
/* VECTEUR&, NORMALISATION, &VECTEUR */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDIMEN : DIMENSION OF THE SPACE */
|
|
/* VECTOR : VECTOR TO BE NORMED */
|
|
/* EPSILN : EPSILON BELOW WHICH IT IS CONSIDERED THAT THE */
|
|
/* NORM OF THE VECTOR IS NULL. IF EPSILN<=0, A DEFAULT VALUE */
|
|
/* IS IMPOSED (10.D-17 ON VAX). */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* VECNRM : NORMED VECTOR */
|
|
/* IERCOD 101 : THE VECTOR IS NULL UP TO EPSILN. */
|
|
/* 0 : OK. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* VECTOR and VECNRM can be identic. */
|
|
|
|
/* The norm of vector is calculated and each component is divided by */
|
|
/* this norm. After this it is checked if all componentes of the */
|
|
/* vector except for one cost 0 with machine precision. In */
|
|
/* this case the quasi-null components are set to 0.D0. */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* Parameter adjustments */
|
|
--vecnrm;
|
|
--vector;
|
|
|
|
/* Function Body */
|
|
*iercod = 0;
|
|
|
|
/* -------- Precision by default : zero machine 10.D-17 on Vax ------
|
|
*/
|
|
|
|
AdvApp2Var_SysBase::maovsr8_(&nchif);
|
|
if (*epsiln <= 0.) {
|
|
i__1 = -nchif;
|
|
eps0 = AdvApp2Var_MathBase::pow__di(&c_b2, &i__1);
|
|
} else {
|
|
eps0 = *epsiln;
|
|
}
|
|
|
|
/* ------------------------- Calculation of the norm --------------------
|
|
*/
|
|
|
|
vnorm = AdvApp2Var_MathBase::mzsnorm_(ndimen, &vector[1]);
|
|
if (vnorm <= eps0) {
|
|
AdvApp2Var_SysBase::mvriraz_(ndimen, &vecnrm[1]);
|
|
*iercod = 101;
|
|
goto L9999;
|
|
}
|
|
|
|
/* ---------------------- Calculation of the vector norm ---------------
|
|
*/
|
|
|
|
izero = 0;
|
|
i__1 = (-nchif - 1) / 2;
|
|
eps0 = AdvApp2Var_MathBase::pow__di(&c_b2, &i__1);
|
|
i__1 = *ndimen;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
vecnrm[ii] = vector[ii] / vnorm;
|
|
if ((d__1 = vecnrm[ii], advapp_abs(d__1)) <= eps0) {
|
|
++izero;
|
|
} else {
|
|
iunit = ii;
|
|
}
|
|
/* L20: */
|
|
}
|
|
|
|
/* ------ Case when all coordinates except for one are almost null ----
|
|
*/
|
|
/* ------------- then one of coordinates costs 1.D0 or -1.D0 --------
|
|
*/
|
|
|
|
if (izero == *ndimen - 1) {
|
|
bid = vecnrm[iunit];
|
|
i__1 = *ndimen;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
vecnrm[ii] = 0.;
|
|
/* L30: */
|
|
}
|
|
if (bid > 0.) {
|
|
vecnrm[iunit] = 1.;
|
|
} else {
|
|
vecnrm[iunit] = -1.;
|
|
}
|
|
}
|
|
|
|
/* -------------------------------- The end -----------------------------
|
|
*/
|
|
|
|
L9999:
|
|
return 0;
|
|
} /* mmunivt_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmveps3_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmveps3_(doublereal *eps03)
|
|
{
|
|
/* Initialized data */
|
|
|
|
static char nomprg[8+1] = "MMEPS1 ";
|
|
|
|
integer ibb;
|
|
|
|
|
|
|
|
/************************************************************************
|
|
*******/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Extraction of EPS1 from COMMON MPRCSN. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* MPRCSN,PRECISON,EPS3. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* Humm. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* EPS3 : space zero of the denominator (10**-9) */
|
|
/* EPS3 should value 10**-15 */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* GIVES TOLERANCES OF NULLITY IN STRIM */
|
|
/* AND LIMITS OF ITERATIVE PROCESSES */
|
|
|
|
/* GENERAL CONTEXT, MODIFIABLE BY THE UTILISER */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* PARAMETER , TOLERANCE */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* INITIALISATION : PROFILE , **VIA MPRFTX** AT INPUT IN STRIM*/
|
|
/* LOADING OF DEFAULT VALUES OF THE PROFILE IN MPRFTX AT INPUT*/
|
|
/* IN STRIM. THEY ARE PRESERVED IN THE LOCAL VARIABLES OF MPRFTX */
|
|
|
|
/* RESET DEFAULT VALUES : MDFINT */
|
|
/* MODIFICATION INTERACTIVE BY THE USER : MDBINT */
|
|
|
|
/* ACCESS FUNCTION : MMEPS1 ... EPS1 */
|
|
/* MEPSPB ... EPS3,EPS4 */
|
|
/* MEPSLN ... EPS2, NITERM , NITERR */
|
|
/* MEPSNR ... EPS2 , NITERM */
|
|
/* MITERR ... NITERR */
|
|
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* NITERM : MAX NB OF ITERATIONS */
|
|
/* NITERR : NB OF RAPID ITERATIONS */
|
|
/* EPS1 : TOLERANCE OF 3D NULL DISTANCE */
|
|
/* EPS2 : TOLERANCE OF ZERO PARAMETRIC DISTANCE */
|
|
/* EPS3 : TOLERANCE TO AVOID DIVISION BY 0.. */
|
|
/* EPS4 : TOLERANCE ANGULAR */
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
ibb = AdvApp2Var_SysBase::mnfndeb_();
|
|
if (ibb >= 5) {
|
|
AdvApp2Var_SysBase::mgenmsg_(nomprg, 6L);
|
|
}
|
|
|
|
