1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00
occt/src/AdvApp2Var/AdvApp2Var_MathBase.cxx

11296 lines
292 KiB
C++

// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// AdvApp2Var_MathBase.cxx
#include <math.h>
#include <AdvApp2Var_SysBase.hxx>
#include <AdvApp2Var_Data_f2c.hxx>
#include <AdvApp2Var_MathBase.hxx>
#include <AdvApp2Var_Data.hxx>
#include <NCollection_Array1.hxx>
// statics
static
int mmchole_(integer *mxcoef,
integer *dimens,
doublereal *amatri,
integer *aposit,
integer *posuiv,
doublereal *chomat,
integer *iercod);
static
int mmrslss_(integer *mxcoef,
integer *dimens,
doublereal *smatri,
integer *sposit,
integer *posuiv,
doublereal *mscnmbr,
doublereal *soluti,
integer *iercod);
static
int mfac_(doublereal *f,
integer *n);
static
int mmaper0_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *crvlgd,
integer *ncfnew,
doublereal *ycvmax,
doublereal *errmax);
static
int mmaper2_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *crvjac,
integer *ncfnew,
doublereal *ycvmax,
doublereal *errmax);
static
int mmaper4_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *crvjac,
integer *ncfnew,
doublereal *ycvmax,
doublereal *errmax);
static
int mmaper6_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *crvjac,
integer *ncfnew,
doublereal *ycvmax,
doublereal *errmax);
static
int mmarc41_(integer *ndimax,
integer *ndimen,
integer *ncoeff,
doublereal *crvold,
doublereal *upara0,
doublereal *upara1,
doublereal *crvnew,
integer *iercod);
static
int mmatvec_(integer *nligne,
integer *ncolon,
integer *gposit,
integer *gnstoc,
doublereal *gmatri,
doublereal *vecin,
integer *deblig,
doublereal *vecout,
integer *iercod);
static
int mmcvstd_(integer *ncofmx,
integer *ndimax,
integer *ncoeff,
integer *ndimen,
doublereal *crvcan,
doublereal *courbe);
static
int mmdrvcb_(integer *ideriv,
integer *ndim,
integer *ncoeff,
doublereal *courbe,
doublereal *tparam,
doublereal *tabpnt,
integer *iercod);
static
int mmexthi_(integer *ndegre,
NCollection_Array1<doublereal>& hwgaus);
static
int mmextrl_(integer *ndegre,
NCollection_Array1<doublereal>& rootlg);
static
int mmherm0_(doublereal *debfin,
integer *iercod);
static
int mmherm1_(doublereal *debfin,
integer *ordrmx,
integer *iordre,
doublereal *hermit,
integer *iercod);
static
int mmloncv_(integer *ndimax,
integer *ndimen,
integer *ncoeff,
doublereal *courbe,
doublereal *tdebut,
doublereal *tfinal,
doublereal *xlongc,
integer *iercod);
static
int mmpojac_(doublereal *tparam,
integer *iordre,
integer *ncoeff,
integer *nderiv,
NCollection_Array1<doublereal>& valjac,
integer *iercod);
static
int mmrslw_(integer *normax,
integer *nordre,
integer *ndimen,
doublereal *epspiv,
doublereal *abmatr,
doublereal *xmatri,
integer *iercod);
static
int mmtmave_(integer *nligne,
integer *ncolon,
integer *gposit,
integer *gnstoc,
doublereal *gmatri,
doublereal *vecin,
doublereal *vecout,
integer *iercod);
static
int mmtrpj0_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *epsi3d,
doublereal *crvlgd,
doublereal *ycvmax,
doublereal *epstrc,
integer *ncfnew);
static
int mmtrpj2_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *epsi3d,
doublereal *crvlgd,
doublereal *ycvmax,
doublereal *epstrc,
integer *ncfnew);
static
int mmtrpj4_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *epsi3d,
doublereal *crvlgd,
doublereal *ycvmax,
doublereal *epstrc,
integer *ncfnew);
static
int mmtrpj6_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *epsi3d,
doublereal *crvlgd,
doublereal *ycvmax,
doublereal *epstrc,
integer *ncfnew);
static
integer pow__ii(integer *x,
integer *n);
static
int mvcvin2_(integer *ncoeff,
doublereal *crvold,
doublereal *crvnew,
integer *iercod);
static
int mvcvinv_(integer *ncoeff,
doublereal *crvold,
doublereal *crvnew,
integer *iercod);
static
int mvgaus0_(integer *kindic,
doublereal *urootl,
doublereal *hiltab,
integer *nbrval,
integer *iercod);
static
int mvpscr2_(integer *ncoeff,
doublereal *curve2,
doublereal *tparam,
doublereal *pntcrb);
static
int mvpscr3_(integer *ncoeff,
doublereal *curve2,
doublereal *tparam,
doublereal *pntcrb);
static struct {
doublereal eps1, eps2, eps3, eps4;
integer niterm, niterr;
} mmprcsn_;
static struct {
doublereal tdebut, tfinal, verifi, cmherm[576];
} mmcmher_;
//=======================================================================
//function : AdvApp2Var_MathBase::mdsptpt_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mdsptpt_(integer *ndimen,
doublereal *point1,
doublereal *point2,
doublereal *distan)
{
integer c__8 = 8;
/* System generated locals */
integer i__1;
doublereal d__1;
/* Local variables */
integer i__;
doublereal* differ = 0;
integer ier;
intptr_t iofset, j;
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* CALCULATE DISTANCE BETWEEN TWO POINTS */
/* KEYWORDS : */
/* ----------- */
/* DISTANCE,POINT. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIMEN: Space Dimension. */
/* POINT1: Table of coordinates of the 1st point. */
/* POINT2: Table of coordinates of the 2nd point. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* DISTAN: Distance between 2 points. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* **********************************************************************
*/
/* ***********************************************************************
*/
/* INITIALISATION */
/* ***********************************************************************
*/
/* Parameter adjustment */
--point2;
--point1;
/* Function Body */
iofset = 0;
ier = 0;
/* ***********************************************************************
*/
/* TRAITEMENT */
/* ***********************************************************************
*/
AdvApp2Var_SysBase anAdvApp2Var_SysBase;
if (*ndimen > 100) {
anAdvApp2Var_SysBase.mcrrqst_(&c__8, ndimen, differ, &iofset, &ier);
}
/* --- If allocation is refused, the trivial method is applied. */
if (ier > 0) {
*distan = 0.;
i__1 = *ndimen;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing 2nd power */
d__1 = point1[i__] - point2[i__];
*distan += d__1 * d__1;
}
*distan = sqrt(*distan);
/* --- Otherwise MZSNORM is used to minimize the risks of overflow
*/
} else {
i__1 = *ndimen;
for (i__ = 1; i__ <= i__1; ++i__) {
j=iofset + i__ - 1;
differ[j] = point2[i__] - point1[i__];
}
*distan = AdvApp2Var_MathBase::mzsnorm_(ndimen, &differ[iofset]);
}
/* ***********************************************************************
*/
/* RETURN CALLING PROGRAM */
/* ***********************************************************************
*/
/* --- Dynamic Desallocation */
if (iofset != 0) {
anAdvApp2Var_SysBase.mcrdelt_(&c__8, ndimen, differ, &iofset, &ier);
}
return 0 ;
} /* mdsptpt_ */
//=======================================================================
//function : mfac_
//purpose :
//=======================================================================
int mfac_(doublereal *f,
integer *n)
{
/* System generated locals */
integer i__1;
/* Local variables */
integer i__;
/* FORTRAN CONFORME AU TEXT */
/* CALCUL DE MFACTORIEL N */
/* Parameter adjustments */
--f;
/* Function Body */
f[1] = (float)1.;
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
/* L10: */
f[i__] = i__ * f[i__ - 1];
}
return 0;
} /* mfac_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmapcmp_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmapcmp_(integer *ndim,
integer *ncofmx,
integer *ncoeff,
doublereal *crvold,
doublereal *crvnew)
{
/* System generated locals */
integer crvold_dim1, crvold_offset, crvnew_dim1, crvnew_offset, i__1,
i__2;
/* Local variables */
integer ipair, nd, ndegre, impair, ibb, idg;
//extern int mgsomsg_();//mgenmsg_(),
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Compression of curve CRVOLD in a table of */
/* coeff. of even : CRVNEW(*,0,*) */
/* and uneven range : CRVNEW(*,1,*). */
/* KEYWORDS : */
/* ----------- */
/* COMPRESSION,CURVE. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIM : Space Dimension. */
/* NCOFMX : Max nb of coeff. of the curve to compress. */
/* NCOEFF : Max nb of coeff. of the compressed curve. */
/* CRVOLD : The curve (0:NCOFMX-1,NDIM) to compress. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* CRVNEW : Curve compacted in (0:(NCOEFF-1)/2,0,NDIM) (containing
*/
/* even terms) and in (0:(NCOEFF-1)/2,1,NDIM) */
/* (containing uneven terms). */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* This routine is useful to prepare coefficients of a */
/* curve in an orthogonal base (Legendre or Jacobi) before */
/* calculating the coefficients in the canonical; base [-1,1] by */
/* MMJACAN. */
/* ***********************************************************************
*/
/* Name of the routine */
/* Parameter adjustments */
crvold_dim1 = *ncofmx;
crvold_offset = crvold_dim1;
crvold -= crvold_offset;
crvnew_dim1 = (*ncoeff - 1) / 2 + 1;
crvnew_offset = crvnew_dim1 << 1;
crvnew -= crvnew_offset;
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 3) {
AdvApp2Var_SysBase::mgenmsg_("MMAPCMP", 7L);
}
ndegre = *ncoeff - 1;
i__1 = *ndim;
for (nd = 1; nd <= i__1; ++nd) {
ipair = 0;
i__2 = ndegre / 2;
for (idg = 0; idg <= i__2; ++idg) {
crvnew[idg + (nd << 1) * crvnew_dim1] = crvold[ipair + nd *
crvold_dim1];
ipair += 2;
/* L200: */
}
if (ndegre < 1) {
goto L400;
}
impair = 1;
i__2 = (ndegre - 1) / 2;
for (idg = 0; idg <= i__2; ++idg) {
crvnew[idg + ((nd << 1) + 1) * crvnew_dim1] = crvold[impair + nd *
crvold_dim1];
impair += 2;
/* L300: */
}
L400:
/* L100: */
;
}
/* ---------------------------------- The end ---------------------------
*/
if (ibb >= 3) {
AdvApp2Var_SysBase::mgsomsg_("MMAPCMP", 7L);
}
return 0;
} /* mmapcmp_ */
//=======================================================================
//function : mmaper0_
//purpose :
//=======================================================================
int mmaper0_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *crvlgd,
integer *ncfnew,
doublereal *ycvmax,
doublereal *errmax)
{
/* System generated locals */
integer crvlgd_dim1, crvlgd_offset, i__1, i__2;
doublereal d__1;
/* Local variables */
integer ncut;
doublereal bidon;
integer ii, nd;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Calculate the max error of approximation done when */
/* only the first NCFNEW coefficients of a curve are preserved.
*/
/* Degree NCOEFF-1 written in the base of Legendre (Jacobi */
/* of order 0). */
/* KEYWORDS : */
/* ----------- */
/* LEGENDRE,POLYGON,APPROXIMATION,ERROR. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOFMX : Max. degree of the curve. */
/* NDIMEN : Space dimension. */
/* NCOEFF : Degree +1 of the curve. */
/* CRVLGD : Curve the degree which of should be lowered. */
/* NCFNEW : Degree +1 of the resulting polynom. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* YCVMAX : Auxiliary Table (max error on each dimension).
*/
/* ERRMAX : Precision of the approximation. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* ***********************************************************************
*/
/* ------------------- Init to calculate an error -----------------------
*/
/* Parameter adjustments */
--ycvmax;
crvlgd_dim1 = *ncofmx;
crvlgd_offset = crvlgd_dim1 + 1;
crvlgd -= crvlgd_offset;
/* Function Body */
i__1 = *ndimen;
for (ii = 1; ii <= i__1; ++ii) {
ycvmax[ii] = 0.;
/* L100: */
}
/* ------ Minimum that can be reached : Stop at 1 or NCFNEW ------
*/
ncut = 1;
if (*ncfnew + 1 > ncut) {
ncut = *ncfnew + 1;
}
/* -------------- Elimination of high degree coefficients-----------
*/
/* ----------- Loop on the series of Legendre: NCUT --> NCOEFF --------
*/
i__1 = *ncoeff;
for (ii = ncut; ii <= i__1; ++ii) {
/* Factor of renormalization (Maximum of Li(t)). */
bidon = ((ii - 1) * 2. + 1.) / 2.;
bidon = sqrt(bidon);
i__2 = *ndimen;
for (nd = 1; nd <= i__2; ++nd) {
ycvmax[nd] += (d__1 = crvlgd[ii + nd * crvlgd_dim1], advapp_abs(d__1)) *
bidon;
/* L310: */
}
/* L300: */
}
/* -------------- The error is the norm of the vector error ---------------
*/
*errmax = AdvApp2Var_MathBase::mzsnorm_(ndimen, &ycvmax[1]);
/* --------------------------------- Fin --------------------------------
*/
return 0;
} /* mmaper0_ */
//=======================================================================
//function : mmaper2_
//purpose :
//=======================================================================
int mmaper2_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *crvjac,
integer *ncfnew,
doublereal *ycvmax,
doublereal *errmax)
{
/* Initialized data */
static doublereal xmaxj[57] = { .9682458365518542212948163499456,
.986013297183269340427888048593603,
1.07810420343739860362585159028115,
1.17325804490920057010925920756025,
1.26476561266905634732910520370741,
1.35169950227289626684434056681946,
1.43424378958284137759129885012494,
1.51281316274895465689402798226634,
1.5878364329591908800533936587012,
1.65970112228228167018443636171226,
1.72874345388622461848433443013543,
1.7952515611463877544077632304216,
1.85947199025328260370244491818047,
1.92161634324190018916351663207101,
1.98186713586472025397859895825157,
2.04038269834980146276967984252188,
2.09730119173852573441223706382076,
2.15274387655763462685970799663412,
2.20681777186342079455059961912859,
2.25961782459354604684402726624239,
2.31122868752403808176824020121524,
2.36172618435386566570998793688131,
2.41117852396114589446497298177554,
2.45964731268663657873849811095449,
2.50718840313973523778244737914028,
2.55385260994795361951813645784034,
2.59968631659221867834697883938297,
2.64473199258285846332860663371298,
2.68902863641518586789566216064557,
2.73261215675199397407027673053895,
2.77551570192374483822124304745691,
2.8177699459714315371037628127545,
2.85940333797200948896046563785957,
2.90044232019793636101516293333324,
2.94091151970640874812265419871976,
2.98083391718088702956696303389061,
3.02023099621926980436221568258656,
3.05912287574998661724731962377847,
3.09752842783622025614245706196447,
3.13546538278134559341444834866301,
3.17295042316122606504398054547289,
3.2099992681699613513775259670214,
3.24662674946606137764916854570219,
3.28284687953866689817670991319787,
3.31867291347259485044591136879087,
3.35411740487202127264475726990106,
3.38919225660177218727305224515862,
3.42390876691942143189170489271753,
3.45827767149820230182596660024454,
3.49230918177808483937957161007792,
3.5260130200285724149540352829756,
3.55939845146044235497103883695448,
3.59247431368364585025958062194665,
3.62524904377393592090180712976368,
3.65773070318071087226169680450936,
3.68992700068237648299565823810245,
3.72184531357268220291630708234186 };
/* System generated locals */
integer crvjac_dim1, crvjac_offset, i__1, i__2;
doublereal d__1;
/* Local variables */
integer idec, ncut;
doublereal bidon;
integer ii, nd;
/* ***********************************************************************
*/
/* FONCTION : */
/* ---------- */
/* Calculate max approximation error i faite lorsque l' on */
/* ne conserve que les premiers NCFNEW coefficients d' une courbe
*/
/* de degre NCOEFF-1 ecrite dans la base de Jacobi d' ordre 2. */
/* KEYWORDS : */
/* ----------- */
/* JACOBI, POLYGON, APPROXIMATION, ERROR. */
/**/
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOFMX : Max. degree of the curve. */
/* NDIMEN : Space dimension. */
/* NCOEFF : Degree +1 of the curve. */
/* CRVLGD : Curve the degree which of should be lowered. */
/* NCFNEW : Degree +1 of the resulting polynom. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* YCVMAX : Auxiliary Table (max error on each dimension).
*/
/* ERRMAX : Precision of the approximation. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* ------------------ Table of maximums of (1-t2)*Ji(t) ----------------
*/
/* Parameter adjustments */
--ycvmax;
crvjac_dim1 = *ncofmx;
crvjac_offset = crvjac_dim1 + 1;
crvjac -= crvjac_offset;
/* Function Body */
/* ------------------- Init for error calculation -----------------------
*/
i__1 = *ndimen;
for (ii = 1; ii <= i__1; ++ii) {
ycvmax[ii] = 0.;
/* L100: */
}
/* ------ Min. Degree that can be attained : Stop at 3 or NCFNEW ------
*/
idec = 3;
/* Computing MAX */
i__1 = idec, i__2 = *ncfnew + 1;
ncut = advapp_max(i__1,i__2);
/* -------------- Removal of coefficients of high degree -----------
*/
/* ----------- Loop on the series of Jacobi :NCUT --> NCOEFF ----------
*/
i__1 = *ncoeff;
for (ii = ncut; ii <= i__1; ++ii) {
/* Factor of renormalization. */
bidon = xmaxj[ii - idec];
i__2 = *ndimen;
for (nd = 1; nd <= i__2; ++nd) {
ycvmax[nd] += (d__1 = crvjac[ii + nd * crvjac_dim1], advapp_abs(d__1)) *
bidon;
/* L310: */
}
/* L300: */
}
/* -------------- The error is the norm of the vector error ---------------
*/
*errmax = AdvApp2Var_MathBase::mzsnorm_(ndimen, &ycvmax[1]);
/* --------------------------------- Fin --------------------------------
*/
return 0;
} /* mmaper2_ */
/* MAPER4.f -- translated by f2c (version 19960827).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Subroutine */
//=======================================================================
//function : mmaper4_
//purpose :
//=======================================================================
int mmaper4_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *crvjac,
integer *ncfnew,
doublereal *ycvmax,
doublereal *errmax)
{
/* Initialized data */
static doublereal xmaxj[55] = { 1.1092649593311780079813740546678,
1.05299572648705464724876659688996,
1.0949715351434178709281698645813,
1.15078388379719068145021100764647,
1.2094863084718701596278219811869,
1.26806623151369531323304177532868,
1.32549784426476978866302826176202,
1.38142537365039019558329304432581,
1.43575531950773585146867625840552,
1.48850442653629641402403231015299,
1.53973611681876234549146350844736,
1.58953193485272191557448229046492,
1.63797820416306624705258190017418,
1.68515974143594899185621942934906,
1.73115699602477936547107755854868,
1.77604489805513552087086912113251,
1.81989256661534438347398400420601,
1.86276344480103110090865609776681,
1.90471563564740808542244678597105,
1.94580231994751044968731427898046,
1.98607219357764450634552790950067,
2.02556989246317857340333585562678,
2.06433638992049685189059517340452,
2.10240936014742726236706004607473,
2.13982350649113222745523925190532,
2.17661085564771614285379929798896,
2.21280102016879766322589373557048,
2.2484214321456956597803794333791,
2.28349755104077956674135810027654,
2.31805304852593774867640120860446,
2.35210997297725685169643559615022,
2.38568889602346315560143377261814,
2.41880904328694215730192284109322,
2.45148841120796359750021227795539,
2.48374387161372199992570528025315,
2.5155912654873773953959098501893,
2.54704548720896557684101746505398,
2.57812056037881628390134077704127,
2.60882970619319538196517982945269,
2.63918540521920497868347679257107,
2.66919945330942891495458446613851,
2.69888301230439621709803756505788,
2.72824665609081486737132853370048,
2.75730041251405791603760003778285,
2.78605380158311346185098508516203,
2.81451587035387403267676338931454,
2.84269522483114290814009184272637,
2.87060005919012917988363332454033,
2.89823818258367657739520912946934,
2.92561704377132528239806135133273,
2.95274375377994262301217318010209,
2.97962510678256471794289060402033,
3.00626759936182712291041810228171,
3.03267744830655121818899164295959,
3.05886060707437081434964933864149 };
/* System generated locals */
integer crvjac_dim1, crvjac_offset, i__1, i__2;
doublereal d__1;
/* Local variables */
integer idec, ncut;
doublereal bidon;
integer ii, nd;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Calculate the max. error of approximation made when */
/* only first NCFNEW coefficients of a curve are preserved
*/
/* degree NCOEFF-1 is written in the base of Jacobi of order 4. */
/* KEYWORDS : */
/* ----------- */
/* LEGENDRE,POLYGON,APPROXIMATION,ERROR. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOFMX : Max. degree of the curve. */
/* NDIMEN : Space dimension. */
/* NCOEFF : Degree +1 of the curve. */
/* CRVJAC : Curve the degree which of should be lowered. */
/* NCFNEW : Degree +1 of the resulting polynom. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* YCVMAX : Auxiliary Table (max error on each dimension).
*/
/* ERRMAX : Precision of the approximation. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ***********************************************************************
*/
/* ---------------- Table of maximums of ((1-t2)2)*Ji(t) ---------------
*/
/* Parameter adjustments */
--ycvmax;
crvjac_dim1 = *ncofmx;
crvjac_offset = crvjac_dim1 + 1;
crvjac -= crvjac_offset;
/* Function Body */
/* ------------------- Init for error calculation -----------------------
*/
i__1 = *ndimen;
for (ii = 1; ii <= i__1; ++ii) {
ycvmax[ii] = 0.;
/* L100: */
}
/* ------ Min. Degree that can be attained : Stop at 5 or NCFNEW ------
*/
idec = 5;
/* Computing MAX */
i__1 = idec, i__2 = *ncfnew + 1;
ncut = advapp_max(i__1,i__2);
/* -------------- Removal of high degree coefficients -----------
*/
/* ----------- Loop on the series of Jacobi :NCUT --> NCOEFF ----------
*/
i__1 = *ncoeff;
for (ii = ncut; ii <= i__1; ++ii) {
/* Factor of renormalisation. */
bidon = xmaxj[ii - idec];
i__2 = *ndimen;
for (nd = 1; nd <= i__2; ++nd) {
ycvmax[nd] += (d__1 = crvjac[ii + nd * crvjac_dim1], advapp_abs(d__1)) *
bidon;
/* L310: */
}
/* L300: */
}
/* -------------- The error is the norm of the error vector ---------------
*/
*errmax = AdvApp2Var_MathBase::mzsnorm_(ndimen, &ycvmax[1]);
/* --------------------------------- End --------------------------------
*/
return 0;
} /* mmaper4_ */
//=======================================================================
//function : mmaper6_
//purpose :
//=======================================================================
int mmaper6_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *crvjac,
integer *ncfnew,
doublereal *ycvmax,
doublereal *errmax)
{
/* Initialized data */
static doublereal xmaxj[53] = { 1.21091229812484768570102219548814,
1.11626917091567929907256116528817,
1.1327140810290884106278510474203,
1.1679452722668028753522098022171,
1.20910611986279066645602153641334,
1.25228283758701572089625983127043,
1.29591971597287895911380446311508,
1.3393138157481884258308028584917,
1.3821288728999671920677617491385,
1.42420414683357356104823573391816,
1.46546895108549501306970087318319,
1.50590085198398789708599726315869,
1.54550385142820987194251585145013,
1.58429644271680300005206185490937,
1.62230484071440103826322971668038,
1.65955905239130512405565733793667,
1.69609056468292429853775667485212,
1.73193098017228915881592458573809,
1.7671112206990325429863426635397,
1.80166107681586964987277458875667,
1.83560897003644959204940535551721,
1.86898184653271388435058371983316,
1.90180515174518670797686768515502,
1.93410285411785808749237200054739,
1.96589749778987993293150856865539,
1.99721027139062501070081653790635,
2.02806108474738744005306947877164,
2.05846864831762572089033752595401,
2.08845055210580131460156962214748,
2.11802334209486194329576724042253,
2.14720259305166593214642386780469,
2.17600297710595096918495785742803,
2.20443832785205516555772788192013,
2.2325216999457379530416998244706,
2.2602654243075083168599953074345,
2.28768115912702794202525264301585,
2.3147799369092684021274946755348,
2.34157220782483457076721300512406,
2.36806787963276257263034969490066,
2.39427635443992520016789041085844,
2.42020656255081863955040620243062,
2.44586699364757383088888037359254,
2.47126572552427660024678584642791,
2.49641045058324178349347438430311,
2.52130850028451113942299097584818,
2.54596686772399937214920135190177,
2.5703922285006754089328998222275,
2.59459096001908861492582631591134,
2.61856915936049852435394597597773,
2.64233265984385295286445444361827,
2.66588704638685848486056711408168,
2.68923766976735295746679957665724,
2.71238965987606292679677228666411 };
/* System generated locals */
integer crvjac_dim1, crvjac_offset, i__1, i__2;
doublereal d__1;
/* Local variables */
integer idec, ncut;
doublereal bidon;
integer ii, nd;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Calculate the max. error of approximation made when */
/* only first NCFNEW coefficients of a curve are preserved
*/
/* degree NCOEFF-1 is written in the base of Jacobi of order 6. */
/* KEYWORDS : */
/* ----------- */
/* JACOBI,POLYGON,APPROXIMATION,ERROR. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOFMX : Max. degree of the curve. */
/* NDIMEN : Space dimension. */
/* NCOEFF : Degree +1 of the curve. */
/* CRVJAC : Curve the degree which of should be lowered. */
/* NCFNEW : Degree +1 of the resulting polynom. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* YCVMAX : Auxiliary Table (max error on each dimension).
*/
/* ERRMAX : Precision of the approximation. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* > */
/* ***********************************************************************
*/
/* ---------------- Table of maximums of ((1-t2)3)*Ji(t) ---------------
*/
/* Parameter adjustments */
--ycvmax;
crvjac_dim1 = *ncofmx;
crvjac_offset = crvjac_dim1 + 1;
crvjac -= crvjac_offset;
/* Function Body */
/* ------------------- Init for error calculation -----------------------
*/
i__1 = *ndimen;
for (ii = 1; ii <= i__1; ++ii) {
ycvmax[ii] = 0.;
/* L100: */
}
/* ------ Min Degree that can be attained : Stop at 3 or NCFNEW ------
*/
idec = 7;
/* Computing MAX */
i__1 = idec, i__2 = *ncfnew + 1;
ncut = advapp_max(i__1,i__2);
/* -------------- Removal of high degree coefficients -----------
*/
/* ----------- Loop on the series of Jacobi :NCUT --> NCOEFF ----------
*/
i__1 = *ncoeff;
for (ii = ncut; ii <= i__1; ++ii) {
/* Factor of renormalization. */
bidon = xmaxj[ii - idec];
i__2 = *ndimen;
for (nd = 1; nd <= i__2; ++nd) {
ycvmax[nd] += (d__1 = crvjac[ii + nd * crvjac_dim1], advapp_abs(d__1)) *
bidon;
/* L310: */
}
/* L300: */
}
/* -------------- The error is the norm of the vector error ---------------
*/
*errmax = AdvApp2Var_MathBase::mzsnorm_(ndimen, &ycvmax[1]);
/* --------------------------------- END --------------------------------
*/
return 0;
} /* mmaper6_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmaperx_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmaperx_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
integer *iordre,
doublereal *crvjac,
integer *ncfnew,
doublereal *ycvmax,
doublereal *errmax,
integer *iercod)
{
/* System generated locals */
integer crvjac_dim1, crvjac_offset;
/* Local variables */
integer jord;
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Calculate the max. error of approximation made when */
/* only first NCFNEW coefficients of a curve are preserved
*/
/* degree NCOEFF-1 is written in the base of Jacobi of order IORDRE. */
/* KEYWORDS : */
/* ----------- */
/* JACOBI,LEGENDRE,POLYGON,APPROXIMATION,ERROR. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOFMX : Max. degree of the curve. */
/* NDIMEN : Space dimension. */
/* NCOEFF : Degree +1 of the curve. */
/* IORDRE : Order of continuity at the extremities. */
/* CRVJAC : Curve the degree which of should be lowered. */
/* NCFNEW : Degree +1 of the resulting polynom. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* YCVMAX : Auxiliary Table (max error on each dimension).
*/
/* ERRMAX : Precision of the approximation. */
/* IERCOD = 0, OK */
/* = 1, order of constraints (IORDRE) is not within the */
/* autorized values. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* Canceled and replaced MMAPERR. */
/* ***********************************************************************
*/
/* Parameter adjustments */
--ycvmax;
crvjac_dim1 = *ncofmx;
crvjac_offset = crvjac_dim1 + 1;
crvjac -= crvjac_offset;
/* Function Body */
*iercod = 0;
/* --> Order of Jacobi polynoms */
jord = ( *iordre + 1) << 1;
if (jord == 0) {
mmaper0_(ncofmx, ndimen, ncoeff, &crvjac[crvjac_offset], ncfnew, &
ycvmax[1], errmax);
} else if (jord == 2) {
mmaper2_(ncofmx, ndimen, ncoeff, &crvjac[crvjac_offset], ncfnew, &
ycvmax[1], errmax);
} else if (jord == 4) {
mmaper4_(ncofmx, ndimen, ncoeff, &crvjac[crvjac_offset], ncfnew, &
ycvmax[1], errmax);
} else if (jord == 6) {
mmaper6_(ncofmx, ndimen, ncoeff, &crvjac[crvjac_offset], ncfnew, &
ycvmax[1], errmax);
} else {
*iercod = 1;
}
/* ----------------------------------- Fin ------------------------------
*/
return 0;
} /* mmaperx_ */
//=======================================================================
//function : mmarc41_
//purpose :
//=======================================================================
int mmarc41_(integer *ndimax,
integer *ndimen,
integer *ncoeff,
doublereal *crvold,
doublereal *upara0,
doublereal *upara1,
doublereal *crvnew,
integer *iercod)
{
/* System generated locals */
integer crvold_dim1, crvold_offset, crvnew_dim1, crvnew_offset, i__1,
i__2, i__3;
/* Local variables */
integer nboct;
doublereal tbaux[61];
integer nd;
doublereal bid;
integer ncf, ncj;
/* IMPLICIT DOUBLE PRECISION(A-H,O-Z) */
/* IMPLICIT INTEGER (I-N) */
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Creation of curve C2(v) defined on (0,1) identic to */
/* curve C1(u) defined on (U0,U1) (change of parameter */
/* of a curve). */
/* KEYWORDS : */
/* ----------- */
/* LIMITATION, RESTRICTION, CURVE */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIMAX : Space Dimensioning. */
/* NDIMEN : Curve Dimension. */
/* NCOEFF : Nb of coefficients of the curve. */
/* CRVOLD : Curve to be limited. */
/* UPARA0 : Min limit of the interval limiting the curve.
*/
/* UPARA1 : Max limit of the interval limiting the curve.