*eps03 = mmprcsn_.eps3;
|
|
|
|
return 0;
|
|
} /* mmveps3_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmvncol_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mmvncol_(integer *ndimen,
|
|
doublereal *vecin,
|
|
doublereal *vecout,
|
|
integer *iercod)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer i__1;
|
|
|
|
/* Local variables */
|
|
logical ldbg;
|
|
integer d__;
|
|
doublereal vaux1[3], vaux2[3];
|
|
logical colin;
|
|
doublereal valaux;
|
|
integer aux;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* CALCULATE A VECTOR NON-COLINEAR TO A GIVEN NON-NULL VECTOR */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* PUBLIC, VECTOR, FREE */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* -------------------- */
|
|
/* ndimen : dimension of the space */
|
|
/* vecin : input vector */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* --------------------- */
|
|
|
|
/* vecout : vector non colinear to vecin */
|
|
|
|
/* COMMONS USED : */
|
|
/* ------------------ */
|
|
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* --------------------- */
|
|
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
/* DECLARATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* INITIALISATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
--vecout;
|
|
--vecin;
|
|
|
|
/* Function Body */
|
|
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 2;
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgenmsg_("MMVNCOL", 7L);
|
|
}
|
|
*iercod = 0;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
if (*ndimen <= 1 || *ndimen > 3) {
|
|
goto L9101;
|
|
}
|
|
d__ = 1;
|
|
aux = 0;
|
|
while(d__ <= *ndimen) {
|
|
if (vecin[d__] == 0.) {
|
|
++aux;
|
|
}
|
|
++d__;
|
|
}
|
|
if (aux == *ndimen) {
|
|
goto L9101;
|
|
}
|
|
|
|
|
|
for (d__ = 1; d__ <= 3; ++d__) {
|
|
vaux1[d__ - 1] = 0.;
|
|
}
|
|
i__1 = *ndimen;
|
|
for (d__ = 1; d__ <= i__1; ++d__) {
|
|
vaux1[d__ - 1] = vecin[d__];
|
|
vaux2[d__ - 1] = vecin[d__];
|
|
}
|
|
colin = TRUE_;
|
|
d__ = 0;
|
|
while(colin) {
|
|
++d__;
|
|
if (d__ > 3) {
|
|
goto L9101;
|
|
}
|
|
vaux2[d__ - 1] += 1;
|
|
valaux = vaux1[1] * vaux2[2] - vaux1[2] * vaux2[1];
|
|
if (valaux == 0.) {
|
|
valaux = vaux1[2] * vaux2[0] - vaux1[0] * vaux2[2];
|
|
if (valaux == 0.) {
|
|
valaux = vaux1[0] * vaux2[1] - vaux1[1] * vaux2[0];
|
|
if (valaux != 0.) {
|
|
colin = FALSE_;
|
|
}
|
|
} else {
|
|
colin = FALSE_;
|
|
}
|
|
} else {
|
|
colin = FALSE_;
|
|
}
|
|
}
|
|
if (colin) {
|
|
goto L9101;
|
|
}
|
|
i__1 = *ndimen;
|
|
for (d__ = 1; d__ <= i__1; ++d__) {
|
|
vecout[d__] = vaux2[d__ - 1];
|
|
}
|
|
|
|
goto L9999;
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* ERROR PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
L9101:
|
|
*iercod = 1;
|
|
goto L9999;
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* RETURN CALLING PROGRAM */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
L9999:
|
|
|
|
|
|
AdvApp2Var_SysBase::maermsg_("MMVNCOL", iercod, 7L);
|
|
if (ldbg) {
|
|
AdvApp2Var_SysBase::mgsomsg_("MMVNCOL", 7L);
|
|
}
|
|
return 0 ;
|
|
} /* mmvncol_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mmwprcs_
|
|
//purpose :
|
|
//=======================================================================
|
|
void AdvApp2Var_MathBase::mmwprcs_(doublereal *epsil1,
|
|
doublereal *epsil2,
|
|
doublereal *epsil3,
|
|
doublereal *epsil4,
|
|
integer *niter1,
|
|
integer *niter2)
|
|
|
|
{
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* ACCESS IN WRITING FOR COMMON MPRCSN */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* WRITING */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* -------------------- */
|
|
/* EPSIL1 : TOLERANCE OF 3D NULL DISTANCE */
|
|
/* EPSIL2 : TOLERANCE OF PARAMETRIC NULL DISTANCE */
|
|
/* EPSIL3 : TOLERANCE TO AVOID DIVISION BY 0.. */
|
|
/* EPSIL4 : ANGULAR TOLERANCE */
|
|
/* NITER1 : MAX NB OF ITERATIONS */
|
|
/* NITER2 : NB OF RAPID ITERATIONS */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* --------------------- */
|
|
/* NONE */
|
|
|
|
/* COMMONS USED : */
|
|
/* ------------------ */
|
|
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* --------------------- */
|
|
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
/* DECLARATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* INITIALIZATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* GIVES TOLERANCES OF NULLITY IN STRIM */
|
|
/* AND LIMITS OF ITERATIVE PROCESSES */
|
|
|
|