*/
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* CRVNEW : Relimited curve, defined on (0,1) and equal to */
/* CRVOLD defined on (U0,U1). */
/* IERCOD : = 0, OK */
/* =10, Nb of coeff. <1 or > 61. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ---------------------- */
/* Type Name */
/* MAERMSG MCRFILL MVCVIN2 */
/* MVCVINV */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* ---> Algorithm used in this general case is based on the */
/* following principle : */
/* Let S(t) = a0 + a1*t + a2*t**2 + ... of degree NCOEFF-1, and */
/* U(t) = b0 + b1*t, then the coeff. of */
/* S(U(t)) are calculated step by step with help of table TBAUX. */
/* At each step number N (N=2 to NCOEFF), TBAUX(n) contains */
/* the n-th coefficient of U(t)**N for n=1 to N. (RBD) */
/* ---> Reference : KNUTH, 'The Art of Computer Programming', */
/* Vol. 2/'Seminumerical Algorithms', */
/* Ex. 11 p:451 et solution p:562. (RBD) */
/* ---> Removal of the input argument CRVOLD by CRVNEW is */
/* possible, which means that the call : */
/* CALL MMARC41(NDIMAX,NDIMEN,NCOEFF,CURVE,UPARA0,UPARA1 */
/* ,CURVE,IERCOD) */
/* is absolutely LEGAL. (RBD) */
/* > */
/* **********************************************************************
*/
/* Name of the routine */
/* Auxiliary table of coefficients of (UPARA1-UPARA0)T+UPARA0 */
/* with power N=1 to NCOEFF-1. */
/* Parameter adjustments */
crvnew_dim1 = *ndimax;
crvnew_offset = crvnew_dim1 + 1;
crvnew -= crvnew_offset;
crvold_dim1 = *ndimax;
crvold_offset = crvold_dim1 + 1;
crvold -= crvold_offset;
/* Function Body */
*iercod = 0;
/* **********************************************************************
*/
/* CASE WHEN PROCESSING CAN'T BE DONE */
/* **********************************************************************
*/
if (*ncoeff > 61 || *ncoeff < 1) {
*iercod = 10;
goto L9999;
}
/* **********************************************************************
*/
/* IF NO CHANGES */
/* **********************************************************************
*/
if (*ndimen == *ndimax && *upara0 == 0. && *upara1 == 1.) {
nboct = (*ndimax << 3) * *ncoeff;
AdvApp2Var_SysBase::mcrfill_(&nboct,
&crvold[crvold_offset],
&crvnew[crvnew_offset]);
goto L9999;
}
/* **********************************************************************
*/
/* INVERSION 3D : FAST PROCESSING */
/* **********************************************************************
*/
if (*upara0 == 1. && *upara1 == 0.) {
if (*ndimen == 3 && *ndimax == 3 && *ncoeff <= 21) {
mvcvinv_(ncoeff, &crvold[crvold_offset], &crvnew[crvnew_offset],
iercod);
goto L9999;
}
/* ******************************************************************
**** */
/* INVERSION 2D : FAST PROCESSING */
/* ******************************************************************
**** */
if (*ndimen == 2 && *ndimax == 2 && *ncoeff <= 21) {
mvcvin2_(ncoeff, &crvold[crvold_offset], &crvnew[crvnew_offset],
iercod);
goto L9999;
}
}
/* **********************************************************************
*/
/* GENERAL PROCESSING */
/* **********************************************************************
*/
/* -------------------------- Initializations ---------------------------
*/
i__1 = *ndimen;
for (nd = 1; nd <= i__1; ++nd) {
crvnew[nd + crvnew_dim1] = crvold[nd + crvold_dim1];
/* L100: */
}
if (*ncoeff == 1) {
goto L9999;
}
tbaux[0] = *upara0;
tbaux[1] = *upara1 - *upara0;
/* ----------------------- Calculation of coeff. of CRVNEW ------------------
*/
i__1 = *ncoeff - 1;
for (ncf = 2; ncf <= i__1; ++ncf) {
/* ------------ Take into account NCF-th coeff. of CRVOLD --------
---- */
i__2 = ncf - 1;
for (ncj = 1; ncj <= i__2; ++ncj) {
bid = tbaux[ncj - 1];
i__3 = *ndimen;
for (nd = 1; nd <= i__3; ++nd) {
crvnew[nd + ncj * crvnew_dim1] += crvold[nd + ncf *
crvold_dim1] * bid;
/* L400: */
}
/* L300: */
}
bid = tbaux[ncf - 1];
i__2 = *ndimen;
for (nd = 1; nd <= i__2; ++nd) {
crvnew[nd + ncf * crvnew_dim1] = crvold[nd + ncf * crvold_dim1] *
bid;
/* L500: */
}
/* --------- Calculate (NCF+1) coeff. of ((U1-U0)*t + U0)**(NCF) ---
---- */
bid = *upara1 - *upara0;
tbaux[ncf] = tbaux[ncf - 1] * bid;
for (ncj = ncf; ncj >= 2; --ncj) {
tbaux[ncj - 1] = tbaux[ncj - 1] * *upara0 + tbaux[ncj - 2] * bid;
/* L600: */
}
tbaux[0] *= *upara0;
/* L200: */
}
/* -------------- Take into account the last coeff. of CRVOLD -----------
*/
i__1 = *ncoeff - 1;
for (ncj = 1; ncj <= i__1; ++ncj) {
bid = tbaux[ncj - 1];
i__2 = *ndimen;
for (nd = 1; nd <= i__2; ++nd) {
crvnew[nd + ncj * crvnew_dim1] += crvold[nd + *ncoeff *
crvold_dim1] * bid;
/* L800: */
}
/* L700: */
}
i__1 = *ndimen;
for (nd = 1; nd <= i__1; ++nd) {
crvnew[nd + *ncoeff * crvnew_dim1] = crvold[nd + *ncoeff *
crvold_dim1] * tbaux[*ncoeff - 1];
/* L900: */
}
/* ---------------------------- The end ---------------------------------
*/
L9999:
if (*iercod != 0) {
AdvApp2Var_SysBase::maermsg_("MMARC41", iercod, 7L);
}
return 0 ;
} /* mmarc41_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmarcin_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmarcin_(integer *ndimax,
integer *ndim,
integer *ncoeff,
doublereal *crvold,
doublereal *u0,
doublereal *u1,
doublereal *crvnew,
integer *iercod)
{
/* System generated locals */
integer crvold_dim1, crvold_offset, crvnew_dim1, crvnew_offset, i__1,
i__2, i__3;
doublereal d__1;
/* Local variables */
doublereal x0, x1;
integer nd;
doublereal tabaux[61];
integer ibb;
doublereal bid;
integer ncf;
integer ncj;
doublereal eps3;
/* **********************************************************************
*//* FUNCTION : */
/* ---------- */
/* Creation of curve C2(v) defined on [U0,U1] identic to */
/* curve C1(u) defined on [-1,1] (change of parameter */
/* of a curve) with INVERSION of indices of the resulting table. */
/* KEYWORDS : */
/* ----------- */
/* GENERALIZED LIMITATION, RESTRICTION, INVERSION, CURVE */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIMAX : Maximum Space Dimensioning. */
/* NDIMEN : Curve Dimension. */
/* NCOEFF : Nb of coefficients of the curve. */
/* CRVOLD : Curve to be limited. */
/* U0 : Min limit of the interval limiting the curve.
*/
/* U1 : Max limit of the interval limiting the curve.
*/
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* CRVNEW : Relimited curve, defined on [U0,U1] and equal to */
/* CRVOLD defined on [-1,1]. */
/* IERCOD : = 0, OK */
/* =10, Nb of coeff. <1 or > 61. */
/* =13, the requested interval of variation is null. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ---------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* **********************************************************************
*/
/* Name of the routine */
/* Auxiliary table of coefficients of X1*T+X0 */
/* with power N=1 to NCOEFF-1. */
/* Parameter adjustments */
crvnew_dim1 = *ndimax;
crvnew_offset = crvnew_dim1 + 1;
crvnew -= crvnew_offset;
crvold_dim1 = *ncoeff;
crvold_offset = crvold_dim1 + 1;
crvold -= crvold_offset;
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 2) {
AdvApp2Var_SysBase::mgenmsg_("MMARCIN", 7L);
}
/* At zero machine it is tested if the output interval is not null */
AdvApp2Var_MathBase::mmveps3_(&eps3);
if ((d__1 = *u1 - *u0, advapp_abs(d__1)) < eps3) {
*iercod = 13;
goto L9999;
}
*iercod = 0;
/* **********************************************************************
*/
/* CASE WHEN THE PROCESSING IS IMPOSSIBLE */
/* **********************************************************************
*/
if (*ncoeff > 61 || *ncoeff < 1) {
*iercod = 10;
goto L9999;
}
/* **********************************************************************
*/
/* IF NO CHANGE OF THE INTERVAL OF DEFINITION */
/* (ONLY INVERSION OF INDICES OF TABLE CRVOLD) */
/* **********************************************************************
*/
if (*ndim == *ndimax && *u0 == -1. && *u1 == 1.) {
AdvApp2Var_MathBase::mmcvinv_(ndim, ncoeff, ndim, &crvold[crvold_offset], &crvnew[
crvnew_offset]);
goto L9999;
}
/* **********************************************************************
*/
/* CASE WHEN THE NEW INTERVAL OF DEFINITION IS [0,1] */
/* **********************************************************************
*/
if (*u0 == 0. && *u1 == 1.) {
mmcvstd_(ncoeff, ndimax, ncoeff, ndim, &crvold[crvold_offset], &
crvnew[crvnew_offset]);
goto L9999;
}
/* **********************************************************************
*/
/* GENERAL PROCESSING */
/* **********************************************************************
*/
/* -------------------------- Initialization ---------------------------
*/
x0 = -(*u1 + *u0) / (*u1 - *u0);
x1 = 2. / (*u1 - *u0);
i__1 = *ndim;
for (nd = 1; nd <= i__1; ++nd) {
crvnew[nd + crvnew_dim1] = crvold[nd * crvold_dim1 + 1];
/* L100: */
}
if (*ncoeff == 1) {
goto L9999;
}
tabaux[0] = x0;
tabaux[1] = x1;
/* ----------------------- Calculation of coeff. of CRVNEW ------------------
*/
i__1 = *ncoeff - 1;
for (ncf = 2; ncf <= i__1; ++ncf) {
/* ------------ Take into account the NCF-th coeff. of CRVOLD --------
---- */
i__2 = ncf - 1;
for (ncj = 1; ncj <= i__2; ++ncj) {
bid = tabaux[ncj - 1];
i__3 = *ndim;
for (nd = 1; nd <= i__3; ++nd) {
crvnew[nd + ncj * crvnew_dim1] += crvold[ncf + nd *
crvold_dim1] * bid;
/* L400: */
}
/* L300: */
}
bid = tabaux[ncf - 1];
i__2 = *ndim;
for (nd = 1; nd <= i__2; ++nd) {
crvnew[nd + ncf * crvnew_dim1] = crvold[ncf + nd * crvold_dim1] *
bid;
/* L500: */
}
/* --------- Calculation of (NCF+1) coeff. of [X1*t + X0]**(NCF) --------
---- */
tabaux[ncf] = tabaux[ncf - 1] * x1;
for (ncj = ncf; ncj >= 2; --ncj) {
tabaux[ncj - 1] = tabaux[ncj - 1] * x0 + tabaux[ncj - 2] * x1;
/* L600: */
}
tabaux[0] *= x0;
/* L200: */
}
/* -------------- Take into account the last coeff. of CRVOLD -----------
*/
i__1 = *ncoeff - 1;
for (ncj = 1; ncj <= i__1; ++ncj) {
bid = tabaux[ncj - 1];
i__2 = *ndim;
for (nd = 1; nd <= i__2; ++nd) {
crvnew[nd + ncj * crvnew_dim1] += crvold[*ncoeff + nd *
crvold_dim1] * bid;
/* L800: */
}
/* L700: */
}
i__1 = *ndim;
for (nd = 1; nd <= i__1; ++nd) {
crvnew[nd + *ncoeff * crvnew_dim1] = crvold[*ncoeff + nd *
crvold_dim1] * tabaux[*ncoeff - 1];
/* L900: */
}
/* ---------------------------- The end ---------------------------------
*/
L9999:
if (*iercod > 0) {
AdvApp2Var_SysBase::maermsg_("MMARCIN", iercod, 7L);
}
if (ibb >= 2) {
AdvApp2Var_SysBase::mgsomsg_("MMARCIN", 7L);
}
return 0;
} /* mmarcin_ */
//=======================================================================
//function : mmatvec_
//purpose :
//=======================================================================
int mmatvec_(integer *nligne,
integer *,//ncolon,
integer *gposit,
integer *,//gnstoc,
doublereal *gmatri,
doublereal *vecin,
integer *deblig,
doublereal *vecout,
integer *iercod)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
logical ldbg;
integer jmin, jmax, i__, j, k;
doublereal somme;
integer aux;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Produce vector matrix in form of profile */
/* MOTS CLES : */
/* ----------- */
/* RESERVE, MATRIX, PRODUCT, VECTOR, PROFILE */
/* INPUT ARGUMENTS : */
/* -------------------- */
/* NLIGNE : Line number of the matrix of constraints */
/* NCOLON : Number of column of the matrix of constraints */
/* GNSTOC: Number of coefficients in the profile of matrix GMATRI */
/* GPOSIT: Table of positioning of terms of storage */
/* GPOSIT(1,I) contains the number of terms-1 on the line I */
/* in the profile of the matrix. */
/* GPOSIT(2,I) contains the index of storage of diagonal term*/
/* of line I */
/* GPOSIT(3,I) contains the index of column of the first term of */
/* profile of line I */
/* GNSTOC: Number of coefficients in the profile of matrix */
/* GMATRI */
/* GMATRI : Matrix of constraints in form of profile */
/* VECIN : Input vector */
/* DEBLIG : Line indexusing which the vector matrix is calculated */
/**/
/* OUTPUT ARGUMENTS */
/* --------------------- */
/* VECOUT : VECTOR PRODUCT */
/* IERCOD : ERROR CODE */
/* COMMONS USED : */
/* ------------------ */
/* REFERENCES CALLED : */
/* --------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* ***********************************************************************
*/
/* DECLARATIONS */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* INITIALISATIONS */
/* ***********************************************************************
*/
/* Parameter adjustments */
--vecout;
gposit -= 4;
--vecin;
--gmatri;
/* Function Body */
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 2;
if (ldbg) {
AdvApp2Var_SysBase::mgenmsg_("MMATVEC", 7L);
}
*iercod = 0;
/* ***********************************************************************
*/
/* Processing */
/* ***********************************************************************
*/
AdvApp2Var_SysBase::mvriraz_(nligne,
&vecout[1]);
i__1 = *nligne;
for (i__ = *deblig; i__ <= i__1; ++i__) {
somme = 0.;
jmin = gposit[i__ * 3 + 3];
jmax = gposit[i__ * 3 + 1] + gposit[i__ * 3 + 3] - 1;
aux = gposit[i__ * 3 + 2] - gposit[i__ * 3 + 1] - jmin + 1;
i__2 = jmax;
for (j = jmin; j <= i__2; ++j) {
k = j + aux;
somme += gmatri[k] * vecin[j];
}
vecout[i__] = somme;
}
goto L9999;
/* ***********************************************************************
*/
/* ERROR PROCESSING */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* RETURN CALLING PROGRAM */
/* ***********************************************************************
*/
L9999:
/* ___ DESALLOCATION, ... */
AdvApp2Var_SysBase::maermsg_("MMATVEC", iercod, 7L);
if (ldbg) {
AdvApp2Var_SysBase::mgsomsg_("MMATVEC", 7L);
}
return 0 ;
} /* mmatvec_ */
//=======================================================================
//function : mmbulld_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmbulld_(integer *nbcoln,
integer *nblign,
doublereal *dtabtr,
integer *numcle)
{
/* System generated locals */
integer dtabtr_dim1, dtabtr_offset, i__1, i__2;
/* Local variables */
logical ldbg;
doublereal daux;
integer nite1, nite2, nchan, i1, i2;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Parsing of columns of a table of integers in increasing order */
/* KEYWORDS : */
/* ----------- */
/* POINT-ENTRY, PARSING */
/* INPUT ARGUMENTS : */
/* -------------------- */
/* - NBCOLN : Number of columns in the table */
/* - NBLIGN : Number of lines in the table */
/* - DTABTR : Table of integers to be parsed */
/* - NUMCLE : Position of the key on the column */
/* OUTPUT ARGUMENTS : */
/* --------------------- */
/* - DTABTR : Parsed table */
/* COMMONS USED : */
/* ------------------ */
/* REFERENCES CALLED : */
/* --------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* Particularly performant if the table is almost parsed */
/* In the opposite case it is better to use MVSHELD */
/* ***********************************************************************
*/
/* Parameter adjustments */
dtabtr_dim1 = *nblign;
dtabtr_offset = dtabtr_dim1 + 1;
dtabtr -= dtabtr_offset;
/* Function Body */
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 2;
if (ldbg) {
AdvApp2Var_SysBase::mgenmsg_("MMBULLD", 7L);
}
nchan = 1;
nite1 = *nbcoln;
nite2 = 2;
/* ***********************************************************************
*/
/* PROCESSING */
/* ***********************************************************************
*/
/* ---->ALGORITHM in N^2 / 2 additional iteration */
while(nchan != 0) {
/* ----> Parsing from left to the right */
nchan = 0;
i__1 = nite1;
for (i1 = nite2; i1 <= i__1; ++i1) {
if (dtabtr[*numcle + i1 * dtabtr_dim1] < dtabtr[*numcle + (i1 - 1)
* dtabtr_dim1]) {
i__2 = *nblign;
for (i2 = 1; i2 <= i__2; ++i2) {
daux = dtabtr[i2 + (i1 - 1) * dtabtr_dim1];
dtabtr[i2 + (i1 - 1) * dtabtr_dim1] = dtabtr[i2 + i1 *
dtabtr_dim1];
dtabtr[i2 + i1 * dtabtr_dim1] = daux;
}
if (nchan == 0) {
nchan = 1;
}
}
}
--nite1;
/* ----> Parsing from right to the left */
if (nchan != 0) {
nchan = 0;
i__1 = nite2;
for (i1 = nite1; i1 >= i__1; --i1) {
if (dtabtr[*numcle + i1 * dtabtr_dim1] < dtabtr[*numcle + (i1
- 1) * dtabtr_dim1]) {
i__2 = *nblign;
for (i2 = 1; i2 <= i__2; ++i2) {
daux = dtabtr[i2 + (i1 - 1) * dtabtr_dim1];
dtabtr[i2 + (i1 - 1) * dtabtr_dim1] = dtabtr[i2 + i1 *
dtabtr_dim1];
dtabtr[i2 + i1 * dtabtr_dim1] = daux;
}
if (nchan == 0) {
nchan = 1;
}
}
}
++nite2;
}
}
goto L9999;
/* ***********************************************************************
*/
/* ERROR PROCESSING */
/* ***********************************************************************
*/
/* ----> No errors at calling functions, only tests and loops. */
/* ***********************************************************************
*/
/* RETURN CALLING PROGRAM */
/* ***********************************************************************
*/
L9999:
if (ldbg) {
AdvApp2Var_SysBase::mgsomsg_("MMBULLD", 7L);
}
return 0 ;
} /* mmbulld_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmcdriv_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmcdriv_(integer *ndimen,
integer *ncoeff,
doublereal *courbe,
integer *ideriv,
integer *ncofdv,
doublereal *crvdrv)
{
/* System generated locals */
integer courbe_dim1, courbe_offset, crvdrv_dim1, crvdrv_offset, i__1,
i__2;
/* Local variables */
integer i__, j, k;
doublereal mfactk, bid;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Calculate matrix of a derivate curve of order IDERIV. */
/* with input parameters other than output parameters. */
/* KEYWORDS : */
/* ----------- */
/* COEFFICIENTS,CURVE,DERIVATE I-EME. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIMEN : Space dimension (2 or 3 in general) */
/* NCOEFF : Degree +1 of the curve. */
/* COURBE : Table of coefficients of the curve. */
/* IDERIV : Required order of derivation : 1=1st derivate, etc... */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* NCOFDV : Degree +1 of the derivative of order IDERIV of the curve. */
/* CRVDRV : Table of coefficients of the derivative of order IDERIV */
/* of the curve. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* ---> It is possible to take as output argument the curve */
/* and the number of coeff passed at input by making : */
/* CALL MMCDRIV(NDIMEN,NCOEFF,COURBE,IDERIV,NCOEFF,COURBE). */
/* After this call, NCOEFF does the number of coeff of the derived */
/* curve the coefficients which of are stored in CURVE. */
/* Attention to the coefficients of CURVE of rank superior to */
/* NCOEFF : they are not set to zero. */
/* ---> Algorithm : */
/* The code below was written basing on the following algorithm:
*/
/* Let P(t) = a1 + a2*t + ... an*t**n. Derivate of order k of P */
/* (containing n-k coefficients) is calculated as follows : */
/* Pk(t) = a(k+1)*CNP(k,k)*k! */
/* + a(k+2)*CNP(k+1,k)*k! * t */
/* . */
/* . */
/* . */
/* + a(n)*CNP(n-1,k)*k! * t**(n-k-1). */
/* ***********************************************************************
*/
/* -------------- Case when the order of derivative is -------------------
*/
/* ---------------- greater than the degree of the curve ---------------------
*/
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Serves to provide the coefficients of binome (Pascal's triangle). */
/* KEYWORDS : */
/* ----------- */
/* Binomial coeff from 0 to 60. read only . init par block data */
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* Binomial coefficients form a triangular matrix. */
/* This matrix is completed in table CNP by its transposition. */
/* So: CNP(I,J) = CNP(J,I) for I and J = 0, ..., 60. */
/* Initialization is done by block-data MMLLL09.RES, */
/* created by program MQINICNP.FOR). */
/* **********************************************************************
*/
/* ***********************************************************************
*/
/* Parameter adjustments */
crvdrv_dim1 = *ndimen;
crvdrv_offset = crvdrv_dim1 + 1;
crvdrv -= crvdrv_offset;
courbe_dim1 = *ndimen;
courbe_offset = courbe_dim1 + 1;
courbe -= courbe_offset;
/* Function Body */
if (*ideriv >= *ncoeff) {
i__1 = *ndimen;
for (i__ = 1; i__ <= i__1; ++i__) {
crvdrv[i__ + crvdrv_dim1] = 0.;
/* L10: */
}
*ncofdv = 1;
goto L9999;
}
/* **********************************************************************
*/
/* General processing */
/* **********************************************************************
*/
/* --------------------- Calculation of Factorial(IDERIV) ------------------
*/
k = *ideriv;
mfactk = 1.;
i__1 = k;
for (i__ = 2; i__ <= i__1; ++i__) {
mfactk *= i__;
/* L50: */
}
/* ------------ Calculation of coeff of the derived of order IDERIV ----------
*/
/* ---> Attention : coefficient binomial C(n,m) is represented in */
/* MCCNP by CNP(N+1,M+1). */
i__1 = *ncoeff;
for (j = k + 1; j <= i__1; ++j) {
bid = mmcmcnp_.cnp[j - 1 + k * 61] * mfactk;
i__2 = *ndimen;
for (i__ = 1; i__ <= i__2; ++i__) {
crvdrv[i__ + (j - k) * crvdrv_dim1] = bid * courbe[i__ + j *
courbe_dim1];
/* L200: */
}
/* L100: */
}
*ncofdv = *ncoeff - *ideriv;
/* -------------------------------- The end -----------------------------
*/
L9999:
return 0;
} /* mmcdriv_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmcglc1_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmcglc1_(integer *ndimax,
integer *ndimen,
integer *ncoeff,
doublereal *courbe,
doublereal *tdebut,
doublereal *tfinal,
doublereal *epsiln,
doublereal *xlongc,
doublereal *erreur,
integer *iercod)
{
/* System generated locals */
integer courbe_dim1, courbe_offset, i__1;
doublereal d__1;
/* Local variables */
integer ndec;
doublereal tdeb, tfin;
integer iter;
doublereal oldso = 0.;
integer itmax;
doublereal sottc;
integer kk, ibb;
doublereal dif, pas;
doublereal som;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Allows calculating the length of an arc of curve POLYNOMIAL */
/* on an interval [A,B]. */
/* KEYWORDS : */
/* ----------- */
/* LENGTH,CURVE,GAUSS,PRIVATE. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIMAX : Max. number of lines of tables */
/* (i.e. max. nb of polynoms). */
/* NDIMEN : Dimension of the space (nb of polynoms). */
/* NCOEFF : Nb of coefficients of the polynom. This is degree + 1.
*/
/* COURBE(NDIMAX,NCOEFF) : Coefficients of the curve. */
/* TDEBUT : Lower limit of the interval of integration for */
/* length calculation. */
/* TFINAL : Upper limit of the interval of integration for */
/* length calculation. */
/* EPSILN : REQIRED precision for length calculation. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* XLONGC : Length of the arc of curve */
/* ERREUR : Precision OBTAINED for the length calculation. */
/* IERCOD : Error code, 0 OK, >0 Serious error. */
/* = 1 Too much iterations, the best calculated resultat */
/* (is almost ERROR) */
/* = 2 Pb MMLONCV (no result) */
/* = 3 NDIM or NCOEFF invalid (no result) */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* The polynom is actually a set of polynoms with */
/* coefficients arranged in a table of 2 indices, */
/* each line relative to the polynom. */
/* The polynom is defined by these coefficients ordered */
/* by increasing power of the variable. */
/* All polynoms have the same number of coefficients (the */
/* same degree). */
/* This program cancels and replaces LENGCV, MLONGC and MLENCV. */
/* ATTENTION : if TDEBUT > TFINAL, the length is NEGATIVE. */
/* > */
/* ***********************************************************************
*/
/* Name of the routine */
/* ------------------------ General Initialization ---------------------
*/
/* Parameter adjustments */
courbe_dim1 = *ndimax;
courbe_offset = courbe_dim1 + 1;
courbe -= courbe_offset;
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 2) {
AdvApp2Var_SysBase::mgenmsg_("MMCGLC1", 7L);
}
*iercod = 0;
*xlongc = 0.;
*erreur = 0.;
/* ------ Test of equity of limits */
if (*tdebut == *tfinal) {
*iercod = 0;
goto L9999;
}
/* ------ Test of the dimension and the number of coefficients */
if (*ndimen <= 0 || *ncoeff <= 0) {
goto L9003;
}
/* ----- Nb of current cutting, nb of iteration, */
/* max nb of iterations */
ndec = 1;
iter = 1;
itmax = 13;
/* ------ Variation of the nb of intervals */
/* Multiplied by 2 at each iteration */
L5000:
pas = (*tfinal - *tdebut) / ndec;
sottc = 0.;
/* ------ Loop on all current NDEC intervals */
i__1 = ndec;
for (kk = 1; kk <= i__1; ++kk) {
/* ------ Limits of the current integration interval */
tdeb = *tdebut + (kk - 1) * pas;
tfin = tdeb + pas;
mmloncv_(ndimax, ndimen, ncoeff, &courbe[courbe_offset], &tdeb, &tfin,
&som, iercod);
if (*iercod > 0) {
goto L9002;
}
sottc += som;
/* L100: */
}
/* ----------------- Test of the maximum number of iterations ------------
*/
/* Test if passes at least once ** */
if (iter == 1) {
oldso = sottc;
ndec <<= 1;
++iter;
goto L5000;
} else {
/* ------ Take into account DIF - Test of convergence */
++iter;
dif = (d__1 = sottc - oldso, advapp_abs(d__1));
/* ------ If DIF is OK, leave..., otherwise: */
if (dif > *epsiln) {
/* ------ If nb iteration exceeded, leave */
if (iter > itmax) {
*iercod = 1;
goto L9000;
} else {
/* ------ Otherwise continue by cutting the initial interval.
*/
oldso = sottc;
ndec <<= 1;
goto L5000;
}
}
}
/* ------------------------------ THE END -------------------------------
*/
L9000:
*xlongc = sottc;
*erreur = dif;
goto L9999;
/* ---> PB in MMLONCV */
L9002:
*iercod = 2;
goto L9999;
/* ---> NCOEFF or NDIM invalid. */
L9003:
*iercod = 3;
goto L9999;
L9999:
if (*iercod > 0) {
AdvApp2Var_SysBase::maermsg_("MMCGLC1", iercod, 7L);
}
if (ibb >= 2) {
AdvApp2Var_SysBase::mgsomsg_("MMCGLC1", 7L);
}
return 0;
} /* mmcglc1_ */
//=======================================================================
//function : mmchole_
//purpose :
//=======================================================================
int mmchole_(integer *,//mxcoef,
integer *dimens,
doublereal *amatri,
integer *aposit,
integer *posuiv,
doublereal *chomat,
integer *iercod)
{
/* System generated locals */
integer i__1, i__2, i__3;
doublereal d__1;
/* Builtin functions */
//double sqrt();
/* Local variables */
logical ldbg;
integer kmin, i__, j, k;
doublereal somme;
integer ptini, ptcou;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- T */
/* Produce decomposition of choleski of matrix A in S.S */
/* Calculate inferior triangular matrix S. */
/* KEYWORDS : */
/* ----------- */
/* RESOLUTION, MFACTORISATION, MATRIX_PROFILE, CHOLESKI */
/* INPUT ARGUMENTS : */
/* -------------------- */
/* MXCOEF : Max number of terms in the hessian profile */
/* DIMENS : Dimension of the problem */
/* AMATRI(MXCOEF) : Coefficients of the matrix profile */
/* APOSIT(1,*) : Distance diagonal-left extremity of the line
*/
/* APOSIT(2,*) : Position of diagonal terms in HESSIE */
/* POSUIV(MXCOEF) : first line inferior not out of profile */
/* OUTPUT ARGUMENTS : */
/* --------------------- */
/* CHOMAT(MXCOEF) : Inferior triangular matrix preserving the */
/* profile of AMATRI. */
/* IERCOD : error code */
/* = 0 : ok */
/* = 1 : non-defined positive matrix */
/* COMMONS USED : */
/* ------------------ */
/* .Neant. */
/* REFERENCES CALLED : */
/* ---------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* DEBUG LEVEL = 4 */
/* ***********************************************************************
*/
/* DECLARATIONS */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* INITIALISATIONS */
/* ***********************************************************************
*/
/* Parameter adjustments */
--chomat;
--posuiv;
--amatri;
aposit -= 3;
/* Function Body */
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 4;
if (ldbg) {
AdvApp2Var_SysBase::mgenmsg_("MMCHOLE", 7L);
}
*iercod = 0;
/* ***********************************************************************
*/
/* PROCESSING */
/* ***********************************************************************
*/
i__1 = *dimens;
for (j = 1; j <= i__1; ++j) {
ptini = aposit[(j << 1) + 2];
somme = 0.;
i__2 = ptini - 1;
for (k = ptini - aposit[(j << 1) + 1]; k <= i__2; ++k) {
/* Computing 2nd power */
d__1 = chomat[k];
somme += d__1 * d__1;
}
if (amatri[ptini] - somme < 1e-32) {
goto L9101;
}
chomat[ptini] = sqrt(amatri[ptini] - somme);
ptcou = ptini;
while(posuiv[ptcou] > 0) {
i__ = posuiv[ptcou];
ptcou = aposit[(i__ << 1) + 2] - (i__ - j);
/* Calculate the sum of S .S for k =1 a j-1 */
/* ik jk */
somme = 0.;
/* Computing MAX */
i__2 = i__ - aposit[(i__ << 1) + 1], i__3 = j - aposit[(j << 1) +
1];
kmin = advapp_max(i__2,i__3);
i__2 = j - 1;
for (k = kmin; k <= i__2; ++k) {
somme += chomat[aposit[(i__ << 1) + 2] - (i__ - k)] * chomat[
aposit[(j << 1) + 2] - (j - k)];
}
chomat[ptcou] = (amatri[ptcou] - somme) / chomat[ptini];
}
}
goto L9999;
/* ***********************************************************************
*/
/* ERROR PROCESSING */
/* ***********************************************************************
*/
L9101:
*iercod = 1;
goto L9999;
/* ***********************************************************************
*/
/* RETURN CALLING PROGRAM */
/* ***********************************************************************
*/
L9999:
AdvApp2Var_SysBase::maermsg_("MMCHOLE", iercod, 7L);
if (ldbg) {
AdvApp2Var_SysBase::mgsomsg_("MMCHOLE", 7L);
}
return 0 ;
} /* mmchole_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmcvctx_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmcvctx_(integer *ndimen,
integer *ncofmx,
integer *nderiv,
doublereal *ctrtes,
doublereal *crvres,
doublereal *tabaux,
doublereal *xmatri,
integer *iercod)
{
/* System generated locals */
integer ctrtes_dim1, ctrtes_offset, crvres_dim1, crvres_offset,
xmatri_dim1, xmatri_offset, tabaux_dim1, tabaux_offset, i__1,
i__2;
/* Local variables */
integer moup1, nordr;
integer nd;
integer ibb, ncf, ndv;
doublereal eps1;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Calculate a polynomial curve checking the */
/* passage constraints (interpolation) */
/* from first derivatives, etc... to extremities. */
/* Parameters at the extremities are supposed to be -1 and 1. */
/* KEYWORDS : */
/* ----------- */
/* ALL, AB_SPECIFI::CONSTRAINTS&,INTERPOLATION,&CURVE */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIMEN : Space Dimension. */
/* NCOFMX : Nb of coeff. of curve CRVRES on each */
/* dimension. */
/* NDERIV : Order of constraint with derivatives : */
/* 0 --> interpolation simple. */
/* 1 --> interpolation+constraints with 1st. */
/* 2 --> cas (0)+ (1) + " " 2nd derivatives. */
/* etc... */
/* CTRTES : Table of constraints. */
/* CTRTES(*,1,*) = contraints at -1. */
/* CTRTES(*,2,*) = contraints at 1. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* CRVRES : Resulting curve defined on (-1,1). */
/* TABAUX : Auxilliary matrix. */
/* XMATRI : Auxilliary matrix. */
/* COMMONS UTILISES : */
/* ---------------- */
/* .Neant. */
/* REFERENCES CALLED : */
/* ---------------------- */
/* Type Name */
/* MAERMSG R*8 DFLOAT MGENMSG */
/* MGSOMSG MMEPS1 MMRSLW */
/* I*4 MNFNDEB */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* The polynom (or the curve) is calculated by solving a */
/* system of linear equations. If the imposed degree is great */
/* it is preferable to call a routine based on */
/* Lagrange or Hermite interpolation depending on the case. */
/* (for a high degree the matrix of the system can be badly */
/* conditionned). */
/* This routine returns a curve defined in (-1,1). */
/* In general case, it is necessary to use MCVCTG. */
/* > */
/* ***********************************************************************
*/
/* Name of the routine */
/* Parameter adjustments */
crvres_dim1 = *ncofmx;
crvres_offset = crvres_dim1 + 1;
crvres -= crvres_offset;
xmatri_dim1 = *nderiv + 1;
xmatri_offset = xmatri_dim1 + 1;
xmatri -= xmatri_offset;
tabaux_dim1 = *nderiv + 1 + *ndimen;
tabaux_offset = tabaux_dim1 + 1;
tabaux -= tabaux_offset;
ctrtes_dim1 = *ndimen;
ctrtes_offset = ctrtes_dim1 * 3 + 1;
ctrtes -= ctrtes_offset;
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 3) {
AdvApp2Var_SysBase::mgenmsg_("MMCVCTX", 7L);
}
/* Precision. */
AdvApp2Var_MathBase::mmeps1_(&eps1);
/* ****************** CALCULATION OF EVEN COEFFICIENTS *********************
*/
/* ------------------------- Initialization -----------------------------
*/
nordr = *nderiv + 1;
i__1 = nordr;
for (ncf = 1; ncf <= i__1; ++ncf) {
tabaux[ncf + tabaux_dim1] = 1.;
/* L100: */
}
/* ---------------- Calculation of terms corresponding to derivatives -------
*/
i__1 = nordr;
for (ndv = 2; ndv <= i__1; ++ndv) {
i__2 = nordr;
for (ncf = 1; ncf <= i__2; ++ncf) {
tabaux[ncf + ndv * tabaux_dim1] = tabaux[ncf + (ndv - 1) *
tabaux_dim1] * (doublereal) ((ncf << 1) - ndv);
/* L300: */
}
/* L200: */
}
/* ------------------ Writing the second member -----------------------
*/
moup1 = 1;
i__1 = nordr;
for (ndv = 1; ndv <= i__1; ++ndv) {
i__2 = *ndimen;
for (nd = 1; nd <= i__2; ++nd) {
tabaux[nordr + nd + ndv * tabaux_dim1] = (ctrtes[nd + ((ndv << 1)
+ 2) * ctrtes_dim1] + moup1 * ctrtes[nd + ((ndv << 1) + 1)
* ctrtes_dim1]) / 2.;
/* L500: */
}
moup1 = -moup1;
/* L400: */
}
/* -------------------- Resolution of the system ---------------------------
*/
mmrslw_(&nordr, &nordr, ndimen, &eps1, &tabaux[tabaux_offset], &xmatri[
xmatri_offset], iercod);
if (*iercod > 0) {
goto L9999;
}
i__1 = *ndimen;
for (nd = 1; nd <= i__1; ++nd) {
i__2 = nordr;
for (ncf = 1; ncf <= i__2; ++ncf) {
crvres[(ncf << 1) - 1 + nd * crvres_dim1] = xmatri[ncf + nd *
xmatri_dim1];
/* L700: */
}
/* L600: */
}
/* ***************** CALCULATION OF UNEVEN COEFFICIENTS ********************
*/
/* ------------------------- Initialization -----------------------------
*/
i__1 = nordr;
for (ncf = 1; ncf <= i__1; ++ncf) {
tabaux[ncf + tabaux_dim1] = 1.;
/* L1100: */
}
/* ---------------- Calculation of terms corresponding to derivatives -------
*/
i__1 = nordr;
for (ndv = 2; ndv <= i__1; ++ndv) {
i__2 = nordr;
for (ncf = 1; ncf <= i__2; ++ncf) {
tabaux[ncf + ndv * tabaux_dim1] = tabaux[ncf + (ndv - 1) *
tabaux_dim1] * (doublereal) ((ncf << 1) - ndv + 1);
/* L1300: */
}
/* L1200: */
}
/* ------------------ Writing of the second member -----------------------
*/
moup1 = -1;
i__1 = nordr;
for (ndv = 1; ndv <= i__1; ++ndv) {
i__2 = *ndimen;
for (nd = 1; nd <= i__2; ++nd) {
tabaux[nordr + nd + ndv * tabaux_dim1] = (ctrtes[nd + ((ndv << 1)
+ 2) * ctrtes_dim1] + moup1 * ctrtes[nd + ((ndv << 1) + 1)
* ctrtes_dim1]) / 2.;
/* L1500: */
}
moup1 = -moup1;
/* L1400: */
}
/* -------------------- Solution of the system ---------------------------
*/
mmrslw_(&nordr, &nordr, ndimen, &eps1, &tabaux[tabaux_offset], &xmatri[
xmatri_offset], iercod);
if (*iercod > 0) {
goto L9999;
}
i__1 = *ndimen;
for (nd = 1; nd <= i__1; ++nd) {
i__2 = nordr;
for (ncf = 1; ncf <= i__2; ++ncf) {
crvres[(ncf << 1) + nd * crvres_dim1] = xmatri[ncf + nd *
xmatri_dim1];
/* L1700: */
}
/* L1600: */
}
/* --------------------------- The end ----------------------------------
*/
L9999:
if (*iercod != 0) {
AdvApp2Var_SysBase::maermsg_("MMCVCTX", iercod, 7L);
}
if (ibb >= 3) {
AdvApp2Var_SysBase::mgsomsg_("MMCVCTX", 7L);
}
return 0 ;
} /* mmcvctx_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmcvinv_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmcvinv_(integer *ndimax,
integer *ncoef,
integer *ndim,
doublereal *curveo,
doublereal *curve)
{
/* Initialized data */
static char nomprg[8+1] = "MMCVINV ";
/* System generated locals */
integer curve_dim1, curve_offset, curveo_dim1, curveo_offset, i__1, i__2;
/* Local variables */
integer i__, nd, ibb;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Inversion of arguments of the final curve. */
/* KEYWORDS : */
/* ----------- */
/* SMOOTHING,CURVE */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIM: Space Dimension. */
/* NCOEF: Degree of the polynom. */
/* CURVEO: The curve before inversion. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* CURVE: The curve after inversion. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES APPELEES : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* ***********************************************************************
*/
/* The name of the routine */
/* Parameter adjustments */
curve_dim1 = *ndimax;
curve_offset = curve_dim1 + 1;
curve -= curve_offset;
curveo_dim1 = *ncoef;
curveo_offset = curveo_dim1 + 1;
curveo -= curveo_offset;
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 2) {
AdvApp2Var_SysBase::mgenmsg_(nomprg, 6L);
}
i__1 = *ncoef;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *ndim;
for (nd = 1; nd <= i__2; ++nd) {
curve[nd + i__ * curve_dim1] = curveo[i__ + nd * curveo_dim1];
/* L300: */
}
}
/* L9999: */
return 0;
} /* mmcvinv_ */
//=======================================================================
//function : mmcvstd_
//purpose :
//=======================================================================
int mmcvstd_(integer *ncofmx,
integer *ndimax,
integer *ncoeff,
integer *ndimen,
doublereal *crvcan,
doublereal *courbe)
{
/* System generated locals */
integer courbe_dim1, crvcan_dim1, crvcan_offset, i__1, i__2, i__3;
/* Local variables */
integer ndeg, i__, j, j1, nd, ibb;
doublereal bid;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Transform curve defined between [-1,1] into [0,1]. */
/* KEYWORDS : */
/* ----------- */
/* LIMITATION,RESTRICTION,CURVE */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIMAX : Dimension of the space. */
/* NDIMEN : Dimension of the curve. */
/* NCOEFF : Degree of the curve. */
/* CRVCAN(NCOFMX,NDIMEN): The curve is defined at the interval [-1,1]. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* CURVE(NDIMAX,NCOEFF): Curve defined at the interval [0,1]. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* Name of the program. */
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Provides binomial coefficients (Pascal triangle). */
/* KEYWORDS : */
/* ----------- */
/* Binomial coefficient from 0 to 60. read only . init by block data */
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* Binomial coefficients form a triangular matrix. */
/* This matrix is completed in table CNP by its transposition. */
/* So: CNP(I,J) = CNP(J,I) for I and J = 0, ..., 60. */
/* Initialization is done with block-data MMLLL09.RES, */
/* created by the program MQINICNP.FOR. */
/* > */
/* **********************************************************************
*/
/* ***********************************************************************
*/
/* Parameter adjustments */
courbe_dim1 = *ndimax;
--courbe;
crvcan_dim1 = *ncofmx;
crvcan_offset = crvcan_dim1;
crvcan -= crvcan_offset;
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 3) {
AdvApp2Var_SysBase::mgenmsg_("MMCVSTD", 7L);
}
ndeg = *ncoeff - 1;
/* ------------------ Construction of the resulting curve ----------------
*/
i__1 = *ndimen;
for (nd = 1; nd <= i__1; ++nd) {
i__2 = ndeg;
for (j = 0; j <= i__2; ++j) {
bid = 0.;
i__3 = ndeg;
for (i__ = j; i__ <= i__3; i__ += 2) {
bid += crvcan[i__ + nd * crvcan_dim1] * mmcmcnp_.cnp[i__ + j
* 61];
/* L410: */
}
courbe[nd + j * courbe_dim1] = bid;
bid = 0.;
j1 = j + 1;
i__3 = ndeg;
for (i__ = j1; i__ <= i__3; i__ += 2) {
bid += crvcan[i__ + nd * crvcan_dim1] * mmcmcnp_.cnp[i__ + j
* 61];
/* L420: */
}
courbe[nd + j * courbe_dim1] -= bid;
/* L400: */
}
/* L300: */
}
/* ------------------- Renormalization of the CURVE -------------------------
*/
bid = 1.;
i__1 = ndeg;
for (i__ = 0; i__ <= i__1; ++i__) {
i__2 = *ndimen;
for (nd = 1; nd <= i__2; ++nd) {
courbe[nd + i__ * courbe_dim1] *= bid;
/* L510: */
}
bid *= 2.;
/* L500: */
}
/* ----------------------------- The end --------------------------------
*/
if (ibb >= 3) {
AdvApp2Var_SysBase::mgsomsg_("MMCVSTD", 7L);
}
return 0;
} /* mmcvstd_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmdrc11_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmdrc11_(integer *iordre,
integer *ndimen,
integer *ncoeff,
doublereal *courbe,
doublereal *points,
doublereal *mfactab)
{
/* System generated locals */
integer courbe_dim1, courbe_offset, points_dim2, points_offset, i__1,
i__2;
/* Local variables */
integer ndeg, i__, j, ndgcb, nd, ibb;
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Calculation of successive derivatives of equation CURVE with */
/* parameters -1, 1 from order 0 to order IORDRE */
/* included. The calculation is produced without knowing the coefficients of */
/* derivatives of the curve. */
/* KEYWORDS : */
/* ----------- */
/* POSITIONING,EXTREMITIES,CURVE,DERIVATIVE. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* IORDRE : Maximum order of calculation of derivatives. */
/* NDIMEN : Dimension of the space. */
/* NCOEFF : Number of coefficients of the curve (degree+1). */
/* COURBE : Table of coefficients of the curve. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* POINTS : Table of values of consecutive derivatives */
/* of parameters -1.D0 and 1.D0. */
/* MFACTAB : Auxiliary table for calculation of factorial(I).
*/
/* COMMONS USED : */
/* ---------------- */
/* None. */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* ---> ATTENTION, the coefficients of the curve are */
/* in a reverse order. */
/* ---> The algorithm of calculation of derivatives is based on */
/* generalization of Horner scheme : */
/* k 2 */
/* Let C(t) = uk.t + ... + u2.t + u1.t + u0 . */
/* a0 = uk, b0 = 0, c0 = 0 and for 1<=j<=k, it is calculated : */
/* aj = a(j-1).x + u(k-j) */
/* bj = b(j-1).x + a(j-1) */
/* cj = c(j-1).x + b(j-1) */
/* So : C(x) = ak, C'(x) = bk, C"(x) = 2.ck . */
/* The algorithm is generalized easily for calculation of */
/* (n) */
/* C (x) . */
/* --------- */
/* n! */
/* Reference : D. KNUTH, "The Art of Computer Programming" */
/* --------- Vol. 2/Seminumerical Algorithms */
/* Addison-Wesley Pub. Co. (1969) */
/* pages 423-425. */
/* > */
/* **********************************************************************
*/
/* Name of the routine */
/* Parameter adjustments */
points_dim2 = *iordre + 1;
points_offset = (points_dim2 << 1) + 1;
points -= points_offset;
courbe_dim1 = *ncoeff;
courbe_offset = courbe_dim1;
courbe -= courbe_offset;
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 2) {
AdvApp2Var_SysBase::mgenmsg_("MMDRC11", 7L);
}
if (*iordre < 0 || *ncoeff < 1) {
goto L9999;
}
/* ------------------- Initialization of table POINTS -----------------
*/
ndgcb = *ncoeff - 1;
i__1 = *ndimen;
for (nd = 1; nd <= i__1; ++nd) {
points[(nd * points_dim2 << 1) + 1] = courbe[ndgcb + nd * courbe_dim1]
;
points[(nd * points_dim2 << 1) + 2] = courbe[ndgcb + nd * courbe_dim1]
;
/* L100: */
}
i__1 = *ndimen;
for (nd = 1; nd <= i__1; ++nd) {
i__2 = *iordre;
for (j = 1; j <= i__2; ++j) {
points[((j + nd * points_dim2) << 1) + 1] = 0.;
points[((j + nd * points_dim2) << 1) + 2] = 0.;
/* L400: */
}
/* L300: */
}
/* Calculation with parameter -1 and 1 */
i__1 = *ndimen;
for (nd = 1; nd <= i__1; ++nd) {
i__2 = ndgcb;
for (ndeg = 1; ndeg <= i__2; ++ndeg) {
for (i__ = *iordre; i__ >= 1; --i__) {
points[((i__ + nd * points_dim2) << 1) + 1] = -points[((i__ + nd
* points_dim2) << 1) + 1] + points[((i__ - 1 + nd *
points_dim2) << 1) + 1];
points[((i__ + nd * points_dim2) << 1) + 2] += points[((i__ - 1
+ nd * points_dim2) << 1) + 2];
/* L800: */
}
points[(nd * points_dim2 << 1) + 1] = -points[(nd * points_dim2 <<
1) + 1] + courbe[ndgcb - ndeg + nd * courbe_dim1];
points[(nd * points_dim2 << 1) + 2] += courbe[ndgcb - ndeg + nd *
courbe_dim1];
/* L700: */
}
/* L600: */
}
/* --------------------- Multiplication by factorial(I) --------------
*/
if (*iordre > 1) {
mfac_(&mfactab[1], iordre);
i__1 = *ndimen;
for (nd = 1; nd <= i__1; ++nd) {
i__2 = *iordre;
for (i__ = 2; i__ <= i__2; ++i__) {
points[((i__ + nd * points_dim2) << 1) + 1] = mfactab[i__] *
points[((i__ + nd * points_dim2) << 1) + 1];
points[((i__ + nd * points_dim2) << 1) + 2] = mfactab[i__] *
points[((i__ + nd * points_dim2) << 1) + 2];
/* L1000: */
}
/* L900: */
}
}
/* ---------------------------- End -------------------------------------
*/
L9999:
if (ibb >= 2) {
AdvApp2Var_SysBase::mgsomsg_("MMDRC11", 7L);
}
return 0;
} /* mmdrc11_ */
//=======================================================================
//function : mmdrvcb_
//purpose :
//=======================================================================
int mmdrvcb_(integer *ideriv,
integer *ndim,
integer *ncoeff,
doublereal *courbe,
doublereal *tparam,
doublereal *tabpnt,
integer *iercod)
{
/* System generated locals */
integer courbe_dim1, tabpnt_dim1, i__1, i__2, i__3;
/* Local variables */
integer ndeg, i__, j, nd, ndgcrb, iptpnt, ibb;
/* *********************************************************************** */
/* FUNCTION : */
/* ---------- */
/* Calculation of successive derivatives of equation CURVE with */
/* parameter TPARAM from order 0 to order IDERIV included. */
/* The calculation is produced without knowing the coefficients of */
/* derivatives of the CURVE. */
/* KEYWORDS : */
/* ----------- */
/* POSITIONING,PARAMETER,CURVE,DERIVATIVE. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* IORDRE : Maximum order of calculation of derivatives. */
/* NDIMEN : Dimension of the space. */
/* NCOEFF : Number of coefficients of the curve (degree+1). */
/* COURBE : Table of coefficients of the curve. */
/* TPARAM : Value of the parameter where the curve should be evaluated. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* TABPNT : Table of values of consecutive derivatives */
/* of parameter TPARAM. */
/* IERCOD : 0 = OK, */
/* 1 = incoherent input. */
/* COMMONS USED : */
/* ---------------- */
/* None. */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* The algorithm of calculation of derivatives is based on */
/* generalization of the Horner scheme : */
/* k 2 */
/* Let C(t) = uk.t + ... + u2.t + u1.t + u0 . */
/* a0 = uk, b0 = 0, c0 = 0 and for 1<=j<=k, it is calculated : */
/* aj = a(j-1).x + u(k-j) */
/* bj = b(j-1).x + a(j-1) */
/* cj = c(j-1).x + b(j-1) */
/* So, it is obtained : C(x) = ak, C'(x) = bk, C"(x) = 2.ck . */
/* The algorithm can be easily generalized for the calculation of */
/* (n) */
/* C (x) . */
/* --------- */
/* n! */
/* Reference : D. KNUTH, "The Art of Computer Programming" */
/* --------- Vol. 2/Seminumerical Algorithms */
/* Addison-Wesley Pub. Co. (1969) */
/* pages 423-425. */
/* ---> To evaluare derivatives at 0 and 1, it is preferable */
/* to use routine MDRV01.FOR . */
/* > */
/* **********************************************************************
*/
/* Name of the routine */
/* Parameter adjustments */
tabpnt_dim1 = *ndim;
--tabpnt;
courbe_dim1 = *ndim;
--courbe;
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 2) {
AdvApp2Var_SysBase::mgenmsg_("MMDRVCB", 7L);
}
if (*ideriv < 0 || *ncoeff < 1) {
*iercod = 1;
goto L9999;
}
*iercod = 0;
/* ------------------- Initialization of table TABPNT -----------------
*/
ndgcrb = *ncoeff - 1;
i__1 = *ndim;
for (nd = 1; nd <= i__1; ++nd) {
tabpnt[nd] = courbe[nd + ndgcrb * courbe_dim1];
/* L100: */
}
if (*ideriv < 1) {
goto L200;
}
iptpnt = *ndim * *ideriv;
AdvApp2Var_SysBase::mvriraz_(&iptpnt,
&tabpnt[tabpnt_dim1 + 1]);
L200:
/* ------------------------ Calculation of parameter TPARAM ------------------
*/
i__1 = ndgcrb;
for (ndeg = 1; ndeg <= i__1; ++ndeg) {
i__2 = *ndim;
for (nd = 1; nd <= i__2; ++nd) {
for (i__ = *ideriv; i__ >= 1; --i__) {
tabpnt[nd + i__ * tabpnt_dim1] = tabpnt[nd + i__ *
tabpnt_dim1] * *tparam + tabpnt[nd + (i__ - 1) *
tabpnt_dim1];
/* L700: */
}
tabpnt[nd] = tabpnt[nd] * *tparam + courbe[nd + (ndgcrb - ndeg) *
courbe_dim1];
/* L600: */
}
/* L500: */
}
/* --------------------- Multiplication by factorial(I) -------------
*/
i__1 = *ideriv;
for (i__ = 2; i__ <= i__1; ++i__) {
i__2 = i__;
for (j = 2; j <= i__2; ++j) {
i__3 = *ndim;
for (nd = 1; nd <= i__3; ++nd) {
tabpnt[nd + i__ * tabpnt_dim1] = (doublereal) j * tabpnt[nd +
i__ * tabpnt_dim1];
/* L1200: */
}
/* L1100: */
}
/* L1000: */
}
/* --------------------------- The end ---------------------------------
*/
L9999:
if (*iercod > 0) {
AdvApp2Var_SysBase::maermsg_("MMDRVCB", iercod, 7L);
}
return 0;
} /* mmdrvcb_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmdrvck_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmdrvck_(integer *ncoeff,
integer *ndimen,
doublereal *courbe,
integer *ideriv,
doublereal *tparam,
doublereal *pntcrb)
{
/* Initialized data */
static doublereal mmfack[21] = { 1.,2.,6.,24.,120.,720.,5040.,40320.,
362880.,3628800.,39916800.,479001600.,6227020800.,87178291200.,
1.307674368e12,2.0922789888e13,3.55687428096e14,6.402373705728e15,
1.21645100408832e17,2.43290200817664e18,5.109094217170944e19 };
/* System generated locals */
integer courbe_dim1, courbe_offset, i__1, i__2;
/* Local variables */
integer i__, j, k, nd;
doublereal mfactk, bid;
/* IMPLICIT INTEGER (I-N) */
/* IMPLICIT DOUBLE PRECISION(A-H,O-Z) */
/* ***********************************************************************
*/
/* FONCTION : */
/* ---------- */
/* Calculate the value of a derived curve of order IDERIV in */
/* a point of parameter TPARAM. */
/* KEYWORDS : */
/* ----------- */
/* POSITIONING,CURVE,DERIVATIVE of ORDER K. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOEFF : Degree +1 of the curve. */
/* NDIMEN : Dimension of the space (2 or 3 in general) */
/* COURBE : Table of coefficients of the curve. */
/* IDERIV : Required order of derivation : 1=1st derivative, etc... */
/* TPARAM : Value of parameter of the curve. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* PNTCRB : Point of parameter TPARAM on the derivative of order */
/* IDERIV of CURVE. */
/* COMMONS USED : */
/* ---------------- */
/* MMCMCNP */
/* REFERENCES CALLED : */
/* ---------------------- */
/* None. */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* The code below was written basing on the following algorithm :
*/
/* Let P(t) = a1 + a2*t + ... an*t**n. The derivative of order k of P */
/* (containing n-k coefficients) is calculated as follows : */
/* Pk(t) = a(k+1)*CNP(k,k)*k! */
/* + a(k+2)*CNP(k+1,k)*k! * t */
/* . */
/* . */
/* . */
/* + a(n)*CNP(n-1,k)*k! * t**(n-k-1). */
/* Evaluation is produced following the classic Horner scheme. */
/* > */
/* ***********************************************************************
*/
/* Factorials (1 to 21) caculated on VAX in R*16 */
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Serves to provide binomial coefficients (Pascal triangle). */
/* KEYWORDS : */
/* ----------- */
/* Binomial Coeff from 0 to 60. read only . init by block data */
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* Binomial coefficients form a triangular matrix. */
/* This matrix is completed in table CNP by its transposition. */
/* So: CNP(I,J) = CNP(J,I) for I and J = 0, ..., 60. */
/* Initialization is done by block-data MMLLL09.RES, */
/* created by program MQINICNP.FOR. */
/* > */
/* **********************************************************************
*/
/* ***********************************************************************
*/
/* Parameter adjustments */
--pntcrb;
courbe_dim1 = *ndimen;
courbe_offset = courbe_dim1 + 1;
courbe -= courbe_offset;
/* Function Body */
/* -------------- Case when the order of derivative is greater than -------------------
*/
/* ---------------- the degree of the curve ---------------------
*/
if (*ideriv >= *ncoeff) {
i__1 = *ndimen;
for (nd = 1; nd <= i__1; ++nd) {
pntcrb[nd] = 0.;
/* L100: */
}
goto L9999;
}
/* **********************************************************************
*/
/* General processing*/
/* **********************************************************************
*/
/* --------------------- Calculation of Factorial(IDERIV) ------------------
*/
k = *ideriv;
if (*ideriv <= 21 && *ideriv > 0) {
mfactk = mmfack[k - 1];
} else {
mfactk = 1.;
i__1 = k;
for (i__ = 2; i__ <= i__1; ++i__) {
mfactk *= i__;
/* L200: */
}
}
/* ------- Calculation of derivative of order IDERIV of CURVE in TPARAM -----
*/
/* ---> Attention : binomial coefficient C(n,m) is represented in */
/* MCCNP by CNP(N,M). */
i__1 = *ndimen;
for (nd = 1; nd <= i__1; ++nd) {
pntcrb[nd] = courbe[nd + *ncoeff * courbe_dim1] * mmcmcnp_.cnp[*
ncoeff - 1 + k * 61] * mfactk;
/* L300: */
}
i__1 = k + 1;
for (j = *ncoeff - 1; j >= i__1; --j) {
bid = mmcmcnp_.cnp[j - 1 + k * 61] * mfactk;
i__2 = *ndimen;
for (nd = 1; nd <= i__2; ++nd) {
pntcrb[nd] = pntcrb[nd] * *tparam + courbe[nd + j * courbe_dim1] *
bid;
/* L500: */
}
/* L400: */
}
/* -------------------------------- The end -----------------------------
*/
L9999:
return 0 ;
} /* mmdrvck_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmeps1_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmeps1_(doublereal *epsilo)
{
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Extraction of EPS1 from COMMON MPRCSN. EPS1 is spatial zero */
/* equal to 1.D-9 */
/* KEYWORDS : */
/* ----------- */
/* MPRCSN,PRECISON,EPS1. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* None */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* EPSILO : Value of EPS1 (spatial zero (10**-9)) */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* EPS1 is ABSOLUTE spatial zero, so it is necessary */
/* to use it whenever it is necessary to test if a variable */
/* is null. For example, if the norm of a vector is lower than */
/* EPS1, this vector is NULL ! (when one works in */
/* REAL*8) It is absolutely not advised to test arguments */
/* compared to EPS1**2. Taking into account the rounding errors inevitable */
/* during calculations, this causes testing compared to 0.D0. */
/* > */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Gives tolerances of invalidity in stream */
/* as well as limits of iterative processes */
/* general context, modifiable by the user */
/* KEYWORDS : */
/* ----------- */
/* PARAMETER , TOLERANCE */
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* INITIALISATION : profile , **VIA MPRFTX** at input in stream */
/* loading of default values of the profile in MPRFTX at input */
/* in stream. They are preserved in local variables of MPRFTX */
/* Reset of default values : MDFINT */
/* Interactive modification by the user : MDBINT */
/* ACCESS FUNCTION : MMEPS1 ... EPS1 */
/* MEPSPB ... EPS3,EPS4 */
/* MEPSLN ... EPS2, NITERM , NITERR */
/* MEPSNR ... EPS2 , NITERM */
/* MITERR ... NITERR */
/* > */
/* ***********************************************************************
*/
/* NITERM : max nb of iterations */
/* NITERR : nb of rapid iterations */
/* EPS1 : tolerance of 3D null distance */
/* EPS2 : tolerance of parametric null distance */
/* EPS3 : tolerance to avoid division by 0.. */
/* EPS4 : angular tolerance */
/* ***********************************************************************
*/
*epsilo = mmprcsn_.eps1;
return 0 ;
} /* mmeps1_ */
//=======================================================================
//function : mmexthi_
//purpose :
//=======================================================================
int mmexthi_(integer *ndegre,
NCollection_Array1<doublereal>& hwgaus)
{
/* System generated locals */
integer i__1;
/* Local variables */
integer iadd, ideb, ndeg2, nmod2, ii, ibb;
integer kpt;
/* **********************************************************************
*/
/* FONCTION : */
/* ---------- */
/* Extract of common LDGRTL the weight of formulas of */
/* Gauss quadrature on all roots of Legendre polynoms of degree */
/* NDEGRE defined on [-1,1]. */
/* KEYWORDS : */
/* ----------- */
/* ALL, AB_SPECIFI::COMMON&, EXTRACTION, &WEIGHT, &GAUSS. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDEGRE : Mathematic degree of Legendre polynom. It should have */
/* 2 <= NDEGRE <= 61. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* HWGAUS : The table of weights of Gauss quadrature formulas */
/* relative to NDEGRE roots of a polynome de Legendre de */
/* degre NDEGRE. */
/* COMMONS UTILISES : */
/* ---------------- */
/* MLGDRTL */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* ATTENTION: The condition on NDEGRE ( 2 <= NDEGRE <= 61) is not */
/* tested. The caller should make the test. */
/* Name of the routine */
/* Common MLGDRTL: */
/* This common includes POSITIVE roots of Legendre polynims */
/* AND weights of Gauss quadrature formulas on all */
/* POSITIVE roots of Legendre polynoms. */
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* The common of Legendre roots. */
/* KEYWORDS : */
/* ----------- */
/* BASE LEGENDRE */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* ROOTAB : Table of all roots of Legendre polynoms */
/* within the interval [0,1]. They are ranked for the degrees increasing from */
/* 2 to 61. */
/* HILTAB : Table of Legendre interpolators concerning ROOTAB. */
/* The adressing is the same. */
/* HI0TAB : Table of Legendre interpolators for root x=0 */
/* of polynoms of UNEVEN degree. */
/* RTLTB0 : Table of Li(uk) where uk are the roots of */
/* Legendre polynom of EVEN degree. */
/* RTLTB1 : Table of Li(uk) where uk are the roots of */
/* Legendre polynom of UNEVEN degree. */
/************************************************************************
*****/
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 3) {
AdvApp2Var_SysBase::mgenmsg_("MMEXTHI", 7L);
}
ndeg2 = *ndegre / 2;
nmod2 = *ndegre % 2;
/* Address of Gauss weight associated to the 1st strictly */
/* positive root of Legendre polynom of degree NDEGRE in MLGDRTL. */
iadd = ndeg2 * (ndeg2 - 1) / 2 + 1;
/* Index of the 1st HWGAUS element associated to the 1st strictly */
/* positive root of Legendre polynom of degree NDEGRE. */
ideb = (*ndegre + 1) / 2 + 1;
/* Reading of weights associated to strictly positive roots. */
i__1 = *ndegre;
for (ii = ideb; ii <= i__1; ++ii) {
kpt = iadd + ii - ideb;
hwgaus(ii) = mlgdrtl_.hiltab[kpt + nmod2 * 465 - 1];
/* L100: */
}
/* For strictly negative roots, the weight is the same. */
/* i.e HW(1) = HW(NDEGRE), HW(2) = HW(NDEGRE-1), etc... */
i__1 = ndeg2;
for (ii = 1; ii <= i__1; ++ii) {
hwgaus(ii) = hwgaus(*ndegre + 1 - ii);
/* L200: */
}
/* Case of uneven NDEGRE, 0 is root of Legendre polynom, */
/* associated Gauss weights are loaded. */
if (nmod2 == 1) {
hwgaus(ndeg2 + 1) = mlgdrtl_.hi0tab[ndeg2];
}
/* --------------------------- The end ----------------------------------
*/
if (ibb >= 3) {
AdvApp2Var_SysBase::mgsomsg_("MMEXTHI", 7L);
}
return 0;
} /* mmexthi_ */
//=======================================================================
//function : mmextrl_
//purpose :
//=======================================================================
int mmextrl_(integer *ndegre,
NCollection_Array1<doublereal>& rootlg)
{
/* System generated locals */
integer i__1;
/* Local variables */
integer iadd, ideb, ndeg2, nmod2, ii, ibb;
integer kpt;
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Extract of the Common LDGRTL of Legendre polynom roots */
/* of degree NDEGRE defined on [-1,1]. */
/* KEYWORDS : */
/* ----------- */
/* ALL, AB_SPECIFI::COMMON&, EXTRACTION, &ROOT, &LEGENDRE. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDEGRE : Mathematic degree of Legendre polynom. */
/* It is required to have 2 <= NDEGRE <= 61. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* ROOTLG : The table of roots of Legendre polynom of degree */
/* NDEGRE defined on [-1,1]. */
/* COMMONS USED : */
/* ---------------- */
/* MLGDRTL */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* ATTENTION: Condition of NDEGRE ( 2 <= NDEGRE <= 61) is not */
/* tested. The caller should make the test. */
/* > */
/* **********************************************************************
*/
/* Name of the routine */
/* Common MLGDRTL: */
/* This common includes POSITIVE roots of Legendre polynoms */
/* AND the weight of Gauss quadrature formulas on all */
/* POSITIVE roots of Legendre polynoms. */
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* The common of Legendre roots. */
/* KEYWORDS : */
/* ----------- */
/* BASE LEGENDRE */
/* ***********************************************************************
*/
/* ROOTAB : Table of all roots of Legendre polynoms */
/* within the interval [0,1]. They are ranked for the degrees increasing from */
/* 2 to 61. */
/* HILTAB : Table of Legendre interpolators concerning ROOTAB. */
/* The adressing is the same. */
/* HI0TAB : Table of Legendre interpolators for root x=0 */
/* of polynoms of UNEVEN degree. */
/* RTLTB0 : Table of Li(uk) where uk are the roots of */
/* Legendre polynom of EVEN degree. */
/* RTLTB1 : Table of Li(uk) where uk are the roots of */
/* Legendre polynom of UNEVEN degree. */
/************************************************************************
*****/
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 3) {
AdvApp2Var_SysBase::mgenmsg_("MMEXTRL", 7L);
}
ndeg2 = *ndegre / 2;
nmod2 = *ndegre % 2;
/* Address of the 1st strictly positive root of Legendre polynom */
/* of degree NDEGRE in MLGDRTL. */
iadd = ndeg2 * (ndeg2 - 1) / 2 + 1;
/* Indice, in ROOTLG, of the 1st strictly positive root */
/* of Legendre polynom of degree NDEGRE. */
ideb = (*ndegre + 1) / 2 + 1;
/* Reading of strictly positive roots. */
i__1 = *ndegre;
for (ii = ideb; ii <= i__1; ++ii) {
kpt = iadd + ii - ideb;
rootlg(ii) = mlgdrtl_.rootab[kpt + nmod2 * 465 - 1];
/* L100: */
}
/* Strictly negative roots are equal to positive roots
*/
/* to the sign i.e RT(1) = -RT(NDEGRE), RT(2) = -RT(NDEGRE-1), etc...