/* GENERAL CONTEXT, MODIFIABLE BY THE UTILISER */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* PARAMETER , TOLERANCE */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* INITIALISATION : PROFILE , **VIA MPRFTX** AT INPUT IN STRIM*/
|
|
/* LOADING OF DEFAULT VALUES OF THE PROFILE IN MPRFTX AT INPUT*/
|
|
/* IN STRIM. THEY ARE PRESERVED IN THE LOCAL VARIABLES OF MPRFTX */
|
|
|
|
/* RESET DEFAULT VALUES : MDFINT */
|
|
/* MODIFICATION INTERACTIVE BY THE USER : MDBINT */
|
|
|
|
/* ACCESS FUNCTION : MMEPS1 ... EPS1 */
|
|
/* MEPSPB ... EPS3,EPS4 */
|
|
/* MEPSLN ... EPS2, NITERM , NITERR */
|
|
/* MEPSNR ... EPS2 , NITERM */
|
|
/* MITERR ... NITERR */
|
|
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* NITERM : MAX NB OF ITERATIONS */
|
|
/* NITERR : NB OF RAPID ITERATIONS */
|
|
/* EPS1 : TOLERANCE OF 3D NULL DISTANCE */
|
|
/* EPS2 : TOLERANCE OF ZERO PARAMETRIC DISTANCE */
|
|
/* EPS3 : TOLERANCE TO AVOID DIVISION BY 0.. */
|
|
/* EPS4 : TOLERANCE ANGULAR */
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
mmprcsn_.eps1 = *epsil1;
|
|
mmprcsn_.eps2 = *epsil2;
|
|
mmprcsn_.eps3 = *epsil3;
|
|
mmprcsn_.eps4 = *epsil4;
|
|
mmprcsn_.niterm = *niter1;
|
|
mmprcsn_.niterr = *niter2;
|
|
return ;
|
|
} /* mmwprcs_ */
|
|
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::pow__di
|
|
//purpose :
|
|
//=======================================================================
|
|
doublereal AdvApp2Var_MathBase::pow__di (doublereal *x,
|
|
integer *n)
|
|
{
|
|
doublereal result ;
|
|
integer absolute ;
|
|
result = 1.0e0 ;
|
|
if ( *n > 0 ) {absolute = *n;}
|
|
else {absolute = -*n;}
|
|
/* System generated locals */
|
|
for(integer ii = 0 ; ii < absolute ; ii++) {
|
|
result *= *x ;
|
|
}
|
|
if (*n < 0) {
|
|
result = 1.0e0 / result ;
|
|
}
|
|
return result ;
|
|
}
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Calculate integer function power not obligatory in the most efficient way ;
|
|
*/
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* POWER */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* X : argument of X**N */
|
|
/* N : power */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* return X**N */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* > */
|
|
/* ***********************************************************************/
|
|
|
|
//=======================================================================
|
|
//function : pow__ii
|
|
//purpose :
|
|
//=======================================================================
|
|
integer pow__ii(integer *x,
|
|
integer *n)
|
|
|
|
{
|
|
integer result ;
|
|
integer absolute ;
|
|
result = 1 ;
|
|
if ( *n > 0 ) {absolute = *n;}
|
|
else {absolute = -*n;}
|
|
/* System generated locals */
|
|
for(integer ii = 0 ; ii < absolute ; ii++) {
|
|
result *= *x ;
|
|
}
|
|
if (*n < 0) {
|
|
result = 1 / result ;
|
|
}
|
|
return result ;
|
|
}
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Calculate integer function power not obligatory in the most efficient way ;
|
|
*/
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* POWER */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* X : argument of X**N */
|
|
/* N : power */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* return X**N */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* > */
|
|
/* ***********************************************************************/
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::msc_
|
|
//purpose :
|
|
//=======================================================================
|
|
doublereal AdvApp2Var_MathBase::msc_(integer *ndimen,
|
|
doublereal *vecte1,
|
|
doublereal *vecte2)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer i__1;
|
|
doublereal ret_val;
|
|
|
|
/* Local variables */
|
|
integer i__;
|
|
doublereal x;
|
|
|
|
|
|
|
|
/************************************************************************
|
|
*******/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Calculate the scalar product of 2 vectors in the space */
|
|
/* of dimension NDIMEN. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* PRODUCT MSCALAIRE. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDIMEN : Dimension of the space. */
|
|
/* VECTE1,VECTE2: Vectors. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ----------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* PRODUIT MSCALAIRE */
|
|
/* Parameter adjustments */
|
|
--vecte2;
|
|
--vecte1;
|
|
|
|
/* Function Body */
|
|
x = 0.;
|
|
|
|
i__1 = *ndimen;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
x += vecte1[i__] * vecte2[i__];
|
|
/* L100: */
|
|
}
|
|
ret_val = x;
|
|
|
|
/* ----------------------------------- THE END --------------------------