*/
i__1 = ndeg2;
for (ii = 1; ii <= i__1; ++ii) {
rootlg(ii) = -rootlg(*ndegre + 1 - ii);
/* L200: */
}
/* Case NDEGRE uneven, 0 is root of Legendre polynom. */
if (nmod2 == 1) {
rootlg(ndeg2 + 1) = 0.;
}
/* -------------------------------- THE END -----------------------------
*/
if (ibb >= 3) {
AdvApp2Var_SysBase::mgenmsg_("MMEXTRL", 7L);
}
return 0;
} /* mmextrl_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmfmca8_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmfmca8_(const integer *ndimen,
const integer *ncoefu,
const integer *ncoefv,
const integer *ndimax,
const integer *ncfumx,
const integer *,//ncfvmx,
doublereal *tabini,
doublereal *tabres)
{
/* System generated locals */
integer tabini_dim1, tabini_dim2, tabini_offset, tabres_dim1, tabres_dim2,
tabres_offset;
/* Local variables */
integer i__, j, k, ilong;
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Expansion of a table containing only most important things into a */
/* greater data table. */
/* KEYWORDS : */
/* ----------- */
/* ALL, MATH_ACCES:: CARREAU&, DECOMPRESSION, &CARREAU */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIMEN: Dimension of the workspace. */
/* NCOEFU: Degree +1 of the table by u. */
/* NCOEFV: Degree +1 of the table by v. */
/* NDIMAX: Max dimension of the space. */
/* NCFUMX: Max Degree +1 of the table by u. */
/* NCFVMX: Max Degree +1 of the table by v. */
/* TABINI: The table to be decompressed. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* TABRES: Decompressed table. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* The following call : */
/* CALL MMFMCA8(NDIMEN,NCOEFU,NCOEFV,NDIMAX,NCFUMX,NCFVMX,TABINI,TABINI)
*/
/* where TABINI is input/output argument, is possible provided */
/* that the caller has declared TABINI in (NDIMAX,NCFUMX,NCFVMX) */
/* ATTENTION : it is not checked that NDIMAX >= NDIMEN, */
/* NCOEFU >= NCFMXU and NCOEFV >= NCFMXV. */
/* > */
/* **********************************************************************
*/
/* Parameter adjustments */
tabini_dim1 = *ndimen;
tabini_dim2 = *ncoefu;
tabini_offset = tabini_dim1 * (tabini_dim2 + 1) + 1;
tabini -= tabini_offset;
tabres_dim1 = *ndimax;
tabres_dim2 = *ncfumx;
tabres_offset = tabres_dim1 * (tabres_dim2 + 1) + 1;
tabres -= tabres_offset;
/* Function Body */
if (*ndimax == *ndimen) {
goto L1000;
}
/* ----------------------- decompression NDIMAX<>NDIMEN -----------------
*/
for (k = *ncoefv; k >= 1; --k) {
for (j = *ncoefu; j >= 1; --j) {
for (i__ = *ndimen; i__ >= 1; --i__) {
tabres[i__ + (j + k * tabres_dim2) * tabres_dim1] = tabini[
i__ + (j + k * tabini_dim2) * tabini_dim1];
/* L300: */
}
/* L200: */
}
/* L100: */
}
goto L9999;
/* ----------------------- decompression NDIMAX=NDIMEN ------------------
*/
L1000:
if (*ncoefu == *ncfumx) {
goto L2000;
}
ilong = (*ndimen << 3) * *ncoefu;
for (k = *ncoefv; k >= 1; --k) {
AdvApp2Var_SysBase::mcrfill_(&ilong,
&tabini[(k * tabini_dim2 + 1) * tabini_dim1 + 1],
&tabres[(k * tabres_dim2 + 1) * tabres_dim1 + 1]);
/* L500: */
}
goto L9999;
/* ----------------- decompression NDIMAX=NDIMEN,NCOEFU=NCFUMX ----------
*/
L2000:
ilong = (*ndimen << 3) * *ncoefu * *ncoefv;
AdvApp2Var_SysBase::mcrfill_(&ilong,
&tabini[tabini_offset],
&tabres[tabres_offset]);
goto L9999;
/* ---------------------------- The end ---------------------------------
*/
L9999:
return 0;
} /* mmfmca8_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmfmca9_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmfmca9_(integer *ndimax,
integer *ncfumx,
integer *,//ncfvmx,
integer *ndimen,
integer *ncoefu,
integer *ncoefv,
doublereal *tabini,
doublereal *tabres)
{
/* System generated locals */
integer tabini_dim1, tabini_dim2, tabini_offset, tabres_dim1, tabres_dim2,
tabres_offset, i__1, i__2, i__3;
/* Local variables */
integer i__, j, k, ilong;
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Compression of a data table in a table */
/* containing only the main data (the input table is not removed). */
/* KEYWORDS: */
/* ----------- */
/* ALL, MATH_ACCES:: CARREAU&, COMPRESSION, &CARREAU */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIMAX: Max dimension of the space. */
/* NCFUMX: Max degree +1 of the table by u. */
/* NCFVMX: Max degree +1 of the table by v. */
/* NDIMEN: Dimension of the workspace. */
/* NCOEFU: Degree +1 of the table by u. */
/* NCOEFV: Degree +1 of the table by v. */
/* TABINI: The table to compress. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* TABRES: The compressed table. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* The following call : */
/* CALL MMFMCA9(NDIMAX,NCFUMX,NCFVMX,NDIMEN,NCOEFU,NCOEFV,TABINI,TABINI)
*/
/* where TABINI is input/output argument, is possible provided */
/* that the caller has checked that : */
/* NDIMAX > NDIMEN, */
/* or NDIMAX = NDIMEN and NCFUMX > NCOEFU */
/* or NDIMAX = NDIMEN, NCFUMX = NCOEFU and NCFVMX > NCOEFV */
/* These conditions are not tested in the program. */
/* > */
/* **********************************************************************
*/
/* Parameter adjustments */
tabini_dim1 = *ndimax;
tabini_dim2 = *ncfumx;
tabini_offset = tabini_dim1 * (tabini_dim2 + 1) + 1;
tabini -= tabini_offset;
tabres_dim1 = *ndimen;
tabres_dim2 = *ncoefu;
tabres_offset = tabres_dim1 * (tabres_dim2 + 1) + 1;
tabres -= tabres_offset;
/* Function Body */
if (*ndimen == *ndimax) {
goto L1000;
}
/* ----------------------- Compression NDIMEN<>NDIMAX -------------------
*/
i__1 = *ncoefv;
for (k = 1; k <= i__1; ++k) {
i__2 = *ncoefu;
for (j = 1; j <= i__2; ++j) {
i__3 = *ndimen;
for (i__ = 1; i__ <= i__3; ++i__) {
tabres[i__ + (j + k * tabres_dim2) * tabres_dim1] = tabini[
i__ + (j + k * tabini_dim2) * tabini_dim1];
/* L300: */
}
/* L200: */
}
/* L100: */
}
goto L9999;
/* ----------------------- Compression NDIMEN=NDIMAX --------------------
*/
L1000:
if (*ncoefu == *ncfumx) {
goto L2000;
}
ilong = (*ndimen << 3) * *ncoefu;
i__1 = *ncoefv;
for (k = 1; k <= i__1; ++k) {
AdvApp2Var_SysBase::mcrfill_(&ilong,
&tabini[(k * tabini_dim2 + 1) * tabini_dim1 + 1],
&tabres[(k * tabres_dim2 + 1) * tabres_dim1 + 1]);
/* L500: */
}
goto L9999;
/* ----------------- Compression NDIMEN=NDIMAX,NCOEFU=NCFUMX ------------
*/
L2000:
ilong = (*ndimen << 3) * *ncoefu * *ncoefv;
AdvApp2Var_SysBase::mcrfill_(&ilong,
&tabini[tabini_offset],
&tabres[tabres_offset]);
goto L9999;
/* ---------------------------- The end ---------------------------------
*/
L9999:
return 0;
} /* mmfmca9_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmfmcar_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmfmcar_(integer *ndimen,
integer *ncofmx,
integer *ncoefu,
integer *ncoefv,
doublereal *patold,
doublereal *upara1,
doublereal *upara2,
doublereal *vpara1,
doublereal *vpara2,
doublereal *patnew,
integer *iercod)
{
integer c__8 = 8;
/* System generated locals */
integer patold_dim1, patold_dim2, patnew_dim1, patnew_dim2,
i__1, patold_offset,patnew_offset;
/* Local variables */
doublereal* tbaux = 0;
integer ksize, numax, kk;
intptr_t iofst;
integer ibb, ier;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* LIMITATION OF A SQUARE DEFINED ON (0,1)*(0,1) BETWEEN ISOS */
/* UPARA1 AND UPARA2 (BY U) AND VPARA1 AND VPARA2 BY V. */
/* KEYWORDS : */
/* ----------- */
/* LIMITATION , SQUARE , PARAMETER */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOFMX: MAX NUMBER OF COEFF OF THE SQUARE BY U */
/* NCOEFU: NUMBER OF COEFF OF THE SQUARE BY U */
/* NCOEFV: NUMBER OF COEFF OF THE SQUARE BY V */
/* PATOLD : THE SQUARE IS LIMITED BY UPARA1,UPARA2 AND VPARA1,VPARA2
.*/
/* UPARA1 : LOWER LIMIT OF U */
/* UPARA2 : UPPER LIMIT OF U */
/* VPARA1 : LOWER LIMIT OF V */
/* VPARA2 : UPPER LIMIT OF V */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* PATNEW : RELIMITED SQUARE, DEFINED ON (0,1)**2 */
/* IERCOD : =10 COEFF NB TOO GREAT OR NULL */
/* =13 PB IN THE DYNAMIC ALLOCATION */
/* = 0 OK. */
/* COMMONS USED : */
/* ---------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* ---> The following call : */
/* CALL MMFMCAR(NCOFMX,NCOEFU,NCOEFV,PATOLD,UPARA1,UPARA2,VPARA1,VPARA2
*/
/* ,PATOLD), */
/* where PATOLD is input/output argument is absolutely legal. */
/* ---> The max number of coeff by u and v of PATOLD is 61 */
/* ---> If NCOEFU < NCOFMX, the data is compressed by MMFMCA9 before */
/* limitation by v to get time during the execution */
/* of MMARC41 that follows (the square is processed as a curve of
*/
/* dimension NDIMEN*NCOEFU possessing NCOEFV coefficients). */
/* > */
/* ***********************************************************************
*/
/* Name of the routine */
/* Parameter adjustments */
patnew_dim1 = *ndimen;
patnew_dim2 = *ncofmx;
patnew_offset = patnew_dim1 * (patnew_dim2 + 1) + 1;
patnew -= patnew_offset;
patold_dim1 = *ndimen;
patold_dim2 = *ncofmx;
patold_offset = patold_dim1 * (patold_dim2 + 1) + 1;
patold -= patold_offset;
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 2) {
AdvApp2Var_SysBase::mgenmsg_("MMFMCAR", 7L);
}
*iercod = 0;
iofst = 0;
AdvApp2Var_SysBase anAdvApp2Var_SysBase;
/* **********************************************************************
*/
/* TEST OF COEFFICIENT NUMBERS */
/* **********************************************************************
*/
if (*ncofmx < *ncoefu) {
*iercod = 10;
goto L9999;
}
if (*ncoefu < 1 || *ncoefu > 61 || *ncoefv < 1 || *ncoefv > 61) {
*iercod = 10;
goto L9999;
}
/* **********************************************************************
*/
/* CASE WHEN UPARA1=VPARA1=0 AND UPARA2=VPARA2=1 */
/* **********************************************************************
*/
if (*upara1 == 0. && *upara2 == 1. && *vpara1 == 0. && *vpara2 == 1.) {
ksize = (*ndimen << 3) * *ncofmx * *ncoefv;
AdvApp2Var_SysBase::mcrfill_(&ksize,
&patold[patold_offset],
&patnew[patnew_offset]);
goto L9999;
}
/* **********************************************************************
*/
/* LIMITATION BY U */
/* **********************************************************************
*/
if (*upara1 == 0. && *upara2 == 1.) {
goto L2000;
}
i__1 = *ncoefv;
for (kk = 1; kk <= i__1; ++kk) {
mmarc41_(ndimen, ndimen, ncoefu, &patold[(kk * patold_dim2 + 1) *
patold_dim1 + 1], upara1, upara2, &patnew[(kk * patnew_dim2 +
1) * patnew_dim1 + 1], iercod);
/* L100: */
}
/* **********************************************************************
*/
/* LIMITATION BY V */
/* **********************************************************************
*/
L2000:
if (*vpara1 == 0. && *vpara2 == 1.) {
goto L9999;
}
/* ----------- LIMITATION BY V (WITH COMPRESSION I.E. NCOEFU<NCOFMX) ----
*/
numax = *ndimen * *ncoefu;
if (*ncofmx != *ncoefu) {
/* ------------------------- Dynamic allocation -------------------
---- */
ksize = *ndimen * *ncoefu * *ncoefv;
anAdvApp2Var_SysBase.mcrrqst_(&c__8, &ksize, tbaux, &iofst, &ier);
if (ier > 0) {
*iercod = 13;
goto L9900;
}
/* --------------- Compression by (NDIMEN,NCOEFU,NCOEFV) ------------
---- */
if (*upara1 == 0. && *upara2 == 1.) {
AdvApp2Var_MathBase::mmfmca9_(ndimen,
ncofmx,
ncoefv,
ndimen,
ncoefu,
ncoefv,
&patold[patold_offset],
&tbaux[iofst]);
} else {
AdvApp2Var_MathBase::mmfmca9_(ndimen,
ncofmx,
ncoefv,
ndimen,
ncoefu,
ncoefv,
&patnew[patnew_offset],
&tbaux[iofst]);
}
/* ------------------------- Limitation by v ------------------------
---- */
mmarc41_(&numax, &numax, ncoefv, &tbaux[iofst], vpara1, vpara2, &
tbaux[iofst], iercod);
/* --------------------- Expansion of TBAUX into PATNEW -------------
--- */
AdvApp2Var_MathBase::mmfmca8_(ndimen, ncoefu, ncoefv, ndimen, ncofmx, ncoefv, &tbaux[iofst]
, &patnew[patnew_offset]);
goto L9900;
/* -------- LIMITATION BY V (WITHOUT COMPRESSION I.E. NCOEFU=NCOFMX) ---
---- */
} else {
if (*upara1 == 0. && *upara2 == 1.) {
mmarc41_(&numax, &numax, ncoefv, &patold[patold_offset], vpara1,
vpara2, &patnew[patnew_offset], iercod);
} else {
mmarc41_(&numax, &numax, ncoefv, &patnew[patnew_offset], vpara1,
vpara2, &patnew[patnew_offset], iercod);
}
goto L9999;
}
/* **********************************************************************
*/
/* DESALLOCATION */
/* **********************************************************************
*/
L9900:
if (iofst != 0) {
anAdvApp2Var_SysBase.mcrdelt_(&c__8, &ksize, tbaux, &iofst, &ier);
}
if (ier > 0) {
*iercod = 13;
}
/* ------------------------------ The end -------------------------------
*/
L9999:
if (*iercod > 0) {
AdvApp2Var_SysBase::maermsg_("MMFMCAR", iercod, 7L);
}
if (ibb >= 2) {
AdvApp2Var_SysBase::mgsomsg_("MMFMCAR", 7L);
}
return 0;
} /* mmfmcar_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmfmcb5_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmfmcb5_(integer *isenmsc,
integer *ndimax,
integer *ncf1mx,
doublereal *courb1,
integer *ncoeff,
integer *ncf2mx,
integer *ndimen,
doublereal *courb2,
integer *iercod)
{
/* System generated locals */
integer courb1_dim1, courb1_offset, courb2_dim1, courb2_offset, i__1,
i__2;
/* Local variables */
integer i__, nboct, nd;
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Reformating (and eventual compression/decompression) of curve */
/* (ndim,.) by (.,ndim) and vice versa. */
/* KEYWORDS : */
/* ----------- */
/* ALL , MATH_ACCES :: */
/* COURBE&, REORGANISATION,COMPRESSION,INVERSION , &COURBE */
/* INPUT ARGUMENTS : */
/* -------------------- */
/* ISENMSC : required direction of the transfer : */
/* 1 : passage of (NDIMEN,.) ---> (.,NDIMEN) direction to AB
*/
/* -1 : passage of (.,NDIMEN) ---> (NDIMEN,.) direction to TS,T
V*/
/* NDIMAX : format / dimension */
/* NCF1MX : format by t of COURB1 */
/* if ISENMSC= 1 : COURB1: The curve to be processed (NDIMAX,.) */
/* NCOEFF : number of coeff of the curve */
/* NCF2MX : format by t of COURB2 */
/* NDIMEN : dimension of the curve and format of COURB2 */
/* if ISENMSC=-1 : COURB2: The curve to be processed (.,NDIMEN) */
/* OUTPUT ARGUMENTS : */
/* --------------------- */
/* if ISENMSC= 1 : COURB2: The resulting curve (.,NDIMEN) */
/* if ISENMSC=-1 : COURB1: The resulting curve (NDIMAX,.) */
/* COMMONS USED : */
/* ------------------ */
/* REFERENCES CALLED : */
/* --------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* allow to process the usual transfers as follows : */
/* | ---- ISENMSC = 1 ---- | | ---- ISENMSC =-1 ----- | */
/* TS (3,21) --> (21,3) AB ; AB (21,3) --> (3,21) TS */
/* TS (3,21) --> (NU,3) AB ; AB (NU,3) --> (3,21) TS */
/* (3,NU) --> (21,3) AB ; AB (21,3) --> (3,NU) */
/* (3,NU) --> (NU,3) AB ; AB (NU,3) --> (3,NU) */
/* > */
/* ***********************************************************************
*/
/* Parameter adjustments */
courb1_dim1 = *ndimax;
courb1_offset = courb1_dim1 + 1;
courb1 -= courb1_offset;
courb2_dim1 = *ncf2mx;
courb2_offset = courb2_dim1 + 1;
courb2 -= courb2_offset;
/* Function Body */
if (*ndimen > *ndimax || *ncoeff > *ncf1mx || *ncoeff > *ncf2mx) {
goto L9119;
}
if (*ndimen == 1 && *ncf1mx == *ncf2mx) {
nboct = *ncf2mx << 3;
if (*isenmsc == 1) {
AdvApp2Var_SysBase::mcrfill_(&nboct,
&courb1[courb1_offset],
&courb2[courb2_offset]);
}
if (*isenmsc == -1) {
AdvApp2Var_SysBase::mcrfill_(&nboct,
&courb2[courb2_offset],
&courb1[courb1_offset]);
}
*iercod = -3136;
goto L9999;
}
*iercod = 0;
if (*isenmsc == 1) {
i__1 = *ndimen;
for (nd = 1; nd <= i__1; ++nd) {
i__2 = *ncoeff;
for (i__ = 1; i__ <= i__2; ++i__) {
courb2[i__ + nd * courb2_dim1] = courb1[nd + i__ *
courb1_dim1];
/* L400: */
}
/* L500: */
}
} else if (*isenmsc == -1) {
i__1 = *ndimen;
for (nd = 1; nd <= i__1; ++nd) {
i__2 = *ncoeff;
for (i__ = 1; i__ <= i__2; ++i__) {
courb1[nd + i__ * courb1_dim1] = courb2[i__ + nd *
courb2_dim1];
/* L1400: */
}
/* L1500: */
}
} else {
*iercod = 3164;
}
goto L9999;
/* ***********************************************************************
*/
L9119:
*iercod = 3119;
L9999:
if (*iercod != 0) {
AdvApp2Var_SysBase::maermsg_("MMFMCB5", iercod, 7L);
}
return 0;
} /* mmfmcb5_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmfmtb1_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmfmtb1_(integer *maxsz1,
doublereal *table1,
integer *isize1,
integer *jsize1,
integer *maxsz2,
doublereal *table2,
integer *isize2,
integer *jsize2,
integer *iercod)
{
integer c__8 = 8;
/* System generated locals */
integer table1_dim1, table1_offset, table2_dim1, table2_offset, i__1,
i__2;
/* Local variables */
doublereal* work = 0;
integer ilong, isize, ii, jj, ier = 0;
intptr_t iofst = 0,iipt, jjpt;
/************************************************************************
*******/
/* FUNCTION : */
/* ---------- */
/* Inversion of elements of a rectangular table (T1(i,j) */
/* loaded in T2(j,i)) */
/* KEYWORDS : */
/* ----------- */
/* ALL, MATH_ACCES :: TABLEAU&, INVERSION, &TABLEAU */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* MAXSZ1: Max Nb of elements by the 1st dimension of TABLE1. */
/* TABLE1: Table of reals by two dimensions. */
/* ISIZE1: Nb of useful elements of TABLE1 on the 1st dimension */
/* JSIZE1: Nb of useful elements of TABLE1 on the 2nd dimension */
/* MAXSZ2: Nb max of elements by the 1st dimension of TABLE2. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* TABLE2: Table of reals by two dimensions, containing the transposition */
/* of the rectangular table TABLE1. */
/* ISIZE2: Nb of useful elements of TABLE2 on the 1st dimension */
/* JSIZE2: Nb of useful elements of TABLE2 on the 2nd dimension */
/* IERCOD: Erroe coder. */
/* = 0, ok. */
/* = 1, error in the dimension of tables */
/* ether MAXSZ1 < ISIZE1 (table TABLE1 too small). */
/* or MAXSZ2 < JSIZE1 (table TABLE2 too small). */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ---------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* It is possible to use TABLE1 as input and output table i.e. */
/* call: */
/* CALL MMFMTB1(MAXSZ1,TABLE1,ISIZE1,JSIZE1,MAXSZ2,TABLE1 */
/* ,ISIZE2,JSIZE2,IERCOD) */
/* is valuable. */
/* > */
/* **********************************************************************
*/
/* Parameter adjustments */
table1_dim1 = *maxsz1;
table1_offset = table1_dim1 + 1;
table1 -= table1_offset;
table2_dim1 = *maxsz2;
table2_offset = table2_dim1 + 1;
table2 -= table2_offset;
AdvApp2Var_SysBase anAdvApp2Var_SysBase;
/* Function Body */
*iercod = 0;
if (*isize1 > *maxsz1 || *jsize1 > *maxsz2) {
goto L9100;
}
iofst = 0;
isize = *maxsz2 * *isize1;
anAdvApp2Var_SysBase.mcrrqst_(&c__8, &isize, work, &iofst, &ier);
if (ier > 0) {
goto L9200;
}
/* DO NOT BE AFRAID OF CRUSHING. */
i__1 = *isize1;
for (ii = 1; ii <= i__1; ++ii) {
iipt = (ii - 1) * *maxsz2 + iofst;
i__2 = *jsize1;
for (jj = 1; jj <= i__2; ++jj) {
jjpt = iipt + (jj - 1);
work[jjpt] = table1[ii + jj * table1_dim1];
/* L200: */
}
/* L100: */
}
ilong = isize << 3;
AdvApp2Var_SysBase::mcrfill_(&ilong,
&work[iofst],
&table2[table2_offset]);
/* -------------- The number of elements of TABLE2 is returned ------------
*/
ii = *isize1;
*isize2 = *jsize1;
*jsize2 = ii;
goto L9999;
/* ------------------------------- THE END ------------------------------
*/
/* --> Invalid input. */
L9100:
*iercod = 1;
goto L9999;
/* --> Pb of allocation. */
L9200:
*iercod = 2;
goto L9999;
L9999:
if (iofst != 0) {
anAdvApp2Var_SysBase.mcrdelt_(&c__8, &isize, work, &iofst, &ier);
}
if (ier > 0) {
*iercod = 2;
}
return 0;
} /* mmfmtb1_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmgaus1_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmgaus1_(integer *ndimf,
int (*bfunx) (
integer *ninteg,
doublereal *parame,
doublereal *vfunj1,
integer *iercod
),
integer *k,
doublereal *xd,
doublereal *xf,
doublereal *saux1,
doublereal *saux2,
doublereal *somme,
integer *niter,
integer *iercod)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer ndeg;
doublereal h__[20];
integer j;
doublereal t, u[20], x;
integer idimf;
doublereal c1x, c2x;
/* **********************************************************************
*/
/* FUNCTION : */
/* -------- */
/* Calculate the integral of function BFUNX passed in parameter */
/* between limits XD and XF . */
/* The function should be calculated for any value */
/* of the variable in the given interval.. */
/* The method GAUSS-LEGENDRE is used. */
/* For explications refer to the book : */
/* Complements de mathematiques a l'usage des Ingenieurs de */
/* l'electrotechnique et des telecommunications. */
/* Par Andre ANGOT - Collection technique et scientifique du CNET
*/
/* page 772 .... */
/* The degree of LEGENDRE polynoms used is passed in parameter.
*/
/* KEYWORDS : */
/* --------- */
/* INTEGRATION,LEGENDRE,GAUSS */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIMF : Dimension of the function */
/* BFUNX : Function to integrate passed as argument */
/* Should be declared as EXTERNAL in the call routine. */
/* SUBROUTINE BFUNX(NDIMF,X,VAL,IER) */
/* REAL *8 X,VAL */
/* K : Parameter determining the degree of the LEGENDRE polynom that
*/
/* can take a value between 0 and 10. */
/* The degree of the polynom is equal to 4 k, that is 4, 8,
*/
/* 12, 16, 20, 24, 28, 32, 36 and 40. */
/* If K is not correct, the degree is set to 40 directly.
*/
/* XD : Lower limit of the interval of integration. */
/* XF : Upper limit of the interval of integration. */
/* SAUX1 : Auxiliary table */
/* SAUX2 : Auxiliary table */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* SOMME : Value of the integral */
/* NITER : Number of iterations to be carried out. */
/* It is equal to the degree of the polynom. */
/* IER : Error code : */
/* < 0 ==> Attention - Warning */
/* = 0 ==> Everything is OK */
/* > 0 ==> Critical error - Apply special processing */
/* ==> Error in the calculation of BFUNX (return code */
/* of this routine */
/* If error => SUM = 0 */
/* COMMONS USED : */
/* ----------------- */
/* REFERENCES CALLED : */
/* ---------------------- */
/* Type Name */
/* @ BFUNX MVGAUS0 */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* --------------------------------- */
/* See the explanations detailed in the listing */
/* Use of the GAUSS method (orthogonal polynoms) */
/* The symmetry of roots of these polynomes is used */
/* Depending on K, the degree of the interpolated polynom grows.
*/
/* If you wish to calculate the integral with a given precision, */
/* loop on k varying from 1 to 10 and test the difference of 2
*/
/* consecutive iterations. Stop the loop if this difference is less that */
/* an epsilon value set to 10E-6 for example. */
/* If S1 and S2 are 2 successive iterations, test following this example :
*/
/* AF=DABS(S1-S2) */
/* AS=DABS(S2) */
/* If AS < 1 test if FS < eps otherwise test if AF/AS < eps
*/
/* -- ----- ----- */
/* > */
/************************************************************************
******/
/* DECLARATIONS */
/************************************************************************
******/
/* ****** General Initialization */
/* Parameter adjustments */
--somme;
--saux2;
--saux1;
/* Function Body */
AdvApp2Var_SysBase::mvriraz_(ndimf,
&somme[1]);
*iercod = 0;
/* ****** Loading of coefficients U and H ** */
/* -------------------------------------------- */
mvgaus0_(k, u, h__, &ndeg, iercod);
if (*iercod > 0) {
goto L9999;
}
/* ****** C1X => Medium interval point [XD,XF] */
/* ****** C2X => 1/2 amplitude interval [XD,XF] */
c1x = (*xf + *xd) * .5;
c2x = (*xf - *xd) * .5;
/* ---------------------------------------- */
/* ****** Integration for degree NDEG ** */
/* ---------------------------------------- */
i__1 = ndeg;
for (j = 1; j <= i__1; ++j) {
t = c2x * u[j - 1];
x = c1x + t;
(*bfunx)(ndimf, &x, &saux1[1], iercod);
if (*iercod != 0) {
goto L9999;
}
x = c1x - t;
(*bfunx)(ndimf, &x, &saux2[1], iercod);
if (*iercod != 0) {
goto L9999;
}
i__2 = *ndimf;
for (idimf = 1; idimf <= i__2; ++idimf) {
somme[idimf] += h__[j - 1] * (saux1[idimf] + saux2[idimf]);
}
}
*niter = ndeg << 1;
i__1 = *ndimf;
for (idimf = 1; idimf <= i__1; ++idimf) {
somme[idimf] *= c2x;
}
/* ****** End of sub-program ** */
L9999:
return 0 ;
} /* mmgaus1_ */
//=======================================================================
//function : mmherm0_
//purpose :
//=======================================================================
int mmherm0_(doublereal *debfin,
integer *iercod)
{
integer c__576 = 576;
integer c__6 = 6;
/* System generated locals */
integer i__1, i__2;
doublereal d__1;
/* Local variables */
doublereal amat[36] /* was [6][6] */;
integer iord[2];
doublereal prod;
integer iord1, iord2;
doublereal miden[36] /* was [6][6] */;
integer ncmat;
doublereal epspi, d1, d2;
integer ii, jj, pp, ncf;
doublereal cof[6];
integer iof[2], ier;
doublereal mat[36] /* was [6][6] */;
integer cot;
doublereal abid[72] /* was [12][6] */;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* INIT OF COEFFS. OF POLYNOMS OF HERMIT INTERPOLATION */
/* KEYWORDS : */
/* ----------- */
/* MATH_ACCES :: HERMITE */
/* INPUT ARGUMENTS */
/* -------------------- */
/* DEBFIN : PARAMETERS DEFINING THE CONSTRAINTS */
/* DEBFIN(1) : FIRST PARAMETER */
/* DEBFIN(2) : SECOND PARAMETER */
/* ONE SHOULD HAVE: */
/* ABS (DEBFIN(I)) < 100 */
/* and */
/* (ABS(DEBFIN(1)+ABS(DEBFIN(2))) > 1/100 */
/* (for overflows) */
/* ABS(DEBFIN(2)-DEBFIN(1)) / (ABS(DEBFIN(1)+ABS(DEBFIN(2))) > 1/100
*/
/* (for the conditioning) */
/* OUTPUT ARGUMENTS : */
/* --------------------- */
/* IERCOD : Error code : 0 : O.K. */
/* 1 : value of DEBFIN */
/* are unreasonable */
/* -1 : init was already done */
/* (OK but no processing) */
/* COMMONS USED : */
/* ------------------ */
/* REFERENCES CALLED : */
/* ---------------------- */
/* Type Name */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* This program initializes the coefficients of Hermit polynoms */
/* that are read later by MMHERM1 */
/* ***********************************************************************
*/
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Used to STORE coefficients of Hermit interpolation polynoms */
/* KEYWORDS : */
/* ----------- */
/* HERMITE */
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* The coefficients of hermit polynoms are calculated by */
/* the routine MMHERM0 and read by the routine MMHERM1 */
/* > */
/* **********************************************************************
*/
/* NBCOEF is the size of CMHERM (see below) */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* Data checking */
/* ***********************************************************************
*/
/* Parameter adjustments */
--debfin;
/* Function Body */
d1 = advapp_abs(debfin[1]);
if (d1 > (float)100.) {
goto L9101;
}
d2 = advapp_abs(debfin[2]);
if (d2 > (float)100.) {
goto L9101;
}
d2 = d1 + d2;
if (d2 < (float).01) {
goto L9101;
}
d1 = (d__1 = debfin[2] - debfin[1], advapp_abs(d__1));
if (d1 / d2 < (float).01) {
goto L9101;
}
/* ***********************************************************************
*/
/* Initialization */
/* ***********************************************************************
*/
*iercod = 0;
epspi = 1e-10;
/* ***********************************************************************
*/
/* IS IT ALREADY INITIALIZED ? */
d1 = advapp_abs(debfin[1]) + advapp_abs(debfin[2]);
d1 *= 16111959;
if (debfin[1] != mmcmher_.tdebut) {
goto L100;
}
if (debfin[2] != mmcmher_.tfinal) {
goto L100;
}
if (d1 != mmcmher_.verifi) {
goto L100;
}
goto L9001;
/* ***********************************************************************
*/
/* CALCULATION */
/* ***********************************************************************
*/
L100:
/* Init. matrix identity : */
ncmat = 36;
AdvApp2Var_SysBase::mvriraz_(&ncmat,
miden);
for (ii = 1; ii <= 6; ++ii) {
miden[ii + ii * 6 - 7] = 1.;
/* L110: */
}
/* Init to 0 of table CMHERM */
AdvApp2Var_SysBase::mvriraz_(&c__576, mmcmher_.cmherm);
/* Calculation by solution of linear systems */
for (iord1 = -1; iord1 <= 2; ++iord1) {
for (iord2 = -1; iord2 <= 2; ++iord2) {
iord[0] = iord1;
iord[1] = iord2;
iof[0] = 0;
iof[1] = iord[0] + 1;
ncf = iord[0] + iord[1] + 2;
/* Calculate matrix MAT to invert: */
for (cot = 1; cot <= 2; ++cot) {
if (iord[cot - 1] > -1) {
prod = 1.;
i__1 = ncf;
for (jj = 1; jj <= i__1; ++jj) {
cof[jj - 1] = 1.;
/* L200: */
}
}
i__1 = iord[cot - 1] + 1;
for (pp = 1; pp <= i__1; ++pp) {
ii = pp + iof[cot - 1];
prod = 1.;
i__2 = pp - 1;
for (jj = 1; jj <= i__2; ++jj) {
mat[ii + jj * 6 - 7] = (float)0.;
/* L300: */
}
i__2 = ncf;
for (jj = pp; jj <= i__2; ++jj) {
/* everything is done in these 3 lines
*/
mat[ii + jj * 6 - 7] = cof[jj - 1] * prod;
cof[jj - 1] *= jj - pp;
prod *= debfin[cot];
/* L400: */
}
/* L500: */
}
/* L1000: */
}
/* Inversion */
if (ncf >= 1) {
AdvApp2Var_MathBase::mmmrslwd_(&c__6, &ncf, &ncf, mat, miden, &epspi, abid, amat, &
ier);
if (ier > 0) {
goto L9101;
}
}
for (cot = 1; cot <= 2; ++cot) {
i__1 = iord[cot - 1] + 1;
for (pp = 1; pp <= i__1; ++pp) {
i__2 = ncf;
for (ii = 1; ii <= i__2; ++ii) {
mmcmher_.cmherm[ii + (pp + (cot + ((iord1 + (iord2 <<
2)) << 1)) * 3) * 6 + 155] = amat[ii + (pp +
iof[cot - 1]) * 6 - 7];
/* L1300: */
}
/* L1400: */
}
/* L1500: */
}
/* L2000: */
}
/* L2010: */
}
/* ***********************************************************************
*/
/* The initialized flag is located: */
mmcmher_.tdebut = debfin[1];
mmcmher_.tfinal = debfin[2];
d1 = advapp_abs(debfin[1]) + advapp_abs(debfin[2]);
mmcmher_.verifi = d1 * 16111959;
/* ***********************************************************************
*/
goto L9999;
/* ***********************************************************************
*/
L9101:
*iercod = 1;
goto L9999;
L9001:
*iercod = -1;
goto L9999;
/* ***********************************************************************
*/
L9999:
AdvApp2Var_SysBase::maermsg_("MMHERM0", iercod, 7L);
/* ***********************************************************************
*/
return 0 ;
} /* mmherm0_ */
//=======================================================================
//function : mmherm1_
//purpose :
//=======================================================================
int mmherm1_(doublereal *debfin,
integer *ordrmx,
integer *iordre,
doublereal *hermit,
integer *iercod)
{
/* System generated locals */
integer hermit_dim1, hermit_dim2, hermit_offset;
/* Local variables */
integer nbval;
doublereal d1;
integer cot;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* reading of coeffs. of HERMIT interpolation polynoms */
/* KEYWORDS : */
/* ----------- */
/* MATH_ACCES :: HERMIT */
/* INPUT ARGUMENTS : */
/* -------------------- */
/* DEBFIN : PARAMETES DEFINING THE CONSTRAINTS */
/* DEBFIN(1) : FIRST PARAMETER */
/* DEBFIN(2) : SECOND PARAMETER */
/* Should be equal to the corresponding arguments during the */
/* last call to MMHERM0 for the initialization of coeffs. */
/* ORDRMX : indicates the dimensioning of HERMIT: */
/* there is no choice : ORDRMX should be equal to the value */
/* of PARAMETER IORDMX of INCLUDE MMCMHER, or 2 for the moment */
/* IORDRE (2) : Orders of constraints in each corresponding parameter DEBFIN(I) */
/* should be between -1 (no constraints) and ORDRMX. */
/* OUTPUT ARGUMENTS : */
/* --------------------- */
/* HERMIT : HERMIT(1:IORDRE(1)+IORDRE(2)+2, j, cote) are the */
/* coefficients in the canonic base of Hermit polynom */
/* corresponding to orders IORDRE with parameters DEBFIN for */
/* the constraint of order j on DEBFIN(cote). j is between 0 and IORDRE(cote). */
/* IERCOD : Error code : */
/* -1: O.K but necessary to reinitialize the coefficients */
/* (info for optimization) */
/* 0 : O.K. */
/* 1 : Error in MMHERM0 */
/* 2 : arguments invalid */
/* COMMONS USED : */
/* ------------------ */
/* REFERENCES CALLED : */
/* ---------------------- */
/* Type Name */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* This program reads coefficients of Hermit polynoms */
/* that were earlier initialized by MMHERM0 */
/* PMN : initialisation is no more done by the caller. */
/* ***********************************************************************
*/
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Serves to STORE the coefficients of Hermit interpolation polynoms */
/* KEYWORDS : */
/* ----------- */
/* HERMITE */
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* the coefficients of Hetmit polynoms are calculated by */
/* routine MMHERM0 and read by routine MMHERM1 */
/* > */
/* **********************************************************************
*/
/* NBCOEF is the size of CMHERM (see lower) */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* Initializations */
/* ***********************************************************************
*/
/* Parameter adjustments */
--debfin;
hermit_dim1 = (*ordrmx << 1) + 2;
hermit_dim2 = *ordrmx + 1;
hermit_offset = hermit_dim1 * hermit_dim2 + 1;
hermit -= hermit_offset;
--iordre;
/* Function Body */
*iercod = 0;
/* ***********************************************************************
*/
/* Data Checking */
/* ***********************************************************************
*/
if (*ordrmx != 2) {
goto L9102;
}
for (cot = 1; cot <= 2; ++cot) {
if (iordre[cot] < -1) {
goto L9102;
}
if (iordre[cot] > *ordrmx) {
goto L9102;
}
/* L100: */
}
/* IS-IT CORRECTLY INITIALIZED ? */
d1 = advapp_abs(debfin[1]) + advapp_abs(debfin[2]);
d1 *= 16111959;
/* OTHERWISE IT IS INITIALIZED */
if (debfin[1] != mmcmher_.tdebut || debfin[2] != mmcmher_.tfinal || d1
!= mmcmher_.verifi) {
*iercod = -1;
mmherm0_(&debfin[1], iercod);
if (*iercod > 0) {
goto L9101;
}
}
/* ***********************************************************************
*/
/* READING */
/* ***********************************************************************
*/
nbval = 36;
AdvApp2Var_SysBase::msrfill_(&nbval, &mmcmher_.cmherm[((((iordre[1] + (iordre[2] << 2)) << 1)
+ 1) * 3 + 1) * 6 + 156], &hermit[hermit_offset]);
/* ***********************************************************************
*/
goto L9999;
/* ***********************************************************************
*/
L9101:
*iercod = 1;
goto L9999;
L9102:
*iercod = 2;
goto L9999;
/* ***********************************************************************
*/
L9999:
AdvApp2Var_SysBase::maermsg_("MMHERM1", iercod, 7L);
/* ***********************************************************************
*/
return 0 ;
} /* mmherm1_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmhjcan_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmhjcan_(integer *ndimen,
integer *ncourb,
integer *ncftab,
integer *orcont,
integer *ncflim,
doublereal *tcbold,
doublereal *tdecop,
doublereal *tcbnew,
integer *iercod)
{
integer c__2 = 2;
integer c__21 = 21;
/* System generated locals */
integer tcbold_dim1, tcbold_dim2, tcbold_offset, tcbnew_dim1, tcbnew_dim2,
tcbnew_offset, i__1, i__2, i__3, i__4, i__5;
/* Local variables */
logical ldbg;
integer ndeg;
doublereal taux1[21];
integer d__, e, i__, k;
doublereal mfact;
integer ncoeff;
doublereal tjacap[21];
integer iordre[2];
doublereal hermit[36]/* was [6][3][2] */, ctenor, bornes[2];
integer ier;
integer aux1, aux2;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* CONVERSION OF TABLE TCBOLD OF POLYNOMIAL CURVE COEFFICIENTS */
/* EXPRESSED IN HERMIT JACOBI BASE, INTO A */
/* TABLE OF COEFFICIENTS TCBNEW OF COURVES EXPRESSED IN THE CANONIC BASE */
/* KEYWORDS : */
/* ----------- */
/* CANNONIC, HERMIT, JACCOBI */
/* INPUT ARGUMENTS : */
/* -------------------- */
/* ORDHER : ORDER OF HERMIT POLYNOMS OR ORDER OF CONTINUITY */
/* NCOEFS : NUMBER OF COEFFICIENTS OF A POLYNOMIAL CURVE */
/* FOR ONE OF ITS NDIM COMPONENTS;(DEGREE+1 OF THE CURVE)
*/
/* NDIM : DIMENSION OF THE CURVE */
/* CBHEJA : TABLE OF COEFFICIENTS OF THE CURVE IN THE BASE */
/* HERMIT JACOBI */
/* (H(0,-1),..,H(ORDHER,-1),H(0,1),..,H(ORDHER,1), */
/* JA(ORDHER+1,2*ORDHER+2),....,JA(ORDHER+1,NCOEFS-1) */
/* OUTPUT ARGUMENTS : */
/* --------------------- */
/* CBRCAN : TABLE OF COEFFICIENTS OF THE CURVE IN THE CANONIC BASE */
/* (1, t, ...) */
/* COMMONS USED : */
/* ------------------ */
/* REFERENCES CALLED : */
/* --------------------- */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Providesinteger constants from 0 to 1000 */
/* KEYWORDS : */
/* ----------- */
/* ALL, INTEGER */
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* INITIALIZATION */
/* ***********************************************************************
*/
/* Parameter adjustments */
--ncftab;
tcbnew_dim1 = *ndimen;
tcbnew_dim2 = *ncflim;
tcbnew_offset = tcbnew_dim1 * (tcbnew_dim2 + 1) + 1;
tcbnew -= tcbnew_offset;
tcbold_dim1 = *ndimen;
tcbold_dim2 = *ncflim;
tcbold_offset = tcbold_dim1 * (tcbold_dim2 + 1) + 1;
tcbold -= tcbold_offset;
/* Function Body */
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 2;
if (ldbg) {
AdvApp2Var_SysBase::mgenmsg_("MMHJCAN", 7L);
}
*iercod = 0;
bornes[0] = -1.;
bornes[1] = 1.;
/* ***********************************************************************
*/
/* PROCESSING */
/* ***********************************************************************
*/
if (*orcont > 2) {
goto L9101;
}
if (*ncflim > 21) {
goto L9101;
}
/* CALCULATION OF HERMIT POLYNOMS IN THE CANONIC BASE ON (-1,1) */
iordre[0] = *orcont;
iordre[1] = *orcont;
mmherm1_(bornes, &c__2, iordre, hermit, &ier);
if (ier > 0) {
goto L9102;
}
aux1 = *orcont + 1;
aux2 = aux1 << 1;
i__1 = *ncourb;
for (e = 1; e <= i__1; ++e) {
ctenor = (tdecop[e] - tdecop[e - 1]) / 2;
ncoeff = ncftab[e];
ndeg = ncoeff - 1;
if (ncoeff > 21) {
goto L9101;
}
i__2 = *ndimen;
for (d__ = 1; d__ <= i__2; ++d__) {
/* CONVERSION OF THE COEFFICIENTS OF THE PART OF THE CURVE EXPRESSED */
/* IN HERMIT BASE, INTO THE CANONIC BASE */
AdvApp2Var_SysBase::mvriraz_(&ncoeff, taux1);
i__3 = aux2;
for (k = 1; k <= i__3; ++k) {
i__4 = aux1;
for (i__ = 1; i__ <= i__4; ++i__) {
i__5 = i__ - 1;
mfact = AdvApp2Var_MathBase::pow__di(&ctenor, &i__5);
taux1[k - 1] += (tcbold[d__ + (i__ + e * tcbold_dim2) *
tcbold_dim1] * hermit[k + (i__ + 2) * 6 - 19] +
tcbold[d__ + (i__ + aux1 + e * tcbold_dim2) *
tcbold_dim1] * hermit[k + (i__ + 5) * 6 - 19]) *
mfact;
}
}
i__3 = ncoeff;
for (i__ = aux2 + 1; i__ <= i__3; ++i__) {
taux1[i__ - 1] = tcbold[d__ + (i__ + e * tcbold_dim2) *
tcbold_dim1];
}
/* CONVERSION OF THE COEFFICIENTS OF THE PART OF THE CURVE EXPRESSED */
/* IN CANONIC-JACOBI BASE, INTO THE CANONIC BASE */
AdvApp2Var_MathBase::mmapcmp_(&minombr_.nbr[1], &c__21, &ncoeff, taux1, tjacap);
AdvApp2Var_MathBase::mmjacan_(orcont, &ndeg, tjacap, taux1);
/* RECOPY THE COEFS RESULTING FROM THE CONVERSION IN THE TABLE */
/* OF RESULTS */
i__3 = ncoeff;
for (i__ = 1; i__ <= i__3; ++i__) {
tcbnew[d__ + (i__ + e * tcbnew_dim2) * tcbnew_dim1] = taux1[
i__ - 1];
}
}
}
goto L9999;
/* ***********************************************************************
*/
/* PROCESSING OF ERRORS */
/* ***********************************************************************
*/
L9101:
*iercod = 1;
goto L9999;
L9102:
*iercod = 2;
goto L9999;
/* ***********************************************************************
*/
/* RETURN CALLING PROGRAM */
/* ***********************************************************************
*/
L9999:
AdvApp2Var_SysBase::maermsg_("MMHJCAN", iercod, 7L);
if (ldbg) {
AdvApp2Var_SysBase::mgsomsg_("MMHJCAN", 7L);
}
return 0 ;
} /* mmhjcan_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mminltt_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mminltt_(integer *ncolmx,
integer *nlgnmx,
doublereal *tabtri,
integer *nbrcol,
integer *nbrlgn,
doublereal *ajoute,
doublereal *,//epseg,
integer *iercod)
{
/* System generated locals */
integer tabtri_dim1, tabtri_offset, i__1, i__2;
/* Local variables */
logical idbg;
integer icol, ilgn, nlgn, noct, inser;
doublereal epsega = 0.;
integer ibb;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* . Insert a line in a table parsed without redundance */
/* KEYWORDS : */
/* ----------- */
/* TOUS,MATH_ACCES :: TABLEAU&,INSERTION,&TABLEAU */
/* INPUT ARGUMENTS : */
/* -------------------- */
/* . NCOLMX : Number of columns in the table */
/* . NLGNMX : Number of lines in the table */
/* . TABTRI : Table parsed by lines without redundances */
/* . NBRCOL : Number of columns used */
/* . NBRLGN : Number of lines used */
/* . AJOUTE : Line to be added */
/* . EPSEGA : Epsilon to test the redundance */
/* OUTPUT ARGUMENTS : */
/* --------------------- */
/* . TABTRI : Table parsed by lines without redundances */
/* . NBRLGN : Number of lines used */
/* . IERCOD : 0 -> No problem */
/* 1 -> The table is full */
/* COMMONS USED : */
/* ------------------ */
/* REFERENCES CALLED : */
/* --------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* . The line is inserted only if there is no line with all
*/
/* elements equl to those which are planned to be insered, to epsilon. */
/* . Level of de debug = 3 */
/**/
/* DECLARATIONS , CONTROL OF INPUT ARGUMENTS , INITIALIZATION */
/* ***********************************************************************
*/
/* --- Parameters */
/* --- Functions */
/* --- Local variables */
/* --- Messages */
/* Parameter adjustments */
tabtri_dim1 = *ncolmx;
tabtri_offset = tabtri_dim1 + 1;
tabtri -= tabtri_offset;
--ajoute;
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
idbg = ibb >= 3;
if (idbg) {
AdvApp2Var_SysBase::mgenmsg_("MMINLTT", 7L);
}
/* --- Control arguments */
if (*nbrlgn >= *nlgnmx) {
goto L9001;
}
/* -------------------- */
/* *** INITIALIZATION */
/* -------------------- */
*iercod = 0;
/* ---------------------------- */
/* *** SEARCH OF REDUNDANCE */
/* ---------------------------- */
i__1 = *nbrlgn;
for (ilgn = 1; ilgn <= i__1; ++ilgn) {
if (tabtri[ilgn * tabtri_dim1 + 1] >= ajoute[1] - epsega) {
if (tabtri[ilgn * tabtri_dim1 + 1] <= ajoute[1] + epsega) {
i__2 = *nbrcol;
for (icol = 1; icol <= i__2; ++icol) {
if (tabtri[icol + ilgn * tabtri_dim1] < ajoute[icol] -
epsega || tabtri[icol + ilgn * tabtri_dim1] >
ajoute[icol] + epsega) {
goto L20;
}
/* L10: */
}
goto L9999;
} else {
goto L30;
}
}
L20:
;
}
/* ----------------------------------- */
/* *** SEARCH OF THE INSERTION POINT */
/* ----------------------------------- */
L30:
i__1 = *nbrlgn;
for (ilgn = 1; ilgn <= i__1; ++ilgn) {
i__2 = *nbrcol;
for (icol = 1; icol <= i__2; ++icol) {
if (tabtri[icol + ilgn * tabtri_dim1] < ajoute[icol]) {
goto L50;
}
if (tabtri[icol + ilgn * tabtri_dim1] > ajoute[icol]) {
goto L70;
}
/* L60: */
}
L50:
;
}
ilgn = *nbrlgn + 1;
/* -------------- */
/* *** INSERTION */
/* -------------- */
L70:
inser = ilgn;
++(*nbrlgn);
/* --- Shift lower */
nlgn = *nbrlgn - inser;
if (nlgn > 0) {
noct = (*ncolmx << 3) * nlgn;
AdvApp2Var_SysBase::mcrfill_(&noct,
&tabtri[inser * tabtri_dim1 + 1],
&tabtri[(inser + 1)* tabtri_dim1 + 1]);
}
/* --- Copy line */
noct = *nbrcol << 3;
AdvApp2Var_SysBase::mcrfill_(&noct,
&ajoute[1],
&tabtri[inser * tabtri_dim1 + 1]);
goto L9999;
/* ******************************************************************** */
/* OUTPUT ERROR , RETURN CALLING PROGRAM , MESSAGES */
/* ******************************************************************** */
/* --- The table is already full */
L9001:
*iercod = 1;
/* --- End */
L9999:
if (*iercod != 0) {
AdvApp2Var_SysBase::maermsg_("MMINLTT", iercod, 7L);
}
if (idbg) {
AdvApp2Var_SysBase::mgsomsg_("MMINLTT", 7L);
}
return 0 ;
} /* mminltt_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmjacan_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmjacan_(const integer *ideriv,
integer *ndeg,
doublereal *poljac,
doublereal *polcan)
{
/* System generated locals */
integer poljac_dim1, i__1, i__2;
/* Local variables */
integer iptt, i__, j, ibb;
doublereal bid;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Routine of transfer of Jacobi normalized to canonic [-1,1], */
/* the tables are ranked by even, then by uneven degree. */
/* KEYWORDS : */
/* ----------- */
/* LEGENDRE,JACOBI,PASSAGE. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* IDERIV : Order of Jacobi between -1 and 2. */
/* NDEG : The true degree of the polynom. */
/* POLJAC : The polynom in the Jacobi base. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* POLCAN : The curve expressed in the canonic base [-1,1]. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* Name of the routine */
/* Matrices of conversion */
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* MATRIX OF TRANSFORMATION OF LEGENDRE BASE */
/* KEYWORDS : */
/* ----------- */
/* MATH */
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* Legendre common / Restricted Casteljau. */
/* 0:1 0 Concerns the even terms, 1 the uneven terms. */
/* CANPLG : Matrix of passage to canonic from Jacobi with calculated parities */
/* PLGCAN : Matrix of passage from Jacobi to canonic with calculated parities */
/* ***********************************************************************
*/
/* Parameter adjustments */
poljac_dim1 = *ndeg / 2 + 1;
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 5) {
AdvApp2Var_SysBase::mgenmsg_("MMJACAN", 7L);
}
/* ----------------- Expression of terms of even degree ----------------
*/
i__1 = *ndeg / 2;
for (i__ = 0; i__ <= i__1; ++i__) {
bid = 0.;
iptt = i__ * 31 - (i__ + 1) * i__ / 2 + 1;
i__2 = *ndeg / 2;
for (j = i__; j <= i__2; ++j) {
bid += mmjcobi_.plgcan[iptt + j + *ideriv * 992 + 991] * poljac[
j];
/* L310: */
}
polcan[i__ * 2] = bid;
/* L300: */
}
/* --------------- Expression of terms of uneven degree ----------------
*/
if (*ndeg == 0) {
goto L9999;
}
i__1 = (*ndeg - 1) / 2;
for (i__ = 0; i__ <= i__1; ++i__) {
bid = 0.;
iptt = i__ * 31 - (i__ + 1) * i__ / 2 + 1;
i__2 = (*ndeg - 1) / 2;
for (j = i__; j <= i__2; ++j) {
bid += mmjcobi_.plgcan[iptt + j + ((*ideriv << 1) + 1) * 496 +
991] * poljac[j + poljac_dim1];
/* L410: */
}
polcan[(i__ << 1) + 1] = bid;
/* L400: */
}
/* -------------------------------- The end -----------------------------
*/
L9999:
if (ibb >= 5) {
AdvApp2Var_SysBase::mgsomsg_("MMJACAN", 7L);
}
return 0;
} /* mmjacan_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmjaccv_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmjaccv_(const integer *ncoef,
const integer *ndim,
const integer *ider,
const doublereal *crvlgd,
doublereal *polaux,
doublereal *crvcan)
{
/* Initialized data */
static char nomprg[8+1] = "MMJACCV ";
/* System generated locals */
integer crvlgd_dim1, crvlgd_offset, crvcan_dim1, crvcan_offset,
polaux_dim1, i__1, i__2;
/* Local variables */
integer ndeg, i__, nd, ii, ibb;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Passage from the normalized Jacobi base to the canonic base. */
/* KEYWORDS : */
/* ----------- */
/* SMOOTHING, BASE, LEGENDRE */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIM: Space Dimension. */
/* NCOEF: Degree +1 of the polynom. */
/* IDER: Order of Jacobi polynoms. */
/* CRVLGD : Curve in the base of Jacobi. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* POLAUX : Auxilliary space. */
/* CRVCAN : The curve in the canonic base [-1,1] */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* *********************************************************************
*/
/* Name of the routine */
/* Parameter adjustments */
polaux_dim1 = (*ncoef - 1) / 2 + 1;
crvcan_dim1 = *ncoef - 1 + 1;
crvcan_offset = crvcan_dim1;
crvcan -= crvcan_offset;
crvlgd_dim1 = *ncoef - 1 + 1;
crvlgd_offset = crvlgd_dim1;
crvlgd -= crvlgd_offset;
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 3) {
AdvApp2Var_SysBase::mgenmsg_(nomprg, 6L);
}
ndeg = *ncoef - 1;
i__1 = *ndim;
for (nd = 1; nd <= i__1; ++nd) {
/* Loading of the auxilliary table. */
ii = 0;
i__2 = ndeg / 2;
for (i__ = 0; i__ <= i__2; ++i__) {
polaux[i__] = crvlgd[ii + nd * crvlgd_dim1];
ii += 2;
/* L310: */
}
ii = 1;
if (ndeg >= 1) {
i__2 = (ndeg - 1) / 2;
for (i__ = 0; i__ <= i__2; ++i__) {
polaux[i__ + polaux_dim1] = crvlgd[ii + nd * crvlgd_dim1];
ii += 2;
/* L320: */
}
}
/* Call the routine of base change. */
AdvApp2Var_MathBase::mmjacan_(ider, &ndeg, polaux, &crvcan[nd * crvcan_dim1]);
/* L300: */
}
/* L9999: */
return 0;
} /* mmjaccv_ */
//=======================================================================
//function : mmloncv_
//purpose :
//=======================================================================
int mmloncv_(integer *ndimax,
integer *ndimen,
integer *ncoeff,
doublereal *courbe,
doublereal *tdebut,
doublereal *tfinal,
doublereal *xlongc,
integer *iercod)
{
/* Initialized data */
integer kgar = 0;
/* System generated locals */
integer courbe_dim1, courbe_offset, i__1, i__2;
/* Local variables */
doublereal tran;
integer ngaus = 0;
doublereal c1, c2, d1, d2,
wgaus[20] = {0.}, uroot[20] = {0.}, x1, x2, dd;
integer ii, jj, kk;
doublereal som;
doublereal der1, der2;
/* **********************************************************************
*/
/* FUNCTION : Length of an arc of curve on a given interval */
/* ---------- for a function the mathematic representation */
/* which of is a multidimensional polynom. */
/* The polynom is a set of polynoms the coefficients which of are ranked */
/* in a table with 2 indices, each line relative to 1 polynom. */
/* The polynom is defined by its coefficients ordered by increasing
* power of the variable. */
/* All polynoms have the same number of coefficients (and the same degree). */
/* KEYWORDS : LENGTH, CURVE */
/* ----------- */
/* INPUT ARGUMENTS : */
/* -------------------- */
/* NDIMAX : Max number of lines of tables (max number of polynoms). */
/* NDIMEN : Dimension of the polynom (Nomber of polynoms). */
/* NCOEFF : Number of coefficients of the polynom (no limitation) */
/* This is degree + 1 */
/* COURBE : Coefficients of the polynom ordered by increasing power */
/* Dimension to (NDIMAX,NCOEFF). */
/* TDEBUT : Lower limit of integration for length calculation. */
/* TFINAL : Upper limit of integration for length calculation. */
/* OUTPUT ARGUMENTS : */
/* --------------------- */
/* XLONGC : Length of arc of curve */
/* IERCOD : Error code : */
/* = 0 ==> All is OK */
/* = 1 ==> NDIMEN or NCOEFF negative or null */
/* = 2 ==> Pb loading Legendre roots and Gauss weight */
/* by MVGAUS0. */
/* If error => XLONGC = 0 */
/* COMMONS USED : */
/* ------------------ */
/* .Neant. */
/* REFERENCES CALLED : */
/* ---------------------- */
/* Type Name */
/* MAERMSG R*8 DSQRT I*4 MIN */
/* MVGAUS0 */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* See VGAUSS to understand well the technique. */
/* Actually SQRT (dpi^2) is integrated for i=1,nbdime */
/* Calculation of the derivative is included in the code to avoid an additional */
/* call of the routine. */
/* The integrated function is strictly increasing, it */
/* is not necessary to use a high degree for the GAUSS method GAUSS. */
/* The degree of LEGENDRE polynom results from the degree of the */
/* polynom to be integrated. It can vary from 4 to 40 (with step of 4). */
/* The precision (relative) of integration is of order 1.D-8. */
/* ATTENTION : if TDEBUT > TFINAL, the length is NEGATIVE. */
/* Attention : the precision of the result is not controlled. */
/* If you wish to control it, use MMCGLC1, taking into account that */
/* the performance (in time) will be worse. */
/* >=====================================================================
*/
/* ATTENTION : SAVE KGAR WGAUS and UROOT EVENTUALLY */
/* ,IERXV */
/* INTEGER I1,I20 */
/* PARAMETER (I1=1,I20=20) */
/* Parameter adjustments */
courbe_dim1 = *ndimax;
courbe_offset = courbe_dim1 + 1;
courbe -= courbe_offset;
/* Function Body */
/* ****** General initialization ** */
*iercod = 999999;
*xlongc = 0.;
/* ****** Initialization of UROOT, WGAUS, NGAUS and KGAR ** */
/* CALL MXVINIT(IERXV,'INTEGER',I1,KGAR,'INTEGER',I1,NGAUS */
/* 1 ,'DOUBLE PRECISION',I20,UROOT,'DOUBLE PRECISION',I20,WGAUS) */
/* IF (IERXV.GT.0) KGAR=0 */
/* ****** Test the equity of limits ** */
if (*tdebut == *tfinal) {
*iercod = 0;
goto L9900;
}
/* ****** Test the dimension and the number of coefficients ** */
if (*ndimen <= 0 || *ncoeff <= 0) {
*iercod = 1;
goto L9900;
}
/* ****** Calculate the optimal degree ** */
kk = *ncoeff / 4 + 1;
kk = advapp_min(kk,10);
/* ****** Return the coefficients for the integral (DEGRE=4*KK) */
/* if KK <> KGAR. */
if (kk != kgar) {
mvgaus0_(&kk, uroot, wgaus, &ngaus, iercod);
if (*iercod > 0) {
kgar = 0;
*iercod = 2;
goto L9900;
}
kgar = kk;
}
/* C1 => Point medium interval */
/* C2 => 1/2 amplitude interval */
c1 = (*tfinal + *tdebut) * .5;
c2 = (*tfinal - *tdebut) * .5;
/* ----------------------------------------------------------- */
/* ****** Integration - Loop on GAUSS intervals ** */
/* ----------------------------------------------------------- */
som = 0.;
i__1 = ngaus;
for (jj = 1; jj <= i__1; ++jj) {
/* ****** Integration taking the symmetry into account ** */
tran = c2 * uroot[jj - 1];
x1 = c1 + tran;
x2 = c1 - tran;
/* ****** Derivation on the dimension of the space ** */
der1 = 0.;
der2 = 0.;
i__2 = *ndimen;
for (kk = 1; kk <= i__2; ++kk) {
d1 = (*ncoeff - 1) * courbe[kk + *ncoeff * courbe_dim1];
d2 = d1;
for (ii = *ncoeff - 1; ii >= 2; --ii) {
dd = (ii - 1) * courbe[kk + ii * courbe_dim1];
d1 = d1 * x1 + dd;
d2 = d2 * x2 + dd;
/* L100: */
}
der1 += d1 * d1;
der2 += d2 * d2;
/* L200: */
}
/* ****** Integration ** */
som += wgaus[jj - 1] * c2 * (sqrt(der1) + sqrt(der2));
/* ****** End of loop on GAUSS intervals ** */
/* L300: */
}
/* ****** Work ended ** */
*xlongc = som;
/* ****** It is forced IERCOD = 0 ** */
*iercod = 0;
/* ****** Final processing ** */
L9900:
/* ****** Save UROOT, WGAUS, NGAUS and KGAR ** */
/* CALL MXVSAVE(IERXV,'INTEGER',I1,KGAR,'INTEGER',I1,NGAUS */
/* 1 ,'DOUBLE PRECISION',I20,UROOT,'DOUBLE PRECISION',I20,WGAUS) */
/* IF (IERXV.GT.0) KGAR=0 */
/* ****** End of sub-program ** */
if (*iercod != 0) {
AdvApp2Var_SysBase::maermsg_("MMLONCV", iercod, 7L);
}
return 0 ;
} /* mmloncv_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmpobas_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmpobas_(doublereal *tparam,
integer *iordre,
integer *ncoeff,
integer *nderiv,
doublereal *valbas,
integer *iercod)
{
integer c__2 = 2;
integer c__1 = 1;
/* Initialized data */
doublereal moin11[2] = { -1.,1. };
/* System generated locals */
integer valbas_dim1, i__1;
/* Local variables */
doublereal vjacc[80], herm[24];
NCollection_Array1<doublereal> vjac (vjacc[0], 1, 80);
integer iord[2];
doublereal wval[4];
integer nwcof, iunit;
doublereal wpoly[7];
integer ii, jj, iorjac;
doublereal hermit[36] /* was [6][3][2] */;
integer kk1, kk2, kk3;
integer khe, ier;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Position on the polynoms of base hermit-Jacobi */
/* and their succesive derivatives */
/* KEYWORDS : */
/* ----------- */
/* PUBLIC, POSITION, HERMIT, JACOBI */
/* INPUT ARGUMENTS : */
/* -------------------- */
/* TPARAM : Parameter for which the position is found. */
/* IORDRE : Orderof hermit-Jacobi (-1,0,1, ou 2) */
/* NCOEFF : Number of coefficients of polynoms (Nb of value to calculate) */
/* NDERIV : Number of derivative to calculate (0<= N <=3) */
/* 0 -> Position simple on base functions */
/* N -> Position on base functions and derivative */
/* of order 1 to N */
/* OUTPUT ARGUMENTS : */
/* --------------------- */
/* VALBAS (NCOEFF, 0:NDERIV) : calculated value */
/* i */
/* d vj(t) = VALBAS(J, I) */
/* -- i */
/* dt */
/* IERCOD : Error code */
/* 0 : Ok */
/* 1 : Incoherence of input arguments */
/* COMMONS USED : */
/* -------------- */
/* REFERENCES CALLED : */
/* ------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* DECLARATIONS */
/* ***********************************************************************
*/
/* Parameter adjustments */
valbas_dim1 = *ncoeff;
--valbas;
/* Function Body */
/* ***********************************************************************
*/
/* INITIALIZATIONS */
/* ***********************************************************************
*/
*iercod = 0;
/* ***********************************************************************