|
|
*/
|
|
|
|
return ret_val;
|
|
} /* msc_ */
|
|
|
|
//=======================================================================
|
|
//function : mvcvin2_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mvcvin2_(integer *ncoeff,
|
|
doublereal *crvold,
|
|
doublereal *crvnew,
|
|
integer *iercod)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer m1jm1, ncfm1, j, k;
|
|
doublereal bid;
|
|
doublereal cij1, cij2;
|
|
|
|
|
|
|
|
/************************************************************************
|
|
*******/
|
|
|
|
/* FONCTION : */
|
|
/* ---------- */
|
|
/* INVERSION OF THE PARAMETERS ON CURVE 2D. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* CURVE,2D,INVERSION,PARAMETER. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOEFF : NB OF COEFF OF THE CURVE. */
|
|
/* CRVOLD : CURVE OF ORIGIN */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* CRVNEW : THE RESULTING CURVE AFTER CHANGE OF T BY 1-T */
|
|
/* IERCOD : 0 OK, */
|
|
/* 10 NB OF COEFF NULL OR TOO GREAT. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
/* MCCNP */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
/* Neant */
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* THE FOLLOWING CALL IS ABSOLUTELY LEGAL : */
|
|
/* CALL MVCVIN2(NCOEFF,CURVE,CURVE,IERCOD), THE TABLE CURVE */
|
|
/* BECOMES INPUT AND OUTPUT ARGUMENT (RBD). */
|
|
/* BECAUSE OF MCCNP, THE NB OF COEFF OF THE CURVE IS LIMITED TO */
|
|
/* NDGCNP+1 = 61. */
|
|
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Serves to provide coefficients of the binome (triangle of Pascal). */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* Coeff of binome from 0 to 60. read only . init par block data */
|
|
|
|
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* The coefficients of the binome form a triangular matrix. */
|
|
/* This matrix is completed in table CNP by transposition. */
|
|
/* So: CNP(I,J) = CNP(J,I) for I and J = 0, ..., 60. */
|
|
|
|
/* Initialization is done by block-data MMLLL09.RES, */
|
|
/* created by program MQINICNP.FOR (see the team (AC) ). */
|
|
|
|
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
crvnew -= 3;
|
|
crvold -= 3;
|
|
|
|
/* Function Body */
|
|
if (*ncoeff < 1 || *ncoeff - 1 > 60) {
|
|
*iercod = 10;
|
|
goto L9999;
|
|
}
|
|
*iercod = 0;
|
|
|
|
|
|
/* CONSTANT TERM OF THE NEW CURVE */
|
|
|
|
cij1 = crvold[3];
|
|
cij2 = crvold[4];
|
|
i__1 = *ncoeff;
|
|
for (k = 2; k <= i__1; ++k) {
|
|
cij1 += crvold[(k << 1) + 1];
|
|
cij2 += crvold[(k << 1) + 2];
|
|
}
|
|
crvnew[3] = cij1;
|
|
crvnew[4] = cij2;
|
|
if (*ncoeff == 1) {
|
|
goto L9999;
|
|
}
|
|
|
|
/* INTERMEDIARY POWERS OF THE PARAMETER */
|
|
|
|
ncfm1 = *ncoeff - 1;
|
|
m1jm1 = 1;
|
|
i__1 = ncfm1;
|
|
for (j = 2; j <= i__1; ++j) {
|
|
m1jm1 = -m1jm1;
|
|
cij1 = crvold[(j << 1) + 1];
|
|
cij2 = crvold[(j << 1) + 2];
|
|
i__2 = *ncoeff;
|
|
for (k = j + 1; k <= i__2; ++k) {
|
|
bid = mmcmcnp_.cnp[k - 1 + (j - 1) * 61];
|
|
cij1 += crvold[(k << 1) + 1] * bid;
|
|
cij2 += crvold[(k << 1) + 2] * bid;
|
|
}
|
|
crvnew[(j << 1) + 1] = cij1 * m1jm1;
|
|
crvnew[(j << 1) + 2] = cij2 * m1jm1;
|
|
}
|
|
|
|
/* TERM OF THE HIGHEST DEGREE */
|
|
|
|
crvnew[(*ncoeff << 1) + 1] = -crvold[(*ncoeff << 1) + 1] * m1jm1;
|
|
crvnew[(*ncoeff << 1) + 2] = -crvold[(*ncoeff << 1) + 2] * m1jm1;
|
|
|
|
L9999:
|
|
if (*iercod > 0) {
|
|
AdvApp2Var_SysBase::maermsg_("MVCVIN2", iercod, 7L);
|
|
}
|
|
return 0 ;
|
|
} /* mvcvin2_ */
|
|
|
|
//=======================================================================
|
|
//function : mvcvinv_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mvcvinv_(integer *ncoeff,
|
|
doublereal *crvold,
|
|
doublereal *crvnew,
|
|
integer *iercod)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer m1jm1, ncfm1, j, k;
|
|
doublereal bid;
|
|
//extern /* Subroutine */ int maermsg_();
|
|
doublereal cij1, cij2, cij3;
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* INVERSION OF THE PARAMETER ON A CURBE 3D (I.E. INVERSION */
|
|
/* OF THE DIRECTION OF PARSING). */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* CURVE,INVERSION,PARAMETER. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOEFF : NB OF COEFF OF THE CURVE. */
|
|
/* CRVOLD : CURVE OF ORIGIN */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* CRVNEW : RESULTING CURVE AFTER CHANGE OF T INTO 1-T */
|
|
/* IERCOD : 0 OK, */
|
|
/* 10 NB OF COEFF NULL OR TOO GREAT. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
/* MCCNP */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
/* Neant */
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* THE FOLLOWING CALL IS ABSOLUTELY LEGAL : */
|
|
/* CALL MVCVINV(NCOEFF,CURVE,CURVE,IERCOD), TABLE CURVE */
|
|
/* BECOMES INPUT AND OUTPUT ARGUMENT (RBD). */
|
|
/* THE NUMBER OF COEFF OF THE CURVE IS LIMITED TO NDGCNP+1 = 61 */
|
|
/* BECAUSE OF USE OF COMMON MCCNP. */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* Serves to provide the binomial coefficients (triangle of Pascal). */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* Binomial Coeff from 0 to 60. read only . init par block data */
|
|
|
|
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* The binomial coefficients form a triangular matrix. */
|
|
/* This matrix is completed in table CNP by its transposition. */
|
|
/* So: CNP(I,J) = CNP(J,I) for I and J = 0, ..., 60. */
|
|
|
|
/* Initialisation is done by block-data MMLLL09.RES, */
|
|
/* created by program MQINICNP.FOR (see the team (AC) ). */
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* Parameter adjustments */
|
|
crvnew -= 4;
|
|
crvold -= 4;
|
|
|
|
/* Function Body */
|
|
if (*ncoeff < 1 || *ncoeff - 1 > 60) {
|
|
*iercod = 10;
|
|
goto L9999;
|
|
}
|
|
*iercod = 0;
|
|
|
|
/* CONSTANT TERM OF THE NEW CURVE */
|
|
|
|
cij1 = crvold[4];
|
|
cij2 = crvold[5];
|
|
cij3 = crvold[6];
|
|
i__1 = *ncoeff;
|
|
for (k = 2; k <= i__1; ++k) {
|
|
cij1 += crvold[k * 3 + 1];
|
|
cij2 += crvold[k * 3 + 2];
|
|
cij3 += crvold[k * 3 + 3];
|
|
/* L30: */
|
|
}
|
|
crvnew[4] = cij1;
|
|
crvnew[5] = cij2;
|
|
crvnew[6] = cij3;
|
|
if (*ncoeff == 1) {
|
|
goto L9999;
|
|
}
|
|
|
|
/* INTERMEDIARY POWER OF THE PARAMETER */
|
|
|
|
ncfm1 = *ncoeff - 1;
|
|
m1jm1 = 1;
|
|
i__1 = ncfm1;
|
|
for (j = 2; j <= i__1; ++j) {
|
|
m1jm1 = -m1jm1;
|
|
cij1 = crvold[j * 3 + 1];
|
|
cij2 = crvold[j * 3 + 2];
|
|
cij3 = crvold[j * 3 + 3];
|
|
i__2 = *ncoeff;
|
|
for (k = j + 1; k <= i__2; ++k) {
|
|
bid = mmcmcnp_.cnp[k - 1 + (j - 1) * 61];
|
|
cij1 += crvold[k * 3 + 1] * bid;
|
|
cij2 += crvold[k * 3 + 2] * bid;
|
|
cij3 += crvold[k * 3 + 3] * bid;
|
|
/* L40: */
|
|
}
|
|
crvnew[j * 3 + 1] = cij1 * m1jm1;
|
|
crvnew[j * 3 + 2] = cij2 * m1jm1;
|
|
crvnew[j * 3 + 3] = cij3 * m1jm1;
|
|
/* L50: */
|
|
}
|
|
|
|
/* TERM OF THE HIGHEST DEGREE */
|
|
|
|
crvnew[*ncoeff * 3 + 1] = -crvold[*ncoeff * 3 + 1] * m1jm1;
|
|
crvnew[*ncoeff * 3 + 2] = -crvold[*ncoeff * 3 + 2] * m1jm1;
|
|
crvnew[*ncoeff * 3 + 3] = -crvold[*ncoeff * 3 + 3] * m1jm1;
|
|
|
|
L9999:
|
|
AdvApp2Var_SysBase::maermsg_("MVCVINV", iercod, 7L);
|
|
return 0;
|
|
} /* mvcvinv_ */
|
|
|
|
//=======================================================================
|
|
//function : mvgaus0_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mvgaus0_(integer *kindic,
|
|
doublereal *urootl,
|
|
doublereal *hiltab,
|
|
integer *nbrval,
|
|
integer *iercod)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer i__1;
|
|
|
|
/* Local variables */
|
|
doublereal tampc[40];
|
|
NCollection_Array1<doublereal> tamp (tampc[0], 1, 40);
|
|
integer ndegl, kg, ii;
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* -------- */
|
|
/* Loading of a degree gives roots of LEGENDRE polynom */
|
|
/* DEFINED on [-1,1] and weights of Gauss quadrature formulas */
|
|
/* (based on corresponding LAGRANGIAN interpolators). */
|
|
/* The symmetry relative to 0 is used between [-1,0] and [0,1]. */
|
|
|
|
/* KEYWORDS : */
|
|
/* --------- */
|
|
/* . VOLUMIC, LEGENDRE, LAGRANGE, GAUSS */
|
|
|
|
/* INPUT ARGUMENTSE : */
|
|
/* ------------------ */
|
|
|
|
/* KINDIC : Takes values from 1 to 10 depending of the degree */
|
|
/* of the used polynom. */
|
|
/* The degree of the polynom is equal to 4 k, i.e. 4, 8, */
|
|
/* 12, 16, 20, 24, 28, 32, 36 and 40. */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
|
|
/* UROOTL : Roots of LEGENDRE polynom in domain [1,0] */
|
|
/* given in decreasing order. For domain [-1,0], it is */
|
|
/* necessary to take the opposite values. */
|
|
/* HILTAB : LAGRANGE interpolators associated to roots. For */
|
|
/* opposed roots, interpolatorsare equal. */
|
|
/* NBRVAL : Nb of coefficients. Is equal to the half of degree */
|
|
/* depending on the symmetry (i.e. 2*KINDIC). */
|
|
|
|
/* IERCOD : Error code: */
|
|
/* < 0 ==> Attention - Warning */
|
|
/* =-1 ==> Value of false KINDIC. NBRVAL is forced to 20 */
|
|
/* (order 40) */
|
|
/* = 0 ==> Everything is OK */
|
|
|
|
/* COMMON USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* --------------------------------- */
|
|
/* If KINDIC is not correct (i.e < 1 or > 10), the degree is set */
|
|