*/
/* PROCESSING */
/* ***********************************************************************
*/
if (*nderiv > 3) {
goto L9101;
}
if (*ncoeff > 20) {
goto L9101;
}
if (*iordre > 2) {
goto L9101;
}
iord[0] = *iordre;
iord[1] = *iordre;
iorjac = (*iordre + 1) << 1;
/* (1) Generic Calculations .... */
/* (1.a) Calculation of hermit polynoms */
if (*iordre >= 0) {
mmherm1_(moin11, &c__2, iord, hermit, &ier);
if (ier > 0) {
goto L9102;
}
}
/* (1.b) Evaluation of hermit polynoms */
jj = 1;
iunit = *nderiv + 1;
khe = (*iordre + 1) * iunit;
if (*nderiv > 0) {
i__1 = *iordre;
for (ii = 0; ii <= i__1; ++ii) {
mmdrvcb_(nderiv, &c__1, &iorjac, &hermit[(ii + 3) * 6 - 18],
tparam, &herm[jj - 1], &ier);
if (ier > 0) {
goto L9102;
}
mmdrvcb_(nderiv, &c__1, &iorjac, &hermit[(ii + 6) * 6 - 18],
tparam, &herm[jj + khe - 1], &ier);
if (ier > 0) {
goto L9102;
}
jj += iunit;
}
} else {
i__1 = *iordre;
for (ii = 0; ii <= i__1; ++ii) {
AdvApp2Var_MathBase::mmpocrb_(&c__1, &iorjac, &hermit[(ii + 3) * 6 - 18], &c__1,
tparam, &herm[jj - 1]);
AdvApp2Var_MathBase::mmpocrb_(&c__1, &iorjac, &hermit[(ii + 6) * 6 - 18], &c__1,
tparam, &herm[jj + khe - 1]);
jj += iunit;
}
}
/* (1.c) Evaluation of Jacobi polynoms */
ii = *ncoeff - iorjac;
mmpojac_(tparam, &iorjac, &ii, nderiv, vjac, &ier);
if (ier > 0) {
goto L9102;
}
/* (1.d) Evaluation of W(t) */
/* Computing MAX */
i__1 = iorjac + 1;
nwcof = advapp_max(i__1,1);
AdvApp2Var_SysBase::mvriraz_(&nwcof,
wpoly);
wpoly[0] = 1.;
if (*iordre == 2) {
wpoly[2] = -3.;
wpoly[4] = 3.;
wpoly[6] = -1.;
} else if (*iordre == 1) {
wpoly[2] = -2.;
wpoly[4] = 1.;
} else if (*iordre == 0) {
wpoly[2] = -1.;
}
mmdrvcb_(nderiv, &c__1, &nwcof, wpoly, tparam, wval, &ier);
if (ier > 0) {
goto L9102;
}
kk1 = *ncoeff - iorjac;
kk2 = kk1 << 1;
kk3 = kk1 * 3;
/* (2) Evaluation of order 0 */
jj = 1;
i__1 = iorjac;
for (ii = 1; ii <= i__1; ++ii) {
valbas[ii] = herm[jj - 1];
jj += iunit;
}
i__1 = kk1;
for (ii = 1; ii <= i__1; ++ii) {
valbas[ii + iorjac] = wval[0] * vjac(ii);
}
/* (3) Evaluation of order 1 */
if (*nderiv >= 1) {
jj = 2;
i__1 = iorjac;
for (ii = 1; ii <= i__1; ++ii) {
valbas[ii + valbas_dim1] = herm[jj - 1];
jj += iunit;
}
i__1 = kk1;
for (ii = 1; ii <= i__1; ++ii) {
valbas[ii + iorjac + valbas_dim1] = wval[0] * vjac(ii + kk1)
+ wval[1] * vjac(ii);
}
}
/* (4) Evaluation of order 2 */
if (*nderiv >= 2) {
jj = 3;
i__1 = iorjac;
for (ii = 1; ii <= i__1; ++ii) {
valbas[ii + (valbas_dim1 << 1)] = herm[jj - 1];
jj += iunit;
}
i__1 = kk1;
for (ii = 1; ii <= i__1; ++ii) {
valbas[ii + iorjac + (valbas_dim1 << 1)] = wval[0] * vjac(ii +
kk2) + wval[1] * 2 * vjac(ii + kk1) + wval[2] *
vjac(ii);
}
}
/* (5) Evaluation of order 3 */
if (*nderiv >= 3) {
jj = 4;
i__1 = iorjac;
for (ii = 1; ii <= i__1; ++ii) {
valbas[ii + valbas_dim1 * 3] = herm[jj - 1];
jj += iunit;
}
i__1 = kk1;
for (ii = 1; ii <= i__1; ++ii) {
valbas[ii + iorjac + valbas_dim1 * 3] = wval[0] * vjac(ii + kk3)
+ wval[1] * 3 * vjac(ii + kk2) + wval[2] * 3 *
vjac(ii + kk1) + wval[3] * vjac(ii);
}
}
goto L9999;
/* ***********************************************************************
*/
/* ERROR PROCESSING */
/* ***********************************************************************
*/
L9101:
*iercod = 1;
goto L9999;
L9102:
*iercod = 2;
/* ***********************************************************************
*/
/* RETURN CALLING PROGRAM */
/* ***********************************************************************
*/
L9999:
if (*iercod > 0) {
AdvApp2Var_SysBase::maermsg_("MMPOBAS", iercod, 7L);
}
return 0 ;
} /* mmpobas_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmpocrb_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmpocrb_(integer *ndimax,
integer *ncoeff,
doublereal *courbe,
integer *ndim,
doublereal *tparam,
doublereal *pntcrb)
{
/* System generated locals */
integer courbe_dim1, courbe_offset, i__1, i__2;
/* Local variables */
integer ncof2;
integer isize, nd, kcf, ncf;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* CALCULATE THE COORDINATES OF A POINT OF A CURVE OF GIVEN PARAMETER */
/* TPARAM ( IN 2D, 3D OR MORE) */
/* KEYWORDS : */
/* ----------- */
/* TOUS , MATH_ACCES :: COURBE&,PARAMETRE& , POSITIONNEMENT , &POINT
*/
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIMAX : format / dimension of the curve */
/* NCOEFF : Nb of coefficients of the curve */
/* COURBE : Matrix of coefficients of the curve */
/* NDIM : Dimension useful of the workspace */
/* TPARAM : Value of the parameter where the point is calculated */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* PNTCRB : Coordinates of the calculated point */
/* COMMONS USED : */
/* ---------------- */
/* .Neant. */
/* REFERENCES CALLED : */
/* ---------------------- */
/* Type Name */
/* MIRAZ MVPSCR2 MVPSCR3 */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* Parameter adjustments */
courbe_dim1 = *ndimax;
courbe_offset = courbe_dim1 + 1;
courbe -= courbe_offset;
--pntcrb;
/* Function Body */
isize = *ndim << 3;
AdvApp2Var_SysBase::miraz_(&isize,
&pntcrb[1]);
if (*ncoeff <= 0) {
goto L9999;
}
/* optimal processing 3d */
if (*ndim == 3 && *ndimax == 3) {
mvpscr3_(ncoeff, &courbe[courbe_offset], tparam, &pntcrb[1]);
/* optimal processing 2d */
} else if (*ndim == 2 && *ndimax == 2) {
mvpscr2_(ncoeff, &courbe[courbe_offset], tparam, &pntcrb[1]);
/* Any dimension - scheme of HORNER */
} else if (*tparam == 0.) {
i__1 = *ndim;
for (nd = 1; nd <= i__1; ++nd) {
pntcrb[nd] = courbe[nd + courbe_dim1];
/* L100: */
}
} else if (*tparam == 1.) {
i__1 = *ncoeff;
for (ncf = 1; ncf <= i__1; ++ncf) {
i__2 = *ndim;
for (nd = 1; nd <= i__2; ++nd) {
pntcrb[nd] += courbe[nd + ncf * courbe_dim1];
/* L300: */
}
/* L200: */
}
} else {
ncof2 = *ncoeff + 2;
i__1 = *ndim;
for (nd = 1; nd <= i__1; ++nd) {
i__2 = *ncoeff;
for (ncf = 2; ncf <= i__2; ++ncf) {
kcf = ncof2 - ncf;
pntcrb[nd] = (pntcrb[nd] + courbe[nd + kcf * courbe_dim1]) * *
tparam;
/* L500: */
}
pntcrb[nd] += courbe[nd + courbe_dim1];
/* L400: */
}
}
L9999:
return 0 ;
} /* mmpocrb_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmmpocur_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmmpocur_(integer *ncofmx,
integer *ndim,
integer *ndeg,
doublereal *courbe,
doublereal *tparam,
doublereal *tabval)
{
/* System generated locals */
integer courbe_dim1, courbe_offset, i__1;
/* Local variables */
integer i__, nd;
doublereal fu;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Position of a point on curve (ncofmx,ndim). */
/* KEYWORDS : */
/* ----------- */
/* TOUS , AB_SPECIFI :: COURBE&,POLYNOME&,POSITIONNEMENT,&POINT */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOFMX: Format / degree of the CURVE. */
/* NDIM : Dimension of the space. */
/* NDEG : Degree of the polynom. */
/* COURBE: Coefficients of the curve. */
/* TPARAM: Parameter on the curve */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* TABVAL(NDIM): The resulting point (or table of values) */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* Parameter adjustments */
--tabval;
courbe_dim1 = *ncofmx;
courbe_offset = courbe_dim1 + 1;
courbe -= courbe_offset;
/* Function Body */
if (*ndeg < 1) {
i__1 = *ndim;
for (nd = 1; nd <= i__1; ++nd) {
tabval[nd] = 0.;
/* L290: */
}
} else {
i__1 = *ndim;
for (nd = 1; nd <= i__1; ++nd) {
fu = courbe[*ndeg + nd * courbe_dim1];
for (i__ = *ndeg - 1; i__ >= 1; --i__) {
fu = fu * *tparam + courbe[i__ + nd * courbe_dim1];
/* L120: */
}
tabval[nd] = fu;
/* L300: */
}
}
return 0 ;
} /* mmmpocur_ */
//=======================================================================
//function : mmpojac_
//purpose :
//=======================================================================
int mmpojac_(doublereal *tparam,
integer *iordre,
integer *ncoeff,
integer *nderiv,
NCollection_Array1<doublereal>& valjac,
integer *iercod)
{
integer c__2 = 2;
/* System generated locals */
integer valjac_dim1, i__1, i__2;
/* Local variables */
doublereal cofa, cofb, denom, tnorm[100];
integer ii, jj, kk1, kk2;
doublereal aux1, aux2;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Positioning on Jacobi polynoms and their derivatives */
/* successive by a recurrent algorithm */
/* KEYWORDS : */
/* ----------- */
/* RESERVE, POSITIONING, JACOBI */
/* INPUT ARGUMENTS : */
/* -------------------- */
/* TPARAM : Parameter for which positioning is done. */
/* IORDRE : Order of hermit-?? (-1,0,1, or 2) */
/* NCOEFF : Number of coeeficients of polynoms (Nb of value to */
/* calculate) */
/* NDERIV : Number of derivative to calculate (0<= N <=3) */
/* 0 -> Position simple on jacobi functions */
/* N -> Position on jacobi functions and their */
/* derivatives of order 1 to N. */
/* OUTPUT ARGUMENTS : */
/* --------------------- */
/* VALJAC (NCOEFF, 0:NDERIV) : the calculated values */
/* i */
/* d vj(t) = VALJAC(J, I) */
/* -- i */
/* dt */
/* IERCOD : Error Code */
/* 0 : Ok */
/* 1 : Incoherence of input arguments */
/* COMMONS USED : */
/* ------------------ */
/* REFERENCES CALLED : */
/* --------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* DECLARATIONS */
/* ***********************************************************************
*/
/* static varaibles */
/* Parameter adjustments */
valjac_dim1 = *ncoeff;
/* Function Body */
/* ***********************************************************************
*/
/* INITIALISATIONS */
/* ***********************************************************************
*/
*iercod = 0;
/* ***********************************************************************
*/
/* Processing */
/* ***********************************************************************
*/
if (*nderiv > 3) {
goto L9101;
}
if (*ncoeff > 100) {
goto L9101;
}
/* --- Calculation of norms */
/* IF (NCOEFF.GT.NBCOF) THEN */
i__1 = *ncoeff;
for (ii = 1; ii <= i__1; ++ii) {
kk1 = ii - 1;
aux2 = 1.;
i__2 = *iordre;
for (jj = 1; jj <= i__2; ++jj) {
aux2 = aux2 * (doublereal) (kk1 + *iordre + jj) / (doublereal) (
kk1 + jj);
}
i__2 = (*iordre << 1) + 1;
tnorm[ii - 1] = sqrt(aux2 * (kk1 * 2. + (*iordre << 1) + 1) / pow__ii(&
c__2, &i__2));
}
/* END IF */
/* --- Trivial Positions ----- */
valjac(1) = 1.;
aux1 = (doublereal) (*iordre + 1);
valjac(2) = aux1 * *tparam;
if (*nderiv >= 1) {
valjac(valjac_dim1 + 1) = 0.;
valjac(valjac_dim1 + 2) = aux1;
if (*nderiv >= 2) {
valjac((valjac_dim1 << 1) + 1) = 0.;
valjac((valjac_dim1 << 1) + 2) = 0.;
if (*nderiv >= 3) {
valjac(valjac_dim1 * 3 + 1) = 0.;
valjac(valjac_dim1 * 3 + 2) = 0.;
}
}
}
/* --- Positioning by recurrence */
i__1 = *ncoeff;
for (ii = 3; ii <= i__1; ++ii) {
kk1 = ii - 1;
kk2 = ii - 2;
aux1 = (doublereal) (*iordre + kk2);
aux2 = aux1 * 2;
cofa = aux2 * (aux2 + 1) * (aux2 + 2);
cofb = (aux2 + 2) * -2. * aux1 * aux1;
denom = kk1 * 2. * (kk2 + (*iordre << 1) + 1) * aux2;
denom = 1. / denom;
/* --> Pi(t) */
valjac(ii) = (cofa * *tparam * valjac(kk1) + cofb * valjac(kk2)) *
denom;
/* --> P'i(t) */
if (*nderiv >= 1) {
valjac(ii + valjac_dim1) = (cofa * *tparam * valjac(kk1 +
valjac_dim1) + cofa * valjac(kk1) + cofb * valjac(kk2 +
valjac_dim1)) * denom;
/* --> P''i(t) */
if (*nderiv >= 2) {
valjac(ii + (valjac_dim1 << 1)) = (cofa * *tparam * valjac(
kk1 + (valjac_dim1 << 1)) + cofa * 2 * valjac(kk1 +
valjac_dim1) + cofb * valjac(kk2 + (valjac_dim1 << 1))
) * denom;
}
/* --> P'i(t) */
if (*nderiv >= 3) {
valjac(ii + valjac_dim1 * 3) = (cofa * *tparam * valjac(kk1 +
valjac_dim1 * 3) + cofa * 3 * valjac(kk1 + (
valjac_dim1 << 1)) + cofb * valjac(kk2 + valjac_dim1 *
3)) * denom;
}
}
}
/* ---> Normalization */
i__1 = *ncoeff;
for (ii = 1; ii <= i__1; ++ii) {
i__2 = *nderiv;
for (jj = 0; jj <= i__2; ++jj) {
valjac(ii + jj * valjac_dim1) = tnorm[ii - 1] * valjac(ii + jj *
valjac_dim1);
}
}
goto L9999;
/* ***********************************************************************
*/
/* PROCESSING OF ERRORS */
/* ***********************************************************************
*/
L9101:
*iercod = 1;
goto L9999;
/* ***********************************************************************
*/
/* RETURN CALLING PROGRAM */
/* ***********************************************************************
*/
L9999:
if (*iercod > 0) {
AdvApp2Var_SysBase::maermsg_("MMPOJAC", iercod, 7L);
}
return 0 ;
} /* mmpojac_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmposui_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmposui_(integer *dimmat,
integer *,//nistoc,
integer *aposit,
integer *posuiv,
integer *iercod)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
logical ldbg;
integer imin, jmin, i__, j, k;
logical trouve;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* FILL THE TABLE OF POSITIONING POSUIV WHICH ALLOWS TO */
/* PARSE BY COLUMN THE INFERIOR TRIANGULAR PART OF THE */
/* MATRIX IN FORM OF PROFILE */
/* KEYWORDS : */
/* ----------- */
/* RESERVE, MATRIX, PROFILE */
/* INPUT ARGUMENTS : */
/* -------------------- */
/* NISTOC: NUMBER OF COEFFICIENTS IN THE PROFILE */
/* DIMMAT: NUMBER OF LINE OF THE SYMMETRIC SQUARE MATRIX */
/* APOSIT: TABLE OF POSITIONING OF STORAGE TERMS */
/* APOSIT(1,I) CONTAINS THE NUMBER OF TERMES-1 ON LINE */
/* I IN THE PROFILE OF THE MATRIX */
/* APOSIT(2,I) CONTAINS THE INDEX OF STORAGE OF DIAGONAL TERM */
/* OF LINE I */
/* OUTPUT ARGUMENTS : */
/* --------------------- */
/* POSUIV: POSUIV(K) (WHERE K IS THE INDEX OF STORAGE OF MAT(I,J)) */
/* CONTAINS THE SMALLEST NUMBER IMIN>I OF THE LINE THAT */
/* POSSESSES A TERM MAT(IMIN,J) THAT IS IN THE PROFILE. */
/* IF THERE IS NO TERM MAT(IMIN,J) IN THE PROFILE THEN POSUIV(K)=-1 */
/* COMMONS USED : */
/* ------------------ */
/* REFERENCES CALLED : */
/* --------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* ***********************************************************************
*/
/* DECLARATIONS */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* INITIALIZATIONS */
/* ***********************************************************************
*/
/* Parameter adjustments */
aposit -= 3;
--posuiv;
/* Function Body */
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 2;
if (ldbg) {
AdvApp2Var_SysBase::mgenmsg_("MMPOSUI", 7L);
}
*iercod = 0;
/* ***********************************************************************
*/
/* PROCESSING */
/* ***********************************************************************
*/
i__1 = *dimmat;
for (i__ = 1; i__ <= i__1; ++i__) {
jmin = i__ - aposit[(i__ << 1) + 1];
i__2 = i__;
for (j = jmin; j <= i__2; ++j) {
imin = i__ + 1;
trouve = FALSE_;
while(! trouve && imin <= *dimmat) {
if (imin - aposit[(imin << 1) + 1] <= j) {
trouve = TRUE_;
} else {
++imin;
}
}
k = aposit[(i__ << 1) + 2] - i__ + j;
if (trouve) {
posuiv[k] = imin;
} else {
posuiv[k] = -1;
}
}
}
goto L9999;
/* ***********************************************************************
*/
/* ERROR PROCESSING */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* RETURN CALLING PROGRAM */
/* ***********************************************************************
*/
L9999:
/* ___ DESALLOCATION, ... */
AdvApp2Var_SysBase::maermsg_("MMPOSUI", iercod, 7L);
if (ldbg) {
AdvApp2Var_SysBase::mgsomsg_("MMPOSUI", 7L);
}
return 0 ;
} /* mmposui_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmresol_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmresol_(integer *hdimen,
integer *gdimen,
integer *hnstoc,
integer *gnstoc,
integer *mnstoc,
doublereal *matsyh,
doublereal *matsyg,
doublereal *vecsyh,
doublereal *vecsyg,
integer *hposit,
integer *hposui,
integer *gposit,
integer *mmposui,
integer *mposit,
doublereal *vecsol,
integer *iercod)
{
integer c__100 = 100;
/* System generated locals */
integer i__1, i__2;
/* Local variables */
logical ldbg;
doublereal* mcho = 0;
integer jmin, jmax, i__, j, k, l;
intptr_t iofv1, iofv2, iofv3, iofv4;
doublereal *v1 = 0, *v2 = 0, *v3 = 0, *v4 = 0;
integer deblig, dimhch;
doublereal* hchole = 0;
intptr_t iofmch, iofmam, iofhch;
doublereal* matsym = 0;
integer ier;
integer aux;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* SOLUTION OF THE SYSTEM */
/* H t(G) V B */
/* = */
/* G 0 L C */
/* KEYWORDS : */
/* ----------- */
/* RESERVE, SOLUTION, SYSTEM, LAGRANGIAN */
/* INPUT ARGUMENTS : */
/* -------------------- */
/* HDIMEN: NOMBER OF LINE (OR COLUMN) OF THE HESSIAN MATRIX */
/* GDIMEN: NOMBER OF LINE OF THE MATRIX OF CONSTRAINTS */
/* HNSTOC: NOMBErS OF TERMS IN THE PROFILE OF HESSIAN MATRIX
*/
/* GNSTOC: NOMBERS OF TERMS IN THE PROFILE OF THE MATRIX OF CONSTRAINTS */
/* MNSTOC: NOMBERS OF TERMS IN THE PROFILE OF THE MATRIX M= G H t(G) */
/* where H IS THE HESSIAN MATRIX AND G IS THE MATRIX OF CONSTRAINTS */
/* MATSYH: TRIANGULAR INFERIOR PART OF THE HESSIAN MATRIX */
/* IN FORM OF PROFILE */
/* MATSYG: MATRIX OF CONSTRAINTS IN FORM OF PROFILE */
/* VECSYH: VECTOR OF THE SECOND MEMBER ASSOCIATED TO MATSYH */
/* VECSYG: VECTOR OF THE SECOND MEMBER ASSOCIATED TO MATSYG */
/* HPOSIT: TABLE OF POSITIONING OF THE HESSIAN MATRIX */
/* HPOSIT(1,I) CONTAINS THE NUMBER OF TERMS -1 */
/* WHICH ARE IN THE PROFILE AT LINE I */
/* HPOSIT(2,I) CONTAINS THE INDEX OF STORAGE OF TERM */
/* DIAGONAL OF THE MATRIX AT LINE I */
/* HPOSUI: TABLE ALLOWING TO PARSE THE HESSIAN MATRIX BY COLUMN */
/* IN FORM OF PROFILE */
/* HPOSUI(K) CONTAINS THE NUMBER OF LINE IMIN FOLLOWING THE CURRENT LINE*/
/* I WHERE H(I,J)=MATSYH(K) AS IT EXISTS IN THE */
/* SAME COLUMN J A TERM IN THE PROFILE OF LINE IMIN */
/* IF SUCH TERM DOES NOT EXIST IMIN=-1 */
/* GPOSIT: TABLE OF POSITIONING OF THE MATRIX OF CONSTRAINTS */
/* GPOSIT(1,I) CONTAINS THE NUMBER OF TERMS OF LINE I */
/* WHICH ARE IN THE PROFILE */
/* GPOSIT(2,I) CONTAINS THE INDEX OF STORAGE OF THE LAST TERM */
/* OF LINE I WHICH IS IN THE PROFILE */
/* GPOSIT(3,I) CONTAINS THE NUMBER OF COLUMN CORRESPONDING */
/* TO THE FIRST TERM OF LINE I WHICH IS IN THE PROFILE */
/* MMPOSUI, MPOSIT: SAME STRUCTURE AS HPOSUI, BUT FOR MATRIX */
/* M=G H t(G) */
/* OUTPUT ARGUMENTS : */
/* --------------------- */
/* VECSOL: VECTOR SOLUTION V OF THE SYSTEM */
/* IERCOD: ERROR CODE */
/* COMMONS USED : */
/* ------------------ */
/* REFERENCES CALLED : */
/* --------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* DECLARATIONS */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* INITIALISATIONS */
/* ***********************************************************************
*/
/* Parameter adjustments */
--vecsol;
hposit -= 3;
--vecsyh;
--hposui;
--matsyh;
--matsyg;
--vecsyg;
gposit -= 4;
--mmposui;
mposit -= 3;
/* Function Body */
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 2;
if (ldbg) {
AdvApp2Var_SysBase::mgenmsg_("MMRESOL", 7L);
}
*iercod = 0;
iofhch = 0;
iofv1 = 0;
iofv2 = 0;
iofv3 = 0;
iofv4 = 0;
iofmam = 0;
iofmch = 0;
/* ***********************************************************************
*/
/* PROCESSING */
/* ***********************************************************************
*/
/* Dynamic allocation */
AdvApp2Var_SysBase anAdvApp2Var_SysBase;
anAdvApp2Var_SysBase.macrar8_(hdimen, &c__100, v1, &iofv1, &ier);
if (ier > 0) {
goto L9102;
}
dimhch = hposit[(*hdimen << 1) + 2];
anAdvApp2Var_SysBase.macrar8_(&dimhch, &c__100, hchole, &iofhch, &ier);
if (ier > 0) {
goto L9102;
}
/* solution of system 1 H V1 = b */
/* where H=MATSYH and b=VECSYH */
mmchole_(hnstoc, hdimen, &matsyh[1], &hposit[3], &hposui[1], &hchole[
iofhch], &ier);
if (ier > 0) {
goto L9101;
}
mmrslss_(hnstoc, hdimen, &hchole[iofhch], &hposit[3], &hposui[1], &vecsyh[
1], &v1[iofv1], &ier);
if (ier > 0) {
goto L9102;
}
/* Case when there are constraints */
if (*gdimen > 0) {
/* Calculate the vector of the second member V2=G H(-1) b -c = G v1-c */
/* of system of unknown Lagrangian vector MULTIP */
/* where G=MATSYG */
/* c=VECSYG */
anAdvApp2Var_SysBase.macrar8_(gdimen, &c__100, v2, &iofv2, &ier);
if (ier > 0) {
goto L9102;
}
anAdvApp2Var_SysBase.macrar8_(hdimen, &c__100, v3, &iofv3, &ier);
if (ier > 0) {
goto L9102;
}
anAdvApp2Var_SysBase.macrar8_(gdimen, &c__100, v4, &iofv4, &ier);
if (ier > 0) {
goto L9102;
}
anAdvApp2Var_SysBase.macrar8_(mnstoc, &c__100, matsym, &iofmam, &ier);
if (ier > 0) {
goto L9102;
}
deblig = 1;
mmatvec_(gdimen, hdimen, &gposit[4], gnstoc, &matsyg[1], &v1[iofv1], &
deblig, &v2[iofv2], &ier);
if (ier > 0) {
goto L9101;
}
i__1 = *gdimen;
for (i__ = 1; i__ <= i__1; ++i__) {
v2[i__ + iofv2 - 1] -= vecsyg[i__];
}
/* Calculate the matrix M= G H(-1) t(G) */
/* RESOL DU SYST 2 : H qi = gi */
/* where is a vector column of t(G) */
/* qi=v3 */
/* then calculate G qi */
/* then construct M in form of profile */
i__1 = *gdimen;
for (i__ = 1; i__ <= i__1; ++i__) {
AdvApp2Var_SysBase::mvriraz_(hdimen, &v1[iofv1]);
AdvApp2Var_SysBase::mvriraz_(hdimen, &v3[iofv3]);
AdvApp2Var_SysBase::mvriraz_(gdimen, &v4[iofv4]);
jmin = gposit[i__ * 3 + 3];
jmax = gposit[i__ * 3 + 1] + gposit[i__ * 3 + 3] - 1;
aux = gposit[i__ * 3 + 2] - gposit[i__ * 3 + 1] - jmin + 1;
i__2 = jmax;
for (j = jmin; j <= i__2; ++j) {
k = j + aux;
v1[j + iofv1 - 1] = matsyg[k];
}
mmrslss_(hnstoc, hdimen, &hchole[iofhch], &hposit[3], &hposui[1],
&v1[iofv1], &v3[iofv3], &ier);
if (ier > 0) {
goto L9101;
}
deblig = i__;
mmatvec_(gdimen, hdimen, &gposit[4], gnstoc, &matsyg[1], &v3[
iofv3], &deblig, &v4[iofv4], &ier);
if (ier > 0) {
goto L9101;
}
k = mposit[(i__ << 1) + 2];
matsym[k + iofmam - 1] = v4[i__ + iofv4 - 1];
while(mmposui[k] > 0) {
l = mmposui[k];
k = mposit[(l << 1) + 2] - l + i__;
matsym[k + iofmam - 1] = v4[l + iofv4 - 1];
}
}
/* SOLVE SYST 3 M L = V2 */
/* WITH L=V4 */
AdvApp2Var_SysBase::mvriraz_(gdimen, &v4[iofv4]);
anAdvApp2Var_SysBase.macrar8_(mnstoc, &c__100, mcho, &iofmch, &ier);
if (ier > 0) {
goto L9102;
}
mmchole_(mnstoc, gdimen, &matsym[iofmam], &mposit[3], &mmposui[1], &
mcho[iofmch], &ier);
if (ier > 0) {
goto L9101;
}
mmrslss_(mnstoc, gdimen, &mcho[iofmch], &mposit[3], &mmposui[1], &v2[
iofv2], &v4[iofv4], &ier);
if (ier > 0) {
goto L9102;
}
/* CALCULATE THE VECTOR OF THE SECOND MEMBER OF THE SYSTEM Hx = b - t(G) L
*/
/* = V1 */
AdvApp2Var_SysBase::mvriraz_(hdimen, &v1[iofv1]);
mmtmave_(gdimen, hdimen, &gposit[4], gnstoc, &matsyg[1], &v4[iofv4], &
v1[iofv1], &ier);
if (ier > 0) {
goto L9101;
}
i__1 = *hdimen;
for (i__ = 1; i__ <= i__1; ++i__) {
v1[i__ + iofv1 - 1] = vecsyh[i__] - v1[i__ + iofv1 - 1];
}
/* RESOL SYST 4 Hx = b - t(G) L */
mmrslss_(hnstoc, hdimen, &hchole[iofhch], &hposit[3], &hposui[1], &v1[
iofv1], &vecsol[1], &ier);
if (ier > 0) {
goto L9102;
}
} else {
i__1 = *hdimen;
for (i__ = 1; i__ <= i__1; ++i__) {
vecsol[i__] = v1[i__ + iofv1 - 1];
}
}
goto L9999;
/* ***********************************************************************
*/
/* PROCESSING OF ERRORS */
/* ***********************************************************************
*/
L9101:
*iercod = 1;
goto L9999;
L9102:
AdvApp2Var_SysBase::mswrdbg_("MMRESOL : PROBLEM WITH DIMMAT", 30L);
*iercod = 2;
/* ***********************************************************************
*/
/* RETURN CALLING PROGRAM */
/* ***********************************************************************
*/
L9999:
/* ___ DESALLOCATION, ... */
anAdvApp2Var_SysBase.macrdr8_(hdimen, &c__100, v1, &iofv1, &ier);
if (*iercod == 0 && ier > 0) {
*iercod = 3;
}
anAdvApp2Var_SysBase.macrdr8_(&dimhch, &c__100, hchole, &iofhch, &ier);
if (*iercod == 0 && ier > 0) {
*iercod = 3;
}
anAdvApp2Var_SysBase.macrdr8_(gdimen, &c__100, v2, &iofv2, &ier);
if (*iercod == 0 && ier > 0) {
*iercod = 3;
}
anAdvApp2Var_SysBase.macrdr8_(hdimen, &c__100, v3, &iofv3, &ier);
if (*iercod == 0 && ier > 0) {
*iercod = 3;
}
anAdvApp2Var_SysBase.macrdr8_(gdimen, &c__100, v4, &iofv4, &ier);
if (*iercod == 0 && ier > 0) {
*iercod = 3;
}
anAdvApp2Var_SysBase.macrdr8_(mnstoc, &c__100, matsym, &iofmam, &ier);
if (*iercod == 0 && ier > 0) {
*iercod = 3;
}
anAdvApp2Var_SysBase.macrdr8_(mnstoc, &c__100, mcho, &iofmch, &ier);
if (*iercod == 0 && ier > 0) {
*iercod = 3;
}
AdvApp2Var_SysBase::maermsg_("MMRESOL", iercod, 7L);
if (ldbg) {
AdvApp2Var_SysBase::mgsomsg_("MMRESOL", 7L);
}
return 0 ;
} /* mmresol_ */
//=======================================================================
//function : mmrslss_
//purpose :
//=======================================================================
int mmrslss_(integer *,//mxcoef,
integer *dimens,
doublereal *smatri,
integer *sposit,
integer *posuiv,
doublereal *mscnmbr,
doublereal *soluti,
integer *iercod)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
logical ldbg;
integer i__, j;
doublereal somme;
integer pointe, ptcour;
/* ***********************************************************************
*/
/* FuNCTION : */
/* ---------- T */
/* Solves linear system SS x = b where S is a */
/* triangular lower matrix given in form of profile */
/* KEYWORDS : */
/* ----------- */
/* RESERVE, MATRICE_PROFILE, RESOLUTION, CHOLESKI */
/* INPUT ARGUMENTS : */
/* -------------------- */
/* MXCOEF : Maximum number of non-null coefficient in the matrix */
/* DIMENS : Dimension of the matrix */
/* SMATRI(MXCOEF) : Values of coefficients of the matrix */
/* SPOSIT(2,DIMENS): */
/* SPOSIT(1,*) : Distance diagonal-extremity of the line */
/* SPOSIT(2,*) : Position of diagonal terms in AMATRI */
/* POSUIV(MXCOEF): first line inferior not out of profile */
/* MSCNMBR(DIMENS): Vector second member of the equation */
/* OUTPUT ARGUMENTS : */
/* --------------------- */
/* SOLUTI(NDIMEN) : Result vector */
/* IERCOD : Error code 0 : ok */
/* COMMONS USED : */
/* ------------------ */
/* REFERENCES CALLED : */
/* --------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* T */
/* SS is the decomposition of choleski of a symmetric matrix */
/* defined postive, that can result from routine MMCHOLE. */
/* For a full matrix it is possible to use MRSLMSC */
/* LEVEL OF DEBUG = 4 */
/* > */
/* ***********************************************************************
*/
/* DECLARATIONS */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* INITIALISATIONS */
/* ***********************************************************************
*/
/* Parameter adjustments */
--posuiv;
--smatri;
--soluti;
--mscnmbr;
sposit -= 3;
/* Function Body */
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 4;
if (ldbg) {
AdvApp2Var_SysBase::mgenmsg_("MMRSLSS", 7L);
}
*iercod = 0;
/* ***********************************************************************
*/
/* PROCESSING */
/* ***********************************************************************
*/
/* ----- Solution of Sw = b */
i__1 = *dimens;
for (i__ = 1; i__ <= i__1; ++i__) {
pointe = sposit[(i__ << 1) + 2];
somme = 0.;
i__2 = i__ - 1;
for (j = i__ - sposit[(i__ << 1) + 1]; j <= i__2; ++j) {
somme += smatri[pointe - (i__ - j)] * soluti[j];
}
soluti[i__] = (mscnmbr[i__] - somme) / smatri[pointe];
}
/* T */
/* ----- Solution of S u = w */
for (i__ = *dimens; i__ >= 1; --i__) {
pointe = sposit[(i__ << 1) + 2];
j = posuiv[pointe];
somme = 0.;
while(j > 0) {
ptcour = sposit[(j << 1) + 2] - (j - i__);
somme += smatri[ptcour] * soluti[j];
j = posuiv[ptcour];
}
soluti[i__] = (soluti[i__] - somme) / smatri[pointe];
}
goto L9999;
/* ***********************************************************************
*/
/* ERROR PROCESSING */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* RETURN PROGRAM CALLING */
/* ***********************************************************************
*/
L9999:
AdvApp2Var_SysBase::maermsg_("MMRSLSS", iercod, 7L);
if (ldbg) {
AdvApp2Var_SysBase::mgsomsg_("MMRSLSS", 7L);
}
return 0 ;
} /* mmrslss_ */
//=======================================================================
//function : mmrslw_
//purpose :
//=======================================================================
int mmrslw_(integer *normax,
integer *nordre,
integer *ndimen,
doublereal *epspiv,
doublereal *abmatr,
doublereal *xmatri,
integer *iercod)
{
/* System generated locals */
integer abmatr_dim1, abmatr_offset, xmatri_dim1, xmatri_offset, i__1,
i__2, i__3;
doublereal d__1;
/* Local variables */
integer kpiv;
doublereal pivot;
integer ii, jj, kk;