/* to 40 directly (ATTENTION to overload - to avoid it, */
|
|
/* preview UROOTL and HILTAB dimensioned at least to 20). */
|
|
|
|
/* The value of coefficients was calculated with quadruple precision */
|
|
/* by JJM with help of GD. */
|
|
/* Checking of roots was done by GD. */
|
|
|
|
/* See detailed explications on the listing */
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
|
|
/* ------------------------------------ */
|
|
/* ****** Test validity of KINDIC ** */
|
|
/* ------------------------------------ */
|
|
|
|
/* Parameter adjustments */
|
|
--hiltab;
|
|
--urootl;
|
|
|
|
/* Function Body */
|
|
*iercod = 0;
|
|
kg = *kindic;
|
|
if (kg < 1 || kg > 10) {
|
|
kg = 10;
|
|
*iercod = -1;
|
|
}
|
|
*nbrval = kg << 1;
|
|
ndegl = *nbrval << 1;
|
|
|
|
/* ----------------------------------------------------------------------
|
|
*/
|
|
/* ****** Load NBRVAL positive roots depending on the degree **
|
|
*/
|
|
/* ----------------------------------------------------------------------
|
|
*/
|
|
/* ATTENTION : Sign minus (-) in the loop is intentional. */
|
|
|
|
mmextrl_(&ndegl, tamp);
|
|
i__1 = *nbrval;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
urootl[ii] = -tamp(ii);
|
|
/* L100: */
|
|
}
|
|
|
|
/* ------------------------------------------------------------------- */
|
|
/* ****** Loading of NBRVAL Gauss weight depending on the degree ** */
|
|
/* ------------------------------------------------------------------- */
|
|
|
|
mmexthi_(&ndegl, tamp);
|
|
i__1 = *nbrval;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
hiltab[ii] = tamp(ii);
|
|
/* L200: */
|
|
}
|
|
|
|
/* ------------------------------- */
|
|
/* ****** End of sub-program ** */
|
|
/* ------------------------------- */
|
|
|
|
return 0;
|
|
} /* mvgaus0_ */
|
|
|
|
//=======================================================================
|
|
//function : mvpscr2_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mvpscr2_(integer *ncoeff,
|
|
doublereal *curve2,
|
|
doublereal *tparam,
|
|
doublereal *pntcrb)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1;
|
|
|
|
/* Local variables */
|
|
integer ndeg, kk;
|
|
doublereal xxx, yyy;
|
|
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* POSITIONING ON CURVE (NCF,2) IN SPACE OF DIMENSION 2. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* TOUS,MATH_ACCES:: COURBE&,POSITIONNEMENT,&POINT. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOEFF : NUMBER OF COEFFICIENTS OF THE CURVE */
|
|
/* CURVE2 : EQUATION OF CURVE 2D */
|
|
/* TPARAM : VALUE OF PARAMETER AT GIVEN POINT */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* PNTCRB : COORDINATES OF POINT CORRESPONDING TO PARAMETER */
|
|
/* TPARAM ON CURVE 2D CURVE2. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* MSCHEMA OF HORNER. */
|
|
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
|
|
/* -------- INITIALIZATIONS AND PROCESSING OF PARTICULAR CASES ----------
|
|
*/
|
|
|
|
/* ---> Cas when NCOEFF > 1 (case STANDARD). */
|
|
/* Parameter adjustments */
|
|
--pntcrb;
|
|
curve2 -= 3;
|
|
|
|
/* Function Body */
|
|
if (*ncoeff >= 2) {
|
|
goto L1000;
|
|
}
|
|
/* ---> Case when NCOEFF <= 1. */
|
|
if (*ncoeff <= 0) {
|
|
pntcrb[1] = 0.;
|
|
pntcrb[2] = 0.;
|
|
goto L9999;
|
|
} else if (*ncoeff == 1) {
|
|
pntcrb[1] = curve2[3];
|
|
pntcrb[2] = curve2[4];
|
|
goto L9999;
|
|
}
|
|
|
|
/* -------------------- MSCHEMA OF HORNER (PARTICULAR CASE) --------------
|
|
*/
|
|
|
|
L1000:
|
|
|
|
if (*tparam == 1.) {
|
|
xxx = 0.;
|
|
yyy = 0.;
|
|
i__1 = *ncoeff;
|
|
for (kk = 1; kk <= i__1; ++kk) {
|
|
xxx += curve2[(kk << 1) + 1];
|
|
yyy += curve2[(kk << 1) + 2];
|
|
/* L100: */
|
|
}
|
|
goto L5000;
|
|
} else if (*tparam == 0.) {
|
|
pntcrb[1] = curve2[3];
|
|
pntcrb[2] = curve2[4];
|
|
goto L9999;
|
|
}
|
|
|
|
/* ---------------------------- MSCHEMA OF HORNER ------------------------
|
|
*/
|
|
/* ---> TPARAM is different from 1.D0 and 0.D0. */
|
|
|
|
ndeg = *ncoeff - 1;
|
|
xxx = curve2[(*ncoeff << 1) + 1];
|
|
yyy = curve2[(*ncoeff << 1) + 2];
|
|
for (kk = ndeg; kk >= 1; --kk) {
|
|
xxx = xxx * *tparam + curve2[(kk << 1) + 1];
|
|
yyy = yyy * *tparam + curve2[(kk << 1) + 2];
|
|
/* L200: */
|
|
}
|
|
goto L5000;
|
|
|
|
/* ------------------------ RECOVER THE CALCULATED POINT ---------------
|
|
*/
|
|
|
|
L5000:
|
|
pntcrb[1] = xxx;
|
|
pntcrb[2] = yyy;
|
|
|
|
/* ------------------------------ THE END -------------------------------
|
|
*/
|
|
|
|
L9999:
|
|
return 0;
|
|
} /* mvpscr2_ */
|
|
|
|
//=======================================================================