doublereal akj;
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Solution of a linear system A.x = B of N equations to N */
/* unknown by Gauss method (partial pivot) or : */
/* A is matrix NORDRE * NORDRE, */
/* B is matrix NORDRE (lines) * NDIMEN (columns), */
/* x is matrix NORDRE (lines) * NDIMEN (columns). */
/* In this program, A and B are stored in matrix ABMATR */
/* the lines and columns which of were inverted. ABMATR(k,j) is */
/* term A(j,k) if k <= NORDRE, B(j,k-NORDRE) otherwise (see example). */
/* KEYWORDS : */
/* ----------- */
/* TOUS, MATH_ACCES::EQUATION&, MATRICE&, RESOLUTION, GAUSS, &SOLUTION */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NORMAX : Max size of the first index of XMATRI. This argument */
/* serves only for the declaration of dimension of XMATRI and should be */
/* above or equal to NORDRE. */
/* NORDRE : Order of the matrix i.e. number of equations and */
/* unknown quantities of the linear system to be solved. */
/* NDIMEN : Number of the second member. */
/* EPSPIV : Minimal value of a pivot. If during the calculation */
/* the absolute value of the pivot is below EPSPIV, the */
/* system of equations is declared singular. EPSPIV should */
/* be a "small" real. */
/* ABMATR(NORDRE+NDIMEN,NORDRE) : Auxiliary matrix containing */
/* matrix A and matrix B. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* XMATRI : Matrix containing NORDRE*NDIMEN solutions. */
/* IERCOD=0 shows that all solutions are calculated. */
/* IERCOD=1 shows that the matrix is of lower rank than NORDRE */
/* (the system is singular). */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* ATTENTION : the indices of line and column are inverted */
/* compared to usual indices. */
/* System : */
/* a1*x + b1*y = c1 */
/* a2*x + b2*y = c2 */
/* should be represented by matrix ABMATR : */
/* ABMATR(1,1) = a1 ABMATR(1,2) = a2 */
/* ABMATR(2,1) = b1 ABMATR(2,2) = b2 */
/* ABMATR(3,1) = c1 ABMATR(3,2) = c2 */
/* To solve this system, it is necessary to set : */
/* NORDRE = 2 (there are 2 equations with 2 unknown values), */
/* NDIMEN = 1 (there is only one second member), */
/* any NORMAX can be taken >= NORDRE. */
/* To use this routine, it is recommended to use one of */
/* interfaces : MMRSLWI or MMMRSLWD. */
/* > */
/* **********************************************************************
*/
/* Name of the routine */
/* INTEGER IBB,MNFNDEB */
/* IBB=MNFNDEB() */
/* IF (IBB.GE.2) CALL MGENMSG(NOMPR) */
/* Parameter adjustments */
xmatri_dim1 = *normax;
xmatri_offset = xmatri_dim1 + 1;
xmatri -= xmatri_offset;
abmatr_dim1 = *nordre + *ndimen;
abmatr_offset = abmatr_dim1 + 1;
abmatr -= abmatr_offset;
/* Function Body */
*iercod = 0;
/* *********************************************************************
*/
/* Triangulation of matrix ABMATR. */
/* *********************************************************************
*/
i__1 = *nordre;
for (kk = 1; kk <= i__1; ++kk) {
/* ---------- Find max pivot in column KK. ------------
--- */
pivot = *epspiv;
kpiv = 0;
i__2 = *nordre;
for (jj = kk; jj <= i__2; ++jj) {
akj = (d__1 = abmatr[kk + jj * abmatr_dim1], advapp_abs(d__1));
if (akj > pivot) {
pivot = akj;
kpiv = jj;
}
/* L100: */
}
if (kpiv == 0) {
goto L9900;
}
/* --------- Swapping of line KPIV with line KK. ------
--- */
if (kpiv != kk) {
i__2 = *nordre + *ndimen;
for (jj = kk; jj <= i__2; ++jj) {
akj = abmatr[jj + kk * abmatr_dim1];
abmatr[jj + kk * abmatr_dim1] = abmatr[jj + kpiv *
abmatr_dim1];
abmatr[jj + kpiv * abmatr_dim1] = akj;
/* L200: */
}
}
/* ---------- Removal and triangularization. -----------
--- */
pivot = -abmatr[kk + kk * abmatr_dim1];
i__2 = *nordre;
for (ii = kk + 1; ii <= i__2; ++ii) {
akj = abmatr[kk + ii * abmatr_dim1] / pivot;
i__3 = *nordre + *ndimen;
for (jj = kk + 1; jj <= i__3; ++jj) {
abmatr[jj + ii * abmatr_dim1] += akj * abmatr[jj + kk *
abmatr_dim1];
/* L400: */
}
/* L300: */
}
/* L1000: */
}
/* *********************************************************************
*/
/* Solution of the system of triangular equations. */
/* Matrix ABMATR(NORDRE+JJ,II), contains second members */
/* of the system for 1<=j<=NDIMEN and 1<=i<=NORDRE. */
/* *********************************************************************
*/
/* ---------------- Calculation of solutions by ascending. -----------------
*/
for (kk = *nordre; kk >= 1; --kk) {
pivot = abmatr[kk + kk * abmatr_dim1];
i__1 = *ndimen;
for (ii = 1; ii <= i__1; ++ii) {
akj = abmatr[ii + *nordre + kk * abmatr_dim1];
i__2 = *nordre;
for (jj = kk + 1; jj <= i__2; ++jj) {
akj -= abmatr[jj + kk * abmatr_dim1] * xmatri[jj + ii *
xmatri_dim1];
/* L800: */
}
xmatri[kk + ii * xmatri_dim1] = akj / pivot;
/* L700: */
}
/* L600: */
}
goto L9999;
/* ------If the absolute value of a pivot is smaller than -------- */
/* ---------- EPSPIV: return the code of error. ------------
*/
L9900:
*iercod = 1;
L9999:
if (*iercod > 0) {
AdvApp2Var_SysBase::maermsg_("MMRSLW ", iercod, 7L);
}
/* IF (IBB.GE.2) CALL MGSOMSG(NOMPR) */
return 0 ;
} /* mmrslw_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmmrslwd_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmmrslwd_(integer *normax,
integer *nordre,
integer *ndim,
doublereal *amat,
doublereal *bmat,
doublereal *epspiv,
doublereal *aaux,
doublereal *xmat,
integer *iercod)
{
/* System generated locals */
integer amat_dim1, amat_offset, bmat_dim1, bmat_offset, xmat_dim1,
xmat_offset, aaux_dim1, aaux_offset, i__1, i__2;
/* Local variables */
integer i__, j;
integer ibb;
/* IMPLICIT DOUBLE PRECISION (A-H,O-Z) */
/* IMPLICIT INTEGER (I-N) */
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Solution of a linear system by Gauss method where */
/* the second member is a table of vectors. Method of partial pivot. */
/* KEYWORDS : */
/* ----------- */
/* ALL, MATH_ACCES :: */
/* SYSTEME&,EQUATION&, RESOLUTION,GAUSS ,&VECTEUR */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NORMAX : Max. Dimension of AMAT. */
/* NORDRE : Order of the matrix. */
/* NDIM : Number of columns of BMAT and XMAT. */
/* AMAT(NORMAX,NORDRE) : The processed matrix. */
/* BMAT(NORMAX,NDIM) : The matrix of second member. */
/* XMAT(NORMAX,NDIM) : The matrix of solutions. */
/* EPSPIV : Min value of a pivot. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* AAUX(NORDRE+NDIM,NORDRE) : Auxiliary matrix. */
/* XMAT(NORMAX,NDIM) : Matrix of solutions. */
/* IERCOD=0 shows that solutions in XMAT are valid. */
/* IERCOD=1 shows that matrix AMAT is of lower rank than NORDRE. */
/* COMMONS USED : */
/* ---------------- */
/* .Neant. */
/* REFERENCES CALLED : */
/* ---------------------- */
/* Type Name */
/* MAERMSG MGENMSG MGSOMSG */
/* MMRSLW I*4 MNFNDEB */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* ATTENTION : lines and columns are located in usual order : */
/* 1st index = index line */
/* 2nd index = index column */
/* Example, the system : */
/* a1*x + b1*y = c1 */
/* a2*x + b2*y = c2 */
/* is represented by matrix AMAT : */
/* AMAT(1,1) = a1 AMAT(2,1) = a2 */
/* AMAT(1,2) = b1 AMAT(2,2) = b2 */
/* The first index is the index of line, the second index */
/* is the index of columns (Compare with MMRSLWI which is faster). */
/* > */
/* **********************************************************************
*/
/* Name of the routine */
/* Parameter adjustments */
amat_dim1 = *normax;
amat_offset = amat_dim1 + 1;
amat -= amat_offset;
xmat_dim1 = *normax;
xmat_offset = xmat_dim1 + 1;
xmat -= xmat_offset;
aaux_dim1 = *nordre + *ndim;
aaux_offset = aaux_dim1 + 1;
aaux -= aaux_offset;
bmat_dim1 = *normax;
bmat_offset = bmat_dim1 + 1;
bmat -= bmat_offset;
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 3) {
AdvApp2Var_SysBase::mgenmsg_("MMMRSLW", 7L);
}
/* Initialization of the auxiliary matrix. */
i__1 = *nordre;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *nordre;
for (j = 1; j <= i__2; ++j) {
aaux[j + i__ * aaux_dim1] = amat[i__ + j * amat_dim1];
/* L200: */
}
/* L100: */
}
/* Second member. */
i__1 = *nordre;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *ndim;
for (j = 1; j <= i__2; ++j) {
aaux[j + *nordre + i__ * aaux_dim1] = bmat[i__ + j * bmat_dim1];
/* L400: */
}
/* L300: */
}
/* Solution of the system of equations. */
mmrslw_(normax, nordre, ndim, epspiv, &aaux[aaux_offset], &xmat[
xmat_offset], iercod);
if (*iercod != 0) {
AdvApp2Var_SysBase::maermsg_("MMMRSLW", iercod, 7L);
}
if (ibb >= 3) {
AdvApp2Var_SysBase::mgsomsg_("MMMRSLW", 7L);
}
return 0 ;
} /* mmmrslwd_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmrtptt_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmrtptt_(integer *ndglgd,
doublereal *rtlegd)
{
integer ideb, nmod2, nsur2, ilong, ibb;
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Extracts from Common LDGRTL the STRICTLY positive roots of the */
/* Legendre polynom of degree NDGLGD, for 2 <= NDGLGD <= 61. */
/* KEYWORDS : */
/* ----------- */
/* TOUS, AB_SPECIFI::COMMON&, EXTRACTION, &RACINE, &LEGENDRE. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDGLGD : Mathematic degree of Legendre polynom. */
/* This degree should be above or equal to 2 and */
/* below or equal to 61. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* RTLEGD : The table of strictly positive roots of */
/* Legendre polynom of degree NDGLGD. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* ATTENTION: the condition on NDEGRE ( 2 <= NDEGRE <= 61) is not */
/* tested. The caller should make the test. */
/* > */
/* **********************************************************************
*/
/* Nome of the routine */
/* Common MLGDRTL: */
/* This common includes POSITIVE roots of Legendre polynoms */
/* AND the weight of Gauss quadrature formulas on all */
/* POSITIVE roots of Legendre polynoms. */
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* The common of Legendre roots. */
/* KEYWORDS : */
/* ----------- */
/* BASE LEGENDRE */
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* ROOTAB : Table of all rotts of Legendre polynoms */
/* between [0,1]. They are ranked for degrees increasing from 2 to 61. */
/* HILTAB : Table of Legendre interpolators concerning ROOTAB. */
/* The address is the same. */
/* HI0TAB : Table of Legendre interpolators for root x=0 */
/* the polynoms of UNEVEN degree. */
/* RTLTB0 : Table of Li(uk) where uk are roots of a */
/* Legendre polynom of EVEN degree. */
/* RTLTB1 : Table of Li(uk) where uk are roots of a */
/* Legendre polynom of UNEVEN degree. */
/************************************************************************
*****/
/* Parameter adjustments */
--rtlegd;
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 3) {
AdvApp2Var_SysBase::mgenmsg_("MMRTPTT", 7L);
}
if (*ndglgd < 2) {
goto L9999;
}
nsur2 = *ndglgd / 2;
nmod2 = *ndglgd % 2;
ilong = nsur2 << 3;
ideb = nsur2 * (nsur2 - 1) / 2 + 1;
AdvApp2Var_SysBase::mcrfill_(&ilong,
&mlgdrtl_.rootab[ideb + nmod2 * 465 - 1],
&rtlegd[1]);
/* ----------------------------- The end --------------------------------
*/
L9999:
if (ibb >= 3) {
AdvApp2Var_SysBase::mgsomsg_("MMRTPTT", 7L);
}
return 0;
} /* mmrtptt_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmsrre2_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmsrre2_(doublereal *tparam,
integer *nbrval,
doublereal *tablev,
doublereal *epsil,
integer *numint,
integer *itypen,
integer *iercod)
{
/* System generated locals */
doublereal d__1;
/* Local variables */
integer ideb, ifin, imil, ibb;
/* ***********************************************************************
*/
/* FUNCTION : */
/* -------- */
/* Find the interval corresponding to a valueb given in */
/* increasing order of real numbers with double precision. */
/* KEYWORDS : */
/* --------- */
/* TOUS,MATH_ACCES::TABLEAU&,POINT&,CORRESPONDANCE,&RANG */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* TPARAM : Value to be tested. */
/* NBRVAL : Size of TABLEV */
/* TABLEV : Table of reals. */
/* EPSIL : Epsilon of precision */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* NUMINT : Number of the interval (between 1 and NBRVAL-1). */
/* ITYPEN : = 0 TPARAM is inside the interval NUMINT */
/* = 1 : TPARAM corresponds to the lower limit of */
/* the provided interval. */
/* = 2 : TPARAM corresponds to the upper limit of */
/* the provided interval. */
/* IERCOD : Error code. */
/* = 0 : OK */
/* = 1 : TABLEV does not contain enough elements. */
/* = 2 : TPARAM out of limits of TABLEV. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* --------------------------------- */
/* There are NBRVAL values in TABLEV which stands for NBRVAL-1 intervals. */
/* One searches the interval containing TPARAM by */
/* dichotomy. Complexity of the algorithm : Log(n)/Log(2).(RBD). */
/* > */
/* ***********************************************************************
*/
/* Initialisations */
/* Parameter adjustments */
--tablev;
/* Function Body */
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 6) {
AdvApp2Var_SysBase::mgenmsg_("MMSRRE2", 7L);
}
*iercod = 0;
*numint = 0;
*itypen = 0;
ideb = 1;
ifin = *nbrval;
/* TABLEV should contain at least two values */
if (*nbrval < 2) {
*iercod = 1;
goto L9999;
}
/* TPARAM should be between extreme limits of TABLEV. */
if (*tparam < tablev[1] || *tparam > tablev[*nbrval]) {
*iercod = 2;
goto L9999;
}
/* ----------------------- SEARCH OF THE INTERVAL --------------------
*/
L1000:
/* Test end of loop (found). */
if (ideb + 1 == ifin) {
*numint = ideb;
goto L2000;
}
/* Find by dichotomy on increasing values of TABLEV. */
imil = (ideb + ifin) / 2;
if (*tparam >= tablev[ideb] && *tparam <= tablev[imil]) {
ifin = imil;
} else {
ideb = imil;
}
goto L1000;
/* -------------- TEST IF TPARAM IS NOT A VALUE --------- */
/* ------------------------OF TABLEV UP TO EPSIL ----------------------
*/
L2000:
if ((d__1 = *tparam - tablev[ideb], advapp_abs(d__1)) < *epsil) {
*itypen = 1;
goto L9999;
}
if ((d__1 = *tparam - tablev[ifin], advapp_abs(d__1)) < *epsil) {
*itypen = 2;
goto L9999;
}
/* --------------------------- THE END ----------------------------------
*/
L9999:
if (*iercod > 0) {
AdvApp2Var_SysBase::maermsg_("MMSRRE2", iercod, 7L);
}
if (ibb >= 6) {
AdvApp2Var_SysBase::mgsomsg_("MMSRRE2", 7L);
}
return 0 ;
} /* mmsrre2_ */
//=======================================================================
//function : mmtmave_
//purpose :
//=======================================================================
int mmtmave_(integer *nligne,
integer *ncolon,
integer *gposit,
integer *,//gnstoc,
doublereal *gmatri,
doublereal *vecin,
doublereal *vecout,
integer *iercod)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
logical ldbg;
integer imin, imax, i__, j, k;
doublereal somme;
integer aux;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* t */
/* CREATES PRODUCT G V */
/* WHERE THE MATRIX IS IN FORM OF PROFILE */
/* KEYWORDS : */
/* ----------- */
/* RESERVE, PRODUCT, MATRIX, PROFILE, VECTOR */
/* INPUT ARGUMENTS : */
/* -------------------- */
/* NLIGNE : NUMBER OF LINE OF THE MATRIX */
/* NCOLON : NOMBER OF COLUMN OF THE MATRIX */
/* GPOSIT: TABLE OF POSITIONING OF TERMS OF STORAGE */
/* GPOSIT(1,I) CONTAINS THE NUMBER of TERMS-1 ON LINE */
/* I IN THE PROFILE OF THE MATRIX */
/* GPOSIT(2,I) CONTAINS THE INDEX OF STORAGE OF THE DIAGONAL TERM*/
/* OF LINE I */
/* GPOSIT(3,I) CONTAINS THE INDEX COLUMN OF THE FIRST TERM OF */
/* PROFILE OF LINE I */
/* GNSTOC : NOMBER OF TERM IN THE PROFILE OF GMATRI */
/* GMATRI : MATRIX OF CONSTRAINTS IN FORM OF PROFILE */
/* VECIN : INPUT VECTOR */
/* OUTPUT ARGUMENTS : */
/* --------------------- */
/* VECOUT : VECTOR PRODUCT */
/* IERCOD : ERROR CODE */
/* COMMONS USED : */
/* ------------------ */
/* REFERENCES CALLED : */
/* --------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* DECLARATIONS */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* INITIALISATIONS */
/* ***********************************************************************
*/
/* Parameter adjustments */
--vecin;
gposit -= 4;
--vecout;
--gmatri;
/* Function Body */
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 2;
if (ldbg) {
AdvApp2Var_SysBase::mgenmsg_("MMTMAVE", 7L);
}
*iercod = 0;
/* ***********************************************************************
*/
/* PROCESSING */
/* ***********************************************************************
*/
i__1 = *ncolon;
for (i__ = 1; i__ <= i__1; ++i__) {
somme = 0.;
i__2 = *nligne;
for (j = 1; j <= i__2; ++j) {
imin = gposit[j * 3 + 3];
imax = gposit[j * 3 + 1] + gposit[j * 3 + 3] - 1;
aux = gposit[j * 3 + 2] - gposit[j * 3 + 1] - imin + 1;
if (imin <= i__ && i__ <= imax) {
k = i__ + aux;
somme += gmatri[k] * vecin[j];
}
}
vecout[i__] = somme;
}
goto L9999;
/* ***********************************************************************
*/
/* ERROR PROCESSING */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* RETURN CALLING PROGRAM */
/* ***********************************************************************
*/
L9999:
/* ___ DESALLOCATION, ... */
AdvApp2Var_SysBase::maermsg_("MMTMAVE", iercod, 7L);
if (ldbg) {
AdvApp2Var_SysBase::mgsomsg_("MMTMAVE", 7L);
}
return 0 ;
} /* mmtmave_ */
//=======================================================================
//function : mmtrpj0_
//purpose :
//=======================================================================
int mmtrpj0_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *epsi3d,
doublereal *crvlgd,
doublereal *ycvmax,
doublereal *epstrc,
integer *ncfnew)
{
/* System generated locals */
integer crvlgd_dim1, crvlgd_offset, i__1, i__2;
doublereal d__1;
/* Local variables */
integer ncut, i__;
doublereal bidon, error;
integer nd;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Lowers the degree of a curve defined on (-1,1) in the direction of */
/* Legendre with a given precision. */
/* KEYWORDS : */
/* ----------- */
/* LEGENDRE, POLYGON, TRUNCATION, CURVE, SMOOTHING. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOFMX : Max Nb of coeff. of the curve (dimensioning). */
/* NDIMEN : Dimension of the space. */
/* NCOEFF : Degree +1 of the polynom. */
/* EPSI3D : Precision required for the approximation. */
/* CRVLGD : The curve the degree which of it is required to lower. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* EPSTRC : Precision of the approximation. */
/* NCFNEW : Degree +1 of the resulting polynom. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* ------- Minimum degree that can be attained : Stop at 1 (RBD) ---------
*/
/* Parameter adjustments */
--ycvmax;
crvlgd_dim1 = *ncofmx;
crvlgd_offset = crvlgd_dim1 + 1;
crvlgd -= crvlgd_offset;
/* Function Body */
*ncfnew = 1;
/* ------------------- Init for error calculation -----------------------
*/
i__1 = *ndimen;
for (i__ = 1; i__ <= i__1; ++i__) {
ycvmax[i__] = 0.;
/* L100: */
}
*epstrc = 0.;
error = 0.;
/* Cutting of coefficients. */
ncut = 2;
/* ------ Loop on the series of Legendre :NCOEFF --> 2 (RBD) -----------
*/
i__1 = ncut;
for (i__ = *ncoeff; i__ >= i__1; --i__) {
/* Factor of renormalization. */
bidon = ((i__ - 1) * 2. + 1.) / 2.;
bidon = sqrt(bidon);
i__2 = *ndimen;
for (nd = 1; nd <= i__2; ++nd) {
ycvmax[nd] += (d__1 = crvlgd[i__ + nd * crvlgd_dim1], advapp_abs(d__1)) *
bidon;
/* L310: */
}
/* Cutting is stopped if the norm becomes too great. */
error = AdvApp2Var_MathBase::mzsnorm_(ndimen, &ycvmax[1]);
if (error > *epsi3d) {
*ncfnew = i__;
goto L9999;
}
/* --- Max error cumulee when the I-th coeff is removed. */
*epstrc = error;
/* L300: */
}
/* --------------------------------- End --------------------------------
*/
L9999:
return 0;
} /* mmtrpj0_ */
//=======================================================================
//function : mmtrpj2_
//purpose :
//=======================================================================
int mmtrpj2_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *epsi3d,
doublereal *crvlgd,
doublereal *ycvmax,
doublereal *epstrc,
integer *ncfnew)
{
/* Initialized data */
static doublereal xmaxj[57] = { .9682458365518542212948163499456,
.986013297183269340427888048593603,
1.07810420343739860362585159028115,
1.17325804490920057010925920756025,
1.26476561266905634732910520370741,
1.35169950227289626684434056681946,
1.43424378958284137759129885012494,
1.51281316274895465689402798226634,
1.5878364329591908800533936587012,
1.65970112228228167018443636171226,
1.72874345388622461848433443013543,
1.7952515611463877544077632304216,
1.85947199025328260370244491818047,
1.92161634324190018916351663207101,
1.98186713586472025397859895825157,
2.04038269834980146276967984252188,
2.09730119173852573441223706382076,
2.15274387655763462685970799663412,
2.20681777186342079455059961912859,
2.25961782459354604684402726624239,
2.31122868752403808176824020121524,
2.36172618435386566570998793688131,
2.41117852396114589446497298177554,
2.45964731268663657873849811095449,
2.50718840313973523778244737914028,
2.55385260994795361951813645784034,
2.59968631659221867834697883938297,
2.64473199258285846332860663371298,
2.68902863641518586789566216064557,
2.73261215675199397407027673053895,
2.77551570192374483822124304745691,
2.8177699459714315371037628127545,
2.85940333797200948896046563785957,
2.90044232019793636101516293333324,
2.94091151970640874812265419871976,
2.98083391718088702956696303389061,
3.02023099621926980436221568258656,
3.05912287574998661724731962377847,
3.09752842783622025614245706196447,
3.13546538278134559341444834866301,
3.17295042316122606504398054547289,
3.2099992681699613513775259670214,
3.24662674946606137764916854570219,
3.28284687953866689817670991319787,
3.31867291347259485044591136879087,
3.35411740487202127264475726990106,
3.38919225660177218727305224515862,
3.42390876691942143189170489271753,
3.45827767149820230182596660024454,
3.49230918177808483937957161007792,
3.5260130200285724149540352829756,
3.55939845146044235497103883695448,
3.59247431368364585025958062194665,
3.62524904377393592090180712976368,
3.65773070318071087226169680450936,
3.68992700068237648299565823810245,
3.72184531357268220291630708234186 };
/* System generated locals */
integer crvlgd_dim1, crvlgd_offset, i__1, i__2;
doublereal d__1;
/* Local variables */
integer ncut, i__;
doublereal bidon, error;
integer ia, nd;
doublereal bid, eps1;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Lower the degree of a curve defined on (-1,1) in the direction of */
/* Legendre with a given precision. */
/* KEYWORDS : */
/* ----------- */
/* LEGENDRE, POLYGON, TRUNCATION, CURVE, SMOOTHING. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOFMX : Max nb of coeff. of the curve (dimensioning). */
/* NDIMEN : Dimension of the space. */
/* NCOEFF : Degree +1 of the polynom. */
/* EPSI3D : Precision required for the approximation. */
/* CRVLGD : The curve the degree which of will be lowered. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* YCVMAX : Auxiliary table (error max on each dimension).
*/
/* EPSTRC : Precision of the approximation. */
/* NCFNEW : Degree +1 of the resulting polynom. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* Parameter adjustments */
--ycvmax;
crvlgd_dim1 = *ncofmx;
crvlgd_offset = crvlgd_dim1 + 1;
crvlgd -= crvlgd_offset;
/* Function Body */
/* Minimum degree that can be reached : Stop at IA (RBD). -------------
*/
ia = 2;
*ncfnew = ia;
/* Init for calculation of error. */
i__1 = *ndimen;
for (i__ = 1; i__ <= i__1; ++i__) {
ycvmax[i__] = 0.;
/* L100: */
}
*epstrc = 0.;
error = 0.;
/* Cutting of coefficients. */
ncut = ia + 1;
/* ------ Loop on the series of Jacobi :NCOEFF --> IA+1 (RBD) ----------
*/
i__1 = ncut;
for (i__ = *ncoeff; i__ >= i__1; --i__) {
/* Factor of renormalization. */
bidon = xmaxj[i__ - ncut];
i__2 = *ndimen;
for (nd = 1; nd <= i__2; ++nd) {
ycvmax[nd] += (d__1 = crvlgd[i__ + nd * crvlgd_dim1], advapp_abs(d__1)) *
bidon;
/* L310: */
}
/* One stops to cut if the norm becomes too great. */
error = AdvApp2Var_MathBase::mzsnorm_(ndimen, &ycvmax[1]);
if (error > *epsi3d) {
*ncfnew = i__;
goto L400;
}
/* --- Max error cumulated when the I-th coeff is removed. */
*epstrc = error;
/* L300: */
}
/* ------- Cutting of zero coeffs of interpolation (RBD) -------
*/
L400:
if (*ncfnew == ia) {
AdvApp2Var_MathBase::mmeps1_(&eps1);
for (i__ = ia; i__ >= 2; --i__) {
bid = 0.;
i__1 = *ndimen;
for (nd = 1; nd <= i__1; ++nd) {
bid += (d__1 = crvlgd[i__ + nd * crvlgd_dim1], advapp_abs(d__1));
/* L600: */
}
if (bid > eps1) {
*ncfnew = i__;
goto L9999;
}
/* L500: */
}
/* --- If all coeffs can be removed, this is a point. */
*ncfnew = 1;
}
/* --------------------------------- End --------------------------------
*/
L9999:
return 0;
} /* mmtrpj2_ */
//=======================================================================
//function : mmtrpj4_
//purpose :
//=======================================================================
int mmtrpj4_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *epsi3d,
doublereal *crvlgd,
doublereal *ycvmax,
doublereal *epstrc,
integer *ncfnew)
{
/* Initialized data */
static doublereal xmaxj[55] = { 1.1092649593311780079813740546678,
1.05299572648705464724876659688996,
1.0949715351434178709281698645813,
1.15078388379719068145021100764647,
1.2094863084718701596278219811869,
1.26806623151369531323304177532868,
1.32549784426476978866302826176202,
1.38142537365039019558329304432581,
1.43575531950773585146867625840552,
1.48850442653629641402403231015299,
1.53973611681876234549146350844736,
1.58953193485272191557448229046492,
1.63797820416306624705258190017418,
1.68515974143594899185621942934906,
1.73115699602477936547107755854868,
1.77604489805513552087086912113251,
1.81989256661534438347398400420601,
1.86276344480103110090865609776681,
1.90471563564740808542244678597105,
1.94580231994751044968731427898046,
1.98607219357764450634552790950067,
2.02556989246317857340333585562678,
2.06433638992049685189059517340452,
2.10240936014742726236706004607473,
2.13982350649113222745523925190532,
2.17661085564771614285379929798896,
2.21280102016879766322589373557048,
2.2484214321456956597803794333791,
2.28349755104077956674135810027654,
2.31805304852593774867640120860446,
2.35210997297725685169643559615022,
2.38568889602346315560143377261814,
2.41880904328694215730192284109322,
2.45148841120796359750021227795539,
2.48374387161372199992570528025315,
2.5155912654873773953959098501893,
2.54704548720896557684101746505398,
2.57812056037881628390134077704127,
2.60882970619319538196517982945269,
2.63918540521920497868347679257107,
2.66919945330942891495458446613851,
2.69888301230439621709803756505788,
2.72824665609081486737132853370048,
2.75730041251405791603760003778285,
2.78605380158311346185098508516203,
2.81451587035387403267676338931454,
2.84269522483114290814009184272637,
2.87060005919012917988363332454033,
2.89823818258367657739520912946934,
2.92561704377132528239806135133273,
2.95274375377994262301217318010209,
2.97962510678256471794289060402033,
3.00626759936182712291041810228171,
3.03267744830655121818899164295959,
3.05886060707437081434964933864149 };
/* System generated locals */
integer crvlgd_dim1, crvlgd_offset, i__1, i__2;
doublereal d__1;
/* Local variables */
integer ncut, i__;
doublereal bidon, error;
integer ia, nd;
doublereal bid, eps1;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Lowers the degree of a curve defined on (-1,1) in the direction of */
/* Legendre with a given precision. */
/* KEYWORDS : */
/* ----------- */
/* LEGENDRE, POLYGON, TRONCATION, CURVE, SMOOTHING. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOFMX : Max nb of coeff. of the curve (dimensioning). */
/* NDIMEN : Dimension of the space. */
/* NCOEFF : Degree +1 of the polynom. */
/* EPSI3D : Precision required for the approximation. */
/* CRVLGD : The curve which wishes to lower the degree. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* YCVMAX : Auxiliary table (max error on each dimension).
*/
/* EPSTRC : Precision of the approximation. */
/* NCFNEW : Degree +1 of the resulting polynom. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* Parameter adjustments */
--ycvmax;
crvlgd_dim1 = *ncofmx;
crvlgd_offset = crvlgd_dim1 + 1;
crvlgd -= crvlgd_offset;
/* Function Body */
/* Minimum degree that can be reached : Stop at IA (RBD). -------------
*/
ia = 4;
*ncfnew = ia;
/* Init for error calculation. */
i__1 = *ndimen;
for (i__ = 1; i__ <= i__1; ++i__) {
ycvmax[i__] = 0.;
/* L100: */
}
*epstrc = 0.;
error = 0.;
/* Cutting of coefficients. */
ncut = ia + 1;
/* ------ Loop on the series of Jacobi :NCOEFF --> IA+1 (RBD) ----------
*/
i__1 = ncut;
for (i__ = *ncoeff; i__ >= i__1; --i__) {
/* Factor of renormalization. */
bidon = xmaxj[i__ - ncut];
i__2 = *ndimen;
for (nd = 1; nd <= i__2; ++nd) {
ycvmax[nd] += (d__1 = crvlgd[i__ + nd * crvlgd_dim1], advapp_abs(d__1)) *
bidon;
/* L310: */
}
/* Stop cutting if the norm becomes too great. */
error = AdvApp2Var_MathBase::mzsnorm_(ndimen, &ycvmax[1]);
if (error > *epsi3d) {
*ncfnew = i__;
goto L400;
}
/* -- Error max cumulated when the I-eme coeff is removed. */
*epstrc = error;
/* L300: */
}
/* ------- Cutting of zero coeffs of the pole of interpolation (RBD) -------
*/
L400:
if (*ncfnew == ia) {
AdvApp2Var_MathBase::mmeps1_(&eps1);
for (i__ = ia; i__ >= 2; --i__) {
bid = 0.;
i__1 = *ndimen;
for (nd = 1; nd <= i__1; ++nd) {
bid += (d__1 = crvlgd[i__ + nd * crvlgd_dim1], advapp_abs(d__1));
/* L600: */
}
if (bid > eps1) {
*ncfnew = i__;
goto L9999;
}
/* L500: */
}
/* --- If all coeffs can be removed, this is a point. */
*ncfnew = 1;
}
/* --------------------------------- End --------------------------------
*/
L9999:
return 0;
} /* mmtrpj4_ */
//=======================================================================
//function : mmtrpj6_
//purpose :
//=======================================================================
int mmtrpj6_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *epsi3d,
doublereal *crvlgd,
doublereal *ycvmax,
doublereal *epstrc,
integer *ncfnew)
{
/* Initialized data */
static doublereal xmaxj[53] = { 1.21091229812484768570102219548814,
1.11626917091567929907256116528817,
1.1327140810290884106278510474203,
1.1679452722668028753522098022171,
1.20910611986279066645602153641334,
1.25228283758701572089625983127043,
1.29591971597287895911380446311508,
1.3393138157481884258308028584917,
1.3821288728999671920677617491385,
1.42420414683357356104823573391816,
1.46546895108549501306970087318319,
1.50590085198398789708599726315869,
1.54550385142820987194251585145013,
1.58429644271680300005206185490937,
1.62230484071440103826322971668038,
1.65955905239130512405565733793667,
1.69609056468292429853775667485212,
1.73193098017228915881592458573809,
1.7671112206990325429863426635397,
1.80166107681586964987277458875667,
1.83560897003644959204940535551721,
1.86898184653271388435058371983316,
1.90180515174518670797686768515502,
1.93410285411785808749237200054739,
1.96589749778987993293150856865539,
1.99721027139062501070081653790635,
2.02806108474738744005306947877164,
2.05846864831762572089033752595401,
2.08845055210580131460156962214748,
2.11802334209486194329576724042253,
2.14720259305166593214642386780469,
2.17600297710595096918495785742803,
2.20443832785205516555772788192013,
2.2325216999457379530416998244706,
2.2602654243075083168599953074345,
2.28768115912702794202525264301585,
2.3147799369092684021274946755348,
2.34157220782483457076721300512406,
2.36806787963276257263034969490066,
2.39427635443992520016789041085844,
2.42020656255081863955040620243062,
2.44586699364757383088888037359254,
2.47126572552427660024678584642791,
2.49641045058324178349347438430311,
2.52130850028451113942299097584818,
2.54596686772399937214920135190177,
2.5703922285006754089328998222275,
2.59459096001908861492582631591134,
2.61856915936049852435394597597773,
2.64233265984385295286445444361827,
2.66588704638685848486056711408168,
2.68923766976735295746679957665724,
2.71238965987606292679677228666411 };
/* System generated locals */
integer crvlgd_dim1, crvlgd_offset, i__1, i__2;
doublereal d__1;
/* Local variables */
integer ncut, i__;
doublereal bidon, error;
integer ia, nd;
doublereal bid, eps1;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Lowers the degree of a curve defined on (-1,1) in the direction of */
/* Legendre to a given precision. */
/* KEYWORDS : */
/* ----------- */
/* LEGENDRE,POLYGON,TRUNCATION,CURVE,SMOOTHING. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOFMX : Max nb of coeff. of the curve (dimensioning). */
/* NDIMEN : Dimension of the space. */
/* NCOEFF : Degree +1 of the polynom. */
/* EPSI3D : Precision required for the approximation. */
/* CRVLGD : The curve the degree which of will be lowered. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* YCVMAX : Auxiliary table (max error on each dimension). */
/* EPSTRC : Precision of the approximation. */
/* NCFNEW : Degree +1 of the resulting polynom. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* Parameter adjustments */
--ycvmax;
crvlgd_dim1 = *ncofmx;
crvlgd_offset = crvlgd_dim1 + 1;
crvlgd -= crvlgd_offset;
/* Function Body */
/* Minimum degree that can be reached : Stop at IA (RBD). -------------
*/
ia = 6;
*ncfnew = ia;
/* Init for error calculation. */
i__1 = *ndimen;
for (i__ = 1; i__ <= i__1; ++i__) {
ycvmax[i__] = 0.;
/* L100: */
}
*epstrc = 0.;
error = 0.;
/* Cutting of coefficients. */
ncut = ia + 1;
/* ------ Loop on the series of Jacobi :NCOEFF --> IA+1 (RBD) ----------
*/
i__1 = ncut;
for (i__ = *ncoeff; i__ >= i__1; --i__) {
/* Factor of renormalization. */
bidon = xmaxj[i__ - ncut];
i__2 = *ndimen;
for (nd = 1; nd <= i__2; ++nd) {
ycvmax[nd] += (d__1 = crvlgd[i__ + nd * crvlgd_dim1], advapp_abs(d__1)) *
bidon;
/* L310: */
}
/* Stop cutting if the norm becomes too great. */
error = AdvApp2Var_MathBase::mzsnorm_(ndimen, &ycvmax[1]);
if (error > *epsi3d) {
*ncfnew = i__;
goto L400;
}
/* --- Max error cumulated when the I-th coeff is removed. */
*epstrc = error;
/* L300: */
}
/* ------- Cutting of zero coeff. of the pole of interpolation (RBD) -------
*/
L400:
if (*ncfnew == ia) {
AdvApp2Var_MathBase::mmeps1_(&eps1);
for (i__ = ia; i__ >= 2; --i__) {
bid = 0.;
i__1 = *ndimen;
for (nd = 1; nd <= i__1; ++nd) {
bid += (d__1 = crvlgd[i__ + nd * crvlgd_dim1], advapp_abs(d__1));
/* L600: */
}
if (bid > eps1) {
*ncfnew = i__;
goto L9999;
}
/* L500: */
}
/* --- If all coeffs can be removed, this is a point. */
*ncfnew = 1;
}
/* --------------------------------- End --------------------------------
*/
L9999:
return 0;
} /* mmtrpj6_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmtrpjj_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmtrpjj_(integer *ncofmx,
integer *ndimen,
integer *ncoeff,
doublereal *epsi3d,
integer *iordre,
doublereal *crvlgd,
doublereal *ycvmax,
doublereal *errmax,
integer *ncfnew)
{
/* System generated locals */
integer crvlgd_dim1, crvlgd_offset;
/* Local variables */
integer ia;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Lower the degree of a curve defined on (-1,1) in the direction of */
/* Legendre with a given precision. */
/* KEYWORDS : */
/* ----------- */
/* LEGENDRE, POLYGON, TRUNCATION, CURVE, SMOOTHING. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOFMX : Max Nb coeff. of the curve (dimensioning). */
/* NDIMEN : Dimension of the space. */
/* NCOEFF : Degree +1 of the polynom. */
/* EPSI3D : Precision required for the approximation. */
/* IORDRE : Order of continuity at the extremities. */
/* CRVLGD : The curve the degree which of should be lowered. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* ERRMAX : Precision of the approximation. */
/* NCFNEW : Degree +1 of the resulting polynom. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* Parameter adjustments */
--ycvmax;
crvlgd_dim1 = *ncofmx;
crvlgd_offset = crvlgd_dim1 + 1;
crvlgd -= crvlgd_offset;
/* Function Body */
ia = (*iordre + 1) << 1;
if (ia == 0) {
mmtrpj0_(ncofmx, ndimen, ncoeff, epsi3d, &crvlgd[crvlgd_offset], &
ycvmax[1], errmax, ncfnew);
} else if (ia == 2) {
mmtrpj2_(ncofmx, ndimen, ncoeff, epsi3d, &crvlgd[crvlgd_offset], &
ycvmax[1], errmax, ncfnew);
} else if (ia == 4) {
mmtrpj4_(ncofmx, ndimen, ncoeff, epsi3d, &crvlgd[crvlgd_offset], &
ycvmax[1], errmax, ncfnew);
} else {
mmtrpj6_(ncofmx, ndimen, ncoeff, epsi3d, &crvlgd[crvlgd_offset], &
ycvmax[1], errmax, ncfnew);
}
/* ------------------------ End -----------------------------------------
*/
return 0;
} /* mmtrpjj_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmunivt_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmunivt_(integer *ndimen,
doublereal *vector,
doublereal *vecnrm,
doublereal *epsiln,
integer *iercod)
{
doublereal c_b2 = 10.;
/* System generated locals */
integer i__1;
doublereal d__1;
/* Local variables */
integer nchif, iunit = 1, izero;
doublereal vnorm;
integer ii;
doublereal bid;
doublereal eps0;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* CALCULATE THE NORMAL VECTOR BASING ON ANY VECTOR */
/* WITH PRECISION GIVEN BY THE USER. */
/* KEYWORDS : */
/* ----------- */
/* ALL, MATH_ACCES :: */
/* VECTEUR&, NORMALISATION, &VECTEUR */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIMEN : DIMENSION OF THE SPACE */
/* VECTOR : VECTOR TO BE NORMED */
/* EPSILN : EPSILON BELOW WHICH IT IS CONSIDERED THAT THE */
/* NORM OF THE VECTOR IS NULL. IF EPSILN<=0, A DEFAULT VALUE */
/* IS IMPOSED (10.D-17 ON VAX). */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* VECNRM : NORMED VECTOR */
/* IERCOD 101 : THE VECTOR IS NULL UP TO EPSILN. */
/* 0 : OK. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* VECTOR and VECNRM can be identic. */
/* The norm of vector is calculated and each component is divided by */
/* this norm. After this it is checked if all componentes of the */
/* vector except for one cost 0 with machine precision. In */
/* this case the quasi-null components are set to 0.D0. */
/* > */
/* ***********************************************************************
*/
/* Parameter adjustments */
--vecnrm;
--vector;
/* Function Body */
*iercod = 0;
/* -------- Precision by default : zero machine 10.D-17 on Vax ------
*/
AdvApp2Var_SysBase::maovsr8_(&nchif);
if (*epsiln <= 0.) {
i__1 = -nchif;
eps0 = AdvApp2Var_MathBase::pow__di(&c_b2, &i__1);
} else {
eps0 = *epsiln;
}
/* ------------------------- Calculation of the norm --------------------
*/
vnorm = AdvApp2Var_MathBase::mzsnorm_(ndimen, &vector[1]);
if (vnorm <= eps0) {
AdvApp2Var_SysBase::mvriraz_(ndimen, &vecnrm[1]);
*iercod = 101;
goto L9999;
}
/* ---------------------- Calculation of the vector norm ---------------
*/
izero = 0;
i__1 = (-nchif - 1) / 2;
eps0 = AdvApp2Var_MathBase::pow__di(&c_b2, &i__1);
i__1 = *ndimen;
for (ii = 1; ii <= i__1; ++ii) {
vecnrm[ii] = vector[ii] / vnorm;
if ((d__1 = vecnrm[ii], advapp_abs(d__1)) <= eps0) {
++izero;
} else {
iunit = ii;
}
/* L20: */
}
/* ------ Case when all coordinates except for one are almost null ----
*/
/* ------------- then one of coordinates costs 1.D0 or -1.D0 --------
*/
if (izero == *ndimen - 1) {
bid = vecnrm[iunit];
i__1 = *ndimen;
for (ii = 1; ii <= i__1; ++ii) {
vecnrm[ii] = 0.;
/* L30: */
}
if (bid > 0.) {
vecnrm[iunit] = 1.;
} else {
vecnrm[iunit] = -1.;
}
}
/* -------------------------------- The end -----------------------------
*/
L9999:
return 0;
} /* mmunivt_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmveps3_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmveps3_(doublereal *eps03)
{
/* Initialized data */
static char nomprg[8+1] = "MMEPS1 ";
integer ibb;
/************************************************************************
*******/
/* FUNCTION : */
/* ---------- */
/* Extraction of EPS1 from COMMON MPRCSN. */
/* KEYWORDS : */
/* ----------- */
/* MPRCSN,PRECISON,EPS3. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* Humm. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* EPS3 : space zero of the denominator (10**-9) */
/* EPS3 should value 10**-15 */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* GIVES TOLERANCES OF NULLITY IN STRIM */
/* AND LIMITS OF ITERATIVE PROCESSES */
/* GENERAL CONTEXT, MODIFIABLE BY THE UTILISER */
/* KEYWORDS : */
/* ----------- */
/* PARAMETER , TOLERANCE */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* INITIALISATION : PROFILE , **VIA MPRFTX** AT INPUT IN STRIM*/
/* LOADING OF DEFAULT VALUES OF THE PROFILE IN MPRFTX AT INPUT*/
/* IN STRIM. THEY ARE PRESERVED IN THE LOCAL VARIABLES OF MPRFTX */
/* RESET DEFAULT VALUES : MDFINT */
/* MODIFICATION INTERACTIVE BY THE USER : MDBINT */
/* ACCESS FUNCTION : MMEPS1 ... EPS1 */
/* MEPSPB ... EPS3,EPS4 */
/* MEPSLN ... EPS2, NITERM , NITERR */
/* MEPSNR ... EPS2 , NITERM */
/* MITERR ... NITERR */
/* > */
/* ***********************************************************************
*/
/* NITERM : MAX NB OF ITERATIONS */
/* NITERR : NB OF RAPID ITERATIONS */
/* EPS1 : TOLERANCE OF 3D NULL DISTANCE */
/* EPS2 : TOLERANCE OF ZERO PARAMETRIC DISTANCE */
/* EPS3 : TOLERANCE TO AVOID DIVISION BY 0.. */
/* EPS4 : TOLERANCE ANGULAR */
/* ***********************************************************************
*/
ibb = AdvApp2Var_SysBase::mnfndeb_();
if (ibb >= 5) {
AdvApp2Var_SysBase::mgenmsg_(nomprg, 6L);
}
*eps03 = mmprcsn_.eps3;
return 0;
} /* mmveps3_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmvncol_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mmvncol_(integer *ndimen,
doublereal *vecin,
doublereal *vecout,
integer *iercod)
{
/* System generated locals */
integer i__1;
/* Local variables */
logical ldbg;
integer d__;
doublereal vaux1[3], vaux2[3];
logical colin;
doublereal valaux;
integer aux;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* CALCULATE A VECTOR NON-COLINEAR TO A GIVEN NON-NULL VECTOR */
/* KEYWORDS : */
/* ----------- */
/* PUBLIC, VECTOR, FREE */
/* INPUT ARGUMENTS : */
/* -------------------- */
/* ndimen : dimension of the space */
/* vecin : input vector */
/* OUTPUT ARGUMENTS : */
/* --------------------- */
/* vecout : vector non colinear to vecin */
/* COMMONS USED : */
/* ------------------ */
/* REFERENCES CALLED : */
/* --------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* DECLARATIONS */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* INITIALISATIONS */
/* ***********************************************************************
*/
/* Parameter adjustments */
--vecout;
--vecin;
/* Function Body */
ldbg = AdvApp2Var_SysBase::mnfndeb_() >= 2;
if (ldbg) {
AdvApp2Var_SysBase::mgenmsg_("MMVNCOL", 7L);
}
*iercod = 0;
/* ***********************************************************************
*/
/* PROCESSING */
/* ***********************************************************************
*/
if (*ndimen <= 1 || *ndimen > 3) {
goto L9101;
}
d__ = 1;
aux = 0;
while(d__ <= *ndimen) {
if (vecin[d__] == 0.) {
++aux;
}
++d__;
}
if (aux == *ndimen) {
goto L9101;
}
for (d__ = 1; d__ <= 3; ++d__) {
vaux1[d__ - 1] = 0.;
}
i__1 = *ndimen;
for (d__ = 1; d__ <= i__1; ++d__) {
vaux1[d__ - 1] = vecin[d__];
vaux2[d__ - 1] = vecin[d__];
}
colin = TRUE_;
d__ = 0;
while(colin) {
++d__;
if (d__ > 3) {
goto L9101;
}
vaux2[d__ - 1] += 1;
valaux = vaux1[1] * vaux2[2] - vaux1[2] * vaux2[1];
if (valaux == 0.) {
valaux = vaux1[2] * vaux2[0] - vaux1[0] * vaux2[2];
if (valaux == 0.) {
valaux = vaux1[0] * vaux2[1] - vaux1[1] * vaux2[0];
if (valaux != 0.) {
colin = FALSE_;
}
} else {
colin = FALSE_;
}
} else {
colin = FALSE_;
}
}
if (colin) {
goto L9101;
}
i__1 = *ndimen;
for (d__ = 1; d__ <= i__1; ++d__) {
vecout[d__] = vaux2[d__ - 1];
}
goto L9999;
/* ***********************************************************************
*/
/* ERROR PROCESSING */
/* ***********************************************************************
*/
L9101:
*iercod = 1;
goto L9999;
/* ***********************************************************************
*/
/* RETURN CALLING PROGRAM */
/* ***********************************************************************
*/
L9999:
AdvApp2Var_SysBase::maermsg_("MMVNCOL", iercod, 7L);
if (ldbg) {
AdvApp2Var_SysBase::mgsomsg_("MMVNCOL", 7L);
}
return 0 ;
} /* mmvncol_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mmwprcs_
//purpose :
//=======================================================================
void AdvApp2Var_MathBase::mmwprcs_(doublereal *epsil1,
doublereal *epsil2,
doublereal *epsil3,
doublereal *epsil4,
integer *niter1,
integer *niter2)
{
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* ACCESS IN WRITING FOR COMMON MPRCSN */
/* KEYWORDS : */
/* ----------- */
/* WRITING */
/* INPUT ARGUMENTS : */
/* -------------------- */
/* EPSIL1 : TOLERANCE OF 3D NULL DISTANCE */
/* EPSIL2 : TOLERANCE OF PARAMETRIC NULL DISTANCE */
/* EPSIL3 : TOLERANCE TO AVOID DIVISION BY 0.. */
/* EPSIL4 : ANGULAR TOLERANCE */
/* NITER1 : MAX NB OF ITERATIONS */
/* NITER2 : NB OF RAPID ITERATIONS */
/* OUTPUT ARGUMENTS : */
/* --------------------- */
/* NONE */
/* COMMONS USED : */
/* ------------------ */
/* REFERENCES CALLED : */
/* --------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* DECLARATIONS */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* INITIALIZATIONS */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* PROCESSING */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* GIVES TOLERANCES OF NULLITY IN STRIM */
/* AND LIMITS OF ITERATIVE PROCESSES */
/* GENERAL CONTEXT, MODIFIABLE BY THE UTILISER */
/* KEYWORDS : */
/* ----------- */
/* PARAMETER , TOLERANCE */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* INITIALISATION : PROFILE , **VIA MPRFTX** AT INPUT IN STRIM*/
/* LOADING OF DEFAULT VALUES OF THE PROFILE IN MPRFTX AT INPUT*/
/* IN STRIM. THEY ARE PRESERVED IN THE LOCAL VARIABLES OF MPRFTX */
/* RESET DEFAULT VALUES : MDFINT */
/* MODIFICATION INTERACTIVE BY THE USER : MDBINT */
/* ACCESS FUNCTION : MMEPS1 ... EPS1 */
/* MEPSPB ... EPS3,EPS4 */
/* MEPSLN ... EPS2, NITERM , NITERR */
/* MEPSNR ... EPS2 , NITERM */
/* MITERR ... NITERR */
/* > */
/* ***********************************************************************
*/
/* NITERM : MAX NB OF ITERATIONS */
/* NITERR : NB OF RAPID ITERATIONS */
/* EPS1 : TOLERANCE OF 3D NULL DISTANCE */
/* EPS2 : TOLERANCE OF ZERO PARAMETRIC DISTANCE */
/* EPS3 : TOLERANCE TO AVOID DIVISION BY 0.. */
/* EPS4 : TOLERANCE ANGULAR */
/* ***********************************************************************
*/
mmprcsn_.eps1 = *epsil1;
mmprcsn_.eps2 = *epsil2;
mmprcsn_.eps3 = *epsil3;
mmprcsn_.eps4 = *epsil4;
mmprcsn_.niterm = *niter1;
mmprcsn_.niterr = *niter2;
return ;
} /* mmwprcs_ */
//=======================================================================
//function : AdvApp2Var_MathBase::pow__di
//purpose :
//=======================================================================
doublereal AdvApp2Var_MathBase::pow__di (doublereal *x,
integer *n)
{
doublereal result ;
integer absolute ;
result = 1.0e0 ;
if ( *n > 0 ) {absolute = *n;}
else {absolute = -*n;}
/* System generated locals */
for(integer ii = 0 ; ii < absolute ; ii++) {
result *= *x ;
}
if (*n < 0) {
result = 1.0e0 / result ;
}
return result ;
}
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Calculate integer function power not obligatory in the most efficient way ;
*/
/* KEYWORDS : */
/* ----------- */
/* POWER */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* X : argument of X**N */
/* N : power */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* return X**N */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************/
//=======================================================================
//function : pow__ii
//purpose :
//=======================================================================
integer pow__ii(integer *x,
integer *n)
{
integer result ;
integer absolute ;
result = 1 ;
if ( *n > 0 ) {absolute = *n;}
else {absolute = -*n;}
/* System generated locals */
for(integer ii = 0 ; ii < absolute ; ii++) {
result *= *x ;
}
if (*n < 0) {
result = 1 / result ;
}
return result ;
}
/* **********************************************************************
*/
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Calculate integer function power not obligatory in the most efficient way ;
*/
/* KEYWORDS : */
/* ----------- */
/* POWER */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* X : argument of X**N */
/* N : power */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* return X**N */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************/
//=======================================================================
//function : AdvApp2Var_MathBase::msc_
//purpose :
//=======================================================================
doublereal AdvApp2Var_MathBase::msc_(integer *ndimen,
doublereal *vecte1,
doublereal *vecte2)
{
/* System generated locals */
integer i__1;
doublereal ret_val;
/* Local variables */
integer i__;
doublereal x;
/************************************************************************
*******/
/* FUNCTION : */
/* ---------- */
/* Calculate the scalar product of 2 vectors in the space */
/* of dimension NDIMEN. */
/* KEYWORDS : */
/* ----------- */
/* PRODUCT MSCALAIRE. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIMEN : Dimension of the space. */
/* VECTE1,VECTE2: Vectors. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ----------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* > */
/* ***********************************************************************
*/
/* PRODUIT MSCALAIRE */
/* Parameter adjustments */
--vecte2;
--vecte1;
/* Function Body */
x = 0.;
i__1 = *ndimen;
for (i__ = 1; i__ <= i__1; ++i__) {
x += vecte1[i__] * vecte2[i__];
/* L100: */
}
ret_val = x;
/* ----------------------------------- THE END --------------------------
*/
return ret_val;
} /* msc_ */
//=======================================================================
//function : mvcvin2_
//purpose :
//=======================================================================
int mvcvin2_(integer *ncoeff,
doublereal *crvold,
doublereal *crvnew,
integer *iercod)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer m1jm1, ncfm1, j, k;
doublereal bid;
doublereal cij1, cij2;
/************************************************************************
*******/
/* FONCTION : */
/* ---------- */
/* INVERSION OF THE PARAMETERS ON CURVE 2D. */
/* KEYWORDS : */
/* ----------- */
/* CURVE,2D,INVERSION,PARAMETER. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOEFF : NB OF COEFF OF THE CURVE. */
/* CRVOLD : CURVE OF ORIGIN */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* CRVNEW : THE RESULTING CURVE AFTER CHANGE OF T BY 1-T */
/* IERCOD : 0 OK, */
/* 10 NB OF COEFF NULL OR TOO GREAT. */
/* COMMONS USED : */
/* ---------------- */
/* MCCNP */
/* REFERENCES CALLED : */
/* ---------------------- */
/* Neant */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* THE FOLLOWING CALL IS ABSOLUTELY LEGAL : */
/* CALL MVCVIN2(NCOEFF,CURVE,CURVE,IERCOD), THE TABLE CURVE */
/* BECOMES INPUT AND OUTPUT ARGUMENT (RBD). */
/* BECAUSE OF MCCNP, THE NB OF COEFF OF THE CURVE IS LIMITED TO */
/* NDGCNP+1 = 61. */
/* > */
/* ***********************************************************************
*/
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Serves to provide coefficients of the binome (triangle of Pascal). */
/* KEYWORDS : */
/* ----------- */
/* Coeff of binome from 0 to 60. read only . init par block data */
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* The coefficients of the binome form a triangular matrix. */
/* This matrix is completed in table CNP by transposition. */
/* So: CNP(I,J) = CNP(J,I) for I and J = 0, ..., 60. */
/* Initialization is done by block-data MMLLL09.RES, */
/* created by program MQINICNP.FOR (see the team (AC) ). */
/* > */
/* **********************************************************************
*/
/* ***********************************************************************
*/
/* Parameter adjustments */
crvnew -= 3;
crvold -= 3;
/* Function Body */
if (*ncoeff < 1 || *ncoeff - 1 > 60) {
*iercod = 10;
goto L9999;
}
*iercod = 0;
/* CONSTANT TERM OF THE NEW CURVE */
cij1 = crvold[3];
cij2 = crvold[4];
i__1 = *ncoeff;
for (k = 2; k <= i__1; ++k) {
cij1 += crvold[(k << 1) + 1];
cij2 += crvold[(k << 1) + 2];
}
crvnew[3] = cij1;
crvnew[4] = cij2;
if (*ncoeff == 1) {
goto L9999;
}
/* INTERMEDIARY POWERS OF THE PARAMETER */
ncfm1 = *ncoeff - 1;
m1jm1 = 1;
i__1 = ncfm1;
for (j = 2; j <= i__1; ++j) {
m1jm1 = -m1jm1;
cij1 = crvold[(j << 1) + 1];
cij2 = crvold[(j << 1) + 2];
i__2 = *ncoeff;
for (k = j + 1; k <= i__2; ++k) {
bid = mmcmcnp_.cnp[k - 1 + (j - 1) * 61];
cij1 += crvold[(k << 1) + 1] * bid;
cij2 += crvold[(k << 1) + 2] * bid;
}
crvnew[(j << 1) + 1] = cij1 * m1jm1;
crvnew[(j << 1) + 2] = cij2 * m1jm1;
}
/* TERM OF THE HIGHEST DEGREE */
crvnew[(*ncoeff << 1) + 1] = -crvold[(*ncoeff << 1) + 1] * m1jm1;
crvnew[(*ncoeff << 1) + 2] = -crvold[(*ncoeff << 1) + 2] * m1jm1;
L9999:
if (*iercod > 0) {
AdvApp2Var_SysBase::maermsg_("MVCVIN2", iercod, 7L);
}
return 0 ;
} /* mvcvin2_ */
//=======================================================================
//function : mvcvinv_
//purpose :
//=======================================================================
int mvcvinv_(integer *ncoeff,
doublereal *crvold,
doublereal *crvnew,
integer *iercod)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer m1jm1, ncfm1, j, k;
doublereal bid;
//extern /* Subroutine */ int maermsg_();
doublereal cij1, cij2, cij3;
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* INVERSION OF THE PARAMETER ON A CURBE 3D (I.E. INVERSION */
/* OF THE DIRECTION OF PARSING). */
/* KEYWORDS : */
/* ----------- */
/* CURVE,INVERSION,PARAMETER. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOEFF : NB OF COEFF OF THE CURVE. */
/* CRVOLD : CURVE OF ORIGIN */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* CRVNEW : RESULTING CURVE AFTER CHANGE OF T INTO 1-T */
/* IERCOD : 0 OK, */
/* 10 NB OF COEFF NULL OR TOO GREAT. */
/* COMMONS USED : */
/* ---------------- */
/* MCCNP */
/* REFERENCES CALLED : */
/* ---------------------- */
/* Neant */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* THE FOLLOWING CALL IS ABSOLUTELY LEGAL : */
/* CALL MVCVINV(NCOEFF,CURVE,CURVE,IERCOD), TABLE CURVE */
/* BECOMES INPUT AND OUTPUT ARGUMENT (RBD). */
/* THE NUMBER OF COEFF OF THE CURVE IS LIMITED TO NDGCNP+1 = 61 */
/* BECAUSE OF USE OF COMMON MCCNP. */
/* > */
/* ***********************************************************************
*/
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* Serves to provide the binomial coefficients (triangle of Pascal). */
/* KEYWORDS : */
/* ----------- */
/* Binomial Coeff from 0 to 60. read only . init par block data */
/* DEMSCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* The binomial coefficients form a triangular matrix. */
/* This matrix is completed in table CNP by its transposition. */
/* So: CNP(I,J) = CNP(J,I) for I and J = 0, ..., 60. */
/* Initialisation is done by block-data MMLLL09.RES, */
/* created by program MQINICNP.FOR (see the team (AC) ). */
/* > */
/* **********************************************************************
*/
/* ***********************************************************************
*/
/* Parameter adjustments */
crvnew -= 4;
crvold -= 4;
/* Function Body */
if (*ncoeff < 1 || *ncoeff - 1 > 60) {
*iercod = 10;
goto L9999;
}
*iercod = 0;
/* CONSTANT TERM OF THE NEW CURVE */
cij1 = crvold[4];
cij2 = crvold[5];
cij3 = crvold[6];
i__1 = *ncoeff;
for (k = 2; k <= i__1; ++k) {
cij1 += crvold[k * 3 + 1];
cij2 += crvold[k * 3 + 2];
cij3 += crvold[k * 3 + 3];
/* L30: */
}
crvnew[4] = cij1;
crvnew[5] = cij2;
crvnew[6] = cij3;
if (*ncoeff == 1) {
goto L9999;
}
/* INTERMEDIARY POWER OF THE PARAMETER */
ncfm1 = *ncoeff - 1;
m1jm1 = 1;
i__1 = ncfm1;
for (j = 2; j <= i__1; ++j) {
m1jm1 = -m1jm1;
cij1 = crvold[j * 3 + 1];
cij2 = crvold[j * 3 + 2];
cij3 = crvold[j * 3 + 3];
i__2 = *ncoeff;
for (k = j + 1; k <= i__2; ++k) {
bid = mmcmcnp_.cnp[k - 1 + (j - 1) * 61];
cij1 += crvold[k * 3 + 1] * bid;
cij2 += crvold[k * 3 + 2] * bid;
cij3 += crvold[k * 3 + 3] * bid;
/* L40: */
}
crvnew[j * 3 + 1] = cij1 * m1jm1;
crvnew[j * 3 + 2] = cij2 * m1jm1;
crvnew[j * 3 + 3] = cij3 * m1jm1;
/* L50: */
}
/* TERM OF THE HIGHEST DEGREE */
crvnew[*ncoeff * 3 + 1] = -crvold[*ncoeff * 3 + 1] * m1jm1;
crvnew[*ncoeff * 3 + 2] = -crvold[*ncoeff * 3 + 2] * m1jm1;
crvnew[*ncoeff * 3 + 3] = -crvold[*ncoeff * 3 + 3] * m1jm1;
L9999:
AdvApp2Var_SysBase::maermsg_("MVCVINV", iercod, 7L);
return 0;
} /* mvcvinv_ */
//=======================================================================
//function : mvgaus0_
//purpose :
//=======================================================================
int mvgaus0_(integer *kindic,
doublereal *urootl,
doublereal *hiltab,
integer *nbrval,
integer *iercod)
{
/* System generated locals */
integer i__1;
/* Local variables */
doublereal tampc[40];
NCollection_Array1<doublereal> tamp (tampc[0], 1, 40);
integer ndegl, kg, ii;
/* **********************************************************************
*/
/* FUNCTION : */
/* -------- */
/* Loading of a degree gives roots of LEGENDRE polynom */
/* DEFINED on [-1,1] and weights of Gauss quadrature formulas */
/* (based on corresponding LAGRANGIAN interpolators). */
/* The symmetry relative to 0 is used between [-1,0] and [0,1]. */
/* KEYWORDS : */
/* --------- */
/* . VOLUMIC, LEGENDRE, LAGRANGE, GAUSS */
/* INPUT ARGUMENTSE : */
/* ------------------ */
/* KINDIC : Takes values from 1 to 10 depending of the degree */
/* of the used polynom. */
/* The degree of the polynom is equal to 4 k, i.e. 4, 8, */
/* 12, 16, 20, 24, 28, 32, 36 and 40. */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* UROOTL : Roots of LEGENDRE polynom in domain [1,0] */
/* given in decreasing order. For domain [-1,0], it is */
/* necessary to take the opposite values. */
/* HILTAB : LAGRANGE interpolators associated to roots. For */
/* opposed roots, interpolatorsare equal. */
/* NBRVAL : Nb of coefficients. Is equal to the half of degree */
/* depending on the symmetry (i.e. 2*KINDIC). */
/* IERCOD : Error code: */
/* < 0 ==> Attention - Warning */
/* =-1 ==> Value of false KINDIC. NBRVAL is forced to 20 */
/* (order 40) */
/* = 0 ==> Everything is OK */
/* COMMON USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* --------------------------------- */
/* If KINDIC is not correct (i.e < 1 or > 10), the degree is set */
/* to 40 directly (ATTENTION to overload - to avoid it, */
/* preview UROOTL and HILTAB dimensioned at least to 20). */
/* The value of coefficients was calculated with quadruple precision */
/* by JJM with help of GD. */
/* Checking of roots was done by GD. */
/* See detailed explications on the listing */
/* > */
/* **********************************************************************
*/
/* ------------------------------------ */
/* ****** Test validity of KINDIC ** */
/* ------------------------------------ */
/* Parameter adjustments */
--hiltab;
--urootl;
/* Function Body */
*iercod = 0;
kg = *kindic;
if (kg < 1 || kg > 10) {
kg = 10;
*iercod = -1;
}
*nbrval = kg << 1;
ndegl = *nbrval << 1;
/* ----------------------------------------------------------------------
*/
/* ****** Load NBRVAL positive roots depending on the degree **
*/
/* ----------------------------------------------------------------------
*/
/* ATTENTION : Sign minus (-) in the loop is intentional. */
mmextrl_(&ndegl, tamp);
i__1 = *nbrval;
for (ii = 1; ii <= i__1; ++ii) {
urootl[ii] = -tamp(ii);
/* L100: */
}
/* ------------------------------------------------------------------- */
/* ****** Loading of NBRVAL Gauss weight depending on the degree ** */
/* ------------------------------------------------------------------- */
mmexthi_(&ndegl, tamp);
i__1 = *nbrval;
for (ii = 1; ii <= i__1; ++ii) {
hiltab[ii] = tamp(ii);
/* L200: */
}
/* ------------------------------- */
/* ****** End of sub-program ** */
/* ------------------------------- */
return 0;
} /* mvgaus0_ */
//=======================================================================
//function : mvpscr2_
//purpose :
//=======================================================================
int mvpscr2_(integer *ncoeff,
doublereal *curve2,
doublereal *tparam,
doublereal *pntcrb)
{
/* System generated locals */
integer i__1;
/* Local variables */
integer ndeg, kk;
doublereal xxx, yyy;
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* POSITIONING ON CURVE (NCF,2) IN SPACE OF DIMENSION 2. */
/* KEYWORDS : */
/* ----------- */
/* TOUS,MATH_ACCES:: COURBE&,POSITIONNEMENT,&POINT. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOEFF : NUMBER OF COEFFICIENTS OF THE CURVE */
/* CURVE2 : EQUATION OF CURVE 2D */
/* TPARAM : VALUE OF PARAMETER AT GIVEN POINT */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* PNTCRB : COORDINATES OF POINT CORRESPONDING TO PARAMETER */
/* TPARAM ON CURVE 2D CURVE2. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ---------------------- */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* MSCHEMA OF HORNER. */
/* > */
/* **********************************************************************
*/
/* -------- INITIALIZATIONS AND PROCESSING OF PARTICULAR CASES ----------
*/
/* ---> Cas when NCOEFF > 1 (case STANDARD). */
/* Parameter adjustments */
--pntcrb;
curve2 -= 3;
/* Function Body */
if (*ncoeff >= 2) {
goto L1000;
}
/* ---> Case when NCOEFF <= 1. */
if (*ncoeff <= 0) {
pntcrb[1] = 0.;
pntcrb[2] = 0.;
goto L9999;
} else if (*ncoeff == 1) {
pntcrb[1] = curve2[3];
pntcrb[2] = curve2[4];
goto L9999;
}
/* -------------------- MSCHEMA OF HORNER (PARTICULAR CASE) --------------
*/
L1000:
if (*tparam == 1.) {
xxx = 0.;
yyy = 0.;
i__1 = *ncoeff;
for (kk = 1; kk <= i__1; ++kk) {
xxx += curve2[(kk << 1) + 1];
yyy += curve2[(kk << 1) + 2];
/* L100: */
}
goto L5000;
} else if (*tparam == 0.) {
pntcrb[1] = curve2[3];
pntcrb[2] = curve2[4];
goto L9999;
}
/* ---------------------------- MSCHEMA OF HORNER ------------------------
*/
/* ---> TPARAM is different from 1.D0 and 0.D0. */
ndeg = *ncoeff - 1;
xxx = curve2[(*ncoeff << 1) + 1];
yyy = curve2[(*ncoeff << 1) + 2];
for (kk = ndeg; kk >= 1; --kk) {
xxx = xxx * *tparam + curve2[(kk << 1) + 1];
yyy = yyy * *tparam + curve2[(kk << 1) + 2];
/* L200: */
}
goto L5000;
/* ------------------------ RECOVER THE CALCULATED POINT ---------------
*/
L5000:
pntcrb[1] = xxx;
pntcrb[2] = yyy;
/* ------------------------------ THE END -------------------------------
*/
L9999:
return 0;
} /* mvpscr2_ */
//=======================================================================
//function : mvpscr3_
//purpose :
//=======================================================================
int mvpscr3_(integer *ncoeff,
doublereal *curve3,
doublereal *tparam,
doublereal *pntcrb)
{
/* System generated locals */
integer i__1;
/* Local variables */
integer ndeg, kk;
doublereal xxx, yyy, zzz;
/* **********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* POSITIONING ON A CURVE (3,NCF) IN THE SPACE OF DIMENSION 3. */
/* KEYWORDS : */
/* ----------- */
/* TOUS, MATH_ACCES:: COURBE&,POSITIONNEMENT,&POINT. */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NCOEFF : NB OF COEFFICIENTS OF THE CURVE */
/* CURVE3 : EQUATION OF CURVE 3D */
/* TPARAM : VALUE OF THE PARAMETER AT THE GIVEN POINT */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* PNTCRB : COORDINATES OF THE POINT CORRESPONDING TO PARAMETER */
/* TPARAM ON CURVE 3D CURVE3. */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ---------------------- */
/* Neant */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* MSCHEMA OF HORNER. */
/* > */
/* **********************************************************************
*/
/* DECLARATIONS */
/* **********************************************************************
*/
/* -------- INITIALISATIONS AND PROCESSING OF PARTICULAR CASES ----------
*/
/* ---> Case when NCOEFF > 1 (cas STANDARD). */
/* Parameter adjustments */
--pntcrb;
curve3 -= 4;
/* Function Body */
if (*ncoeff >= 2) {
goto L1000;
}
/* ---> Case when NCOEFF <= 1. */
if (*ncoeff <= 0) {
pntcrb[1] = 0.;
pntcrb[2] = 0.;
pntcrb[3] = 0.;
goto L9999;
} else if (*ncoeff == 1) {
pntcrb[1] = curve3[4];
pntcrb[2] = curve3[5];
pntcrb[3] = curve3[6];
goto L9999;
}
/* -------------------- MSCHEMA OF HORNER (PARTICULAR CASE) --------------
*/
L1000:
if (*tparam == 1.) {
xxx = 0.;
yyy = 0.;
zzz = 0.;
i__1 = *