|
|
//function : mvpscr3_
|
|
//purpose :
|
|
//=======================================================================
|
|
int mvpscr3_(integer *ncoeff,
|
|
doublereal *curve3,
|
|
doublereal *tparam,
|
|
doublereal *pntcrb)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer i__1;
|
|
|
|
/* Local variables */
|
|
integer ndeg, kk;
|
|
doublereal xxx, yyy, zzz;
|
|
|
|
|
|
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* POSITIONING ON A CURVE (3,NCF) IN THE SPACE OF DIMENSION 3. */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* TOUS, MATH_ACCES:: COURBE&,POSITIONNEMENT,&POINT. */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NCOEFF : NB OF COEFFICIENTS OF THE CURVE */
|
|
/* CURVE3 : EQUATION OF CURVE 3D */
|
|
/* TPARAM : VALUE OF THE PARAMETER AT THE GIVEN POINT */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* PNTCRB : COORDINATES OF THE POINT CORRESPONDING TO PARAMETER */
|
|
/* TPARAM ON CURVE 3D CURVE3. */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
/* Neant */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* MSCHEMA OF HORNER. */
|
|
/* > */
|
|
/* **********************************************************************
|
|
*/
|
|
/* DECLARATIONS */
|
|
/* **********************************************************************
|
|
*/
|
|
|
|
|
|
/* -------- INITIALISATIONS AND PROCESSING OF PARTICULAR CASES ----------
|
|
*/
|
|
|
|
/* ---> Case when NCOEFF > 1 (cas STANDARD). */
|
|
/* Parameter adjustments */
|
|
--pntcrb;
|
|
curve3 -= 4;
|
|
|
|
/* Function Body */
|
|
if (*ncoeff >= 2) {
|
|
goto L1000;
|
|
}
|
|
/* ---> Case when NCOEFF <= 1. */
|
|
if (*ncoeff <= 0) {
|
|
pntcrb[1] = 0.;
|
|
pntcrb[2] = 0.;
|
|
pntcrb[3] = 0.;
|
|
goto L9999;
|
|
} else if (*ncoeff == 1) {
|
|
pntcrb[1] = curve3[4];
|
|
pntcrb[2] = curve3[5];
|
|
pntcrb[3] = curve3[6];
|
|
goto L9999;
|
|
}
|
|
|
|
/* -------------------- MSCHEMA OF HORNER (PARTICULAR CASE) --------------
|
|
*/
|
|
|
|
L1000:
|
|
|
|
if (*tparam == 1.) {
|
|
xxx = 0.;
|
|
yyy = 0.;
|
|
zzz = 0.;
|
|
i__1 = *ncoeff;
|
|
for (kk = 1; kk <= i__1; ++kk) {
|
|
xxx += curve3[kk * 3 + 1];
|
|
yyy += curve3[kk * 3 + 2];
|
|
zzz += curve3[kk * 3 + 3];
|
|
/* L100: */
|
|
}
|
|
goto L5000;
|
|
} else if (*tparam == 0.) {
|
|
pntcrb[1] = curve3[4];
|
|
pntcrb[2] = curve3[5];
|
|
pntcrb[3] = curve3[6];
|
|
goto L9999;
|
|
}
|
|
|
|
/* ---------------------------- MSCHEMA OF HORNER ------------------------
|
|
*/
|
|
/* ---> Here TPARAM is different from 1.D0 and 0.D0. */
|
|
|
|
ndeg = *ncoeff - 1;
|
|
xxx = curve3[*ncoeff * 3 + 1];
|
|
yyy = curve3[*ncoeff * 3 + 2];
|
|
zzz = curve3[*ncoeff * 3 + 3];
|
|
for (kk = ndeg; kk >= 1; --kk) {
|
|
xxx = xxx * *tparam + curve3[kk * 3 + 1];
|
|
yyy = yyy * *tparam + curve3[kk * 3 + 2];
|
|
zzz = zzz * *tparam + curve3[kk * 3 + 3];
|
|
/* L200: */
|
|
}
|
|
goto L5000;
|
|
|
|
/* ------------------------ RETURN THE CALCULATED POINT ------------------
|
|
*/
|
|
|
|
L5000:
|
|
pntcrb[1] = xxx;
|
|
pntcrb[2] = yyy;
|
|
pntcrb[3] = zzz;
|
|
|
|
/* ------------------------------ THE END -------------------------------
|
|
*/
|
|
|
|
L9999:
|
|
return 0;
|
|
} /* mvpscr3_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mvsheld_
|
|
//purpose :
|
|
//=======================================================================
|
|
int AdvApp2Var_MathBase::mvsheld_(integer *n,
|
|
integer *is,
|
|
doublereal *dtab,
|
|
integer *icle)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer dtab_dim1, dtab_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer incr;
|
|
doublereal dsave;
|
|
integer i3, i4, i5, incrp1;
|
|
|
|
|
|
/************************************************************************
|
|
*******/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* PARSING OF COLUMNS OF TABLE OF REAL*8 BY SHELL METHOD*/
|
|
/* (IN INCREASING ORDER) */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* POINT-ENTRY, PARSING, SHELL */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* N : NUMBER OF COLUMNS OF THE TABLE */
|
|
/* IS : NUMBER OF LINE OF THE TABLE */
|
|
/* DTAB : TABLE OF REAL*8 TO BE PARSED */
|
|
/* ICLE : POSITION OF THE KEY ON THE COLUMN */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* DTAB : PARSED TABLE */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
/* Neant */
|
|
|
|
/* DESCRIPTION/NOTES/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* CLASSIC SHELL METHOD : PARSING BY SERIES */
|
|
/* Declaration DTAB(IS, 1) corresponds to DTAB(IS, *) */
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* Parameter adjustments */
|
|
dtab_dim1 = *is;
|
|
dtab_offset = dtab_dim1 + 1;
|
|
dtab -= dtab_offset;
|
|
|
|
/* Function Body */
|
|
if (*n <= 1) {
|
|
goto L9900;
|
|
}
|
|
/* ------------------------ */
|
|
|
|
/* INITIALIZATION OF THE SEQUENCE OF INCREMENTS */
|
|
/* FIND THE GREATEST INCREMENT SO THAT INCR < N/9 */
|
|
|
|
incr = 1;
|
|
L1001:
|
|
if (incr >= *n / 9) {
|
|
goto L1002;
|
|
}
|
|
/* ----------------------------- */
|
|
incr = incr * 3 + 1;
|
|
goto L1001;
|
|
|
|
/* LOOP ON INCREMENTS TILL INCR = 1 */
|
|
/* PARSING BY SERIES DISTANT FROM INCR */
|
|
|
|
L1002:
|
|
incrp1 = incr + 1;
|
|
/* ----------------- */
|
|
i__1 = *n;
|
|
for (i3 = incrp1; i3 <= i__1; ++i3) {
|
|
/* ---------------------- */
|
|
|
|
/* SET ELEMENT I3 AT ITS PLACE IN THE SERIES */
|
|
|
|
i4 = i3 - incr;
|
|
L1004:
|
|
if (i4 < 1) {
|
|
goto L1003;
|
|
}
|
|
/* ------------------------- */
|
|
if (dtab[*icle + i4 * dtab_dim1] <= dtab[*icle + (i4 + incr) *
|
|
dtab_dim1]) {
|
|
goto L1003;
|
|
}
|
|
|
|
i__2 = *is;
|
|
for (i5 = 1; i5 <= i__2; ++i5) {
|
|
/* ------------------ */
|
|
dsave = dtab[i5 + i4 * dtab_dim1];
|
|
dtab[i5 + i4 * dtab_dim1] = dtab[i5 + (i4 + incr) * dtab_dim1];
|
|
dtab[i5 + (i4 + incr) * dtab_dim1] = dsave;
|
|
}
|
|
/* -------- */
|
|
i4 -= incr;
|
|
goto L1004;
|
|
|
|
L1003:
|
|
;
|
|
}
|
|
/* -------- */
|
|
|
|
/* PASSAGE TO THE NEXT INCREMENT */
|
|
|
|
incr /= 3;
|
|
if (incr >= 1) {
|
|
goto L1002;
|
|
}
|
|
|
|
L9900:
|
|
return 0 ;
|
|
} /* mvsheld_ */
|
|
|
|
//=======================================================================
|
|
//function : AdvApp2Var_MathBase::mzsnorm_
|
|
//purpose :
|
|
//=======================================================================
|
|
doublereal AdvApp2Var_MathBase::mzsnorm_(integer *ndimen,
|
|
doublereal *vecteu)
|
|
|
|
{
|
|
/* System generated locals */
|
|
integer i__1;
|
|
doublereal ret_val, d__1, d__2;
|
|
|
|
/* Local variables */
|
|
doublereal xsom;
|
|
integer i__, irmax;
|
|
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* FUNCTION : */
|
|
/* ---------- */
|
|
/* SERVES to calculate the euclidian norm of a vector : */
|
|
/* ____________________________ */
|
|
/* Z = V V(1)**2 + V(2)**2 + ... */
|
|
|
|
/* KEYWORDS : */
|
|
/* ----------- */
|
|
/* SURMFACIQUE, */
|
|
|
|
/* INPUT ARGUMENTS : */
|
|
/* ------------------ */
|
|
/* NDIMEN : Dimension of the vector */
|
|
/* VECTEU : vector of dimension NDIMEN */
|
|
|
|
/* OUTPUT ARGUMENTS : */
|
|
/* ------------------- */
|
|
/* MZSNORM : Value of the euclidian norm of vector VECTEU */
|
|
|
|
/* COMMONS USED : */
|
|
/* ---------------- */
|
|
|
|
/* .Neant. */
|
|
|
|
/* REFERENCES CALLED : */
|
|
/* ---------------------- */
|
|
/* Type Name */
|
|
/* R*8 ABS R*8 SQRT */
|
|
|
|
/* DESCRIPTION/NOTESS/LIMITATIONS : */
|
|
/* ----------------------------------- */
|
|
/* To limit the risks of overflow, */
|
|
/* the term of the strongest absolute value is factorized : */
|
|
/* _______________________ */
|
|
/* Z = !V(1)! * V 1 + (V(2)/V(1))**2 + ... */
|
|
|
|
/* > */
|
|
/* ***********************************************************************
|
|
*/
|
|
/* DECLARATIONS */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* PROCESSING */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
/* ___ Find the strongest absolute value term */
|
|
|
|
/* Parameter adjustments */
|
|
--vecteu;
|
|
|
|
/* Function Body */
|
|
irmax = 1;
|
|
i__1 = *ndimen;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
if ((d__1 = vecteu[irmax], advapp_abs(d__1)) < (d__2 = vecteu[i__], advapp_abs(d__2)
|
|
)) {
|
|
irmax = i__;
|
|
}
|
|
/* L100: */
|
|
}
|
|
|
|
/* ___ Calculate the norme */
|
|
|
|
if ((d__1 = vecteu[irmax], advapp_abs(d__1)) < 1.) {
|
|
xsom = 0.;
|
|
i__1 = *ndimen;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
/* Computing 2nd power */
|
|
d__1 = vecteu[i__];
|
|
xsom += d__1 * d__1;
|
|
/* L200: */
|
|
}
|
|
ret_val = sqrt(xsom);
|
|
} else {
|
|
xsom = 0.;
|
|
i__1 = *ndimen;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
if (i__ == irmax) {
|
|
xsom += 1.;
|
|
} else {
|
|
/* Computing 2nd power */
|
|
d__1 = vecteu[i__] / vecteu[irmax];
|
|
xsom += d__1 * d__1;
|
|
}
|
|
/* L300: */
|
|
}
|
|
ret_val = (d__1 = vecteu[irmax], advapp_abs(d__1)) * sqrt(xsom);
|
|
}
|
|
|
|
/* ***********************************************************************
|
|
*/
|
|
/* RETURN CALLING PROGRAM */
|
|
/* ***********************************************************************
|
|
*/
|
|
|
|
return ret_val;
|
|
} /* mzsnorm_ */
|
|
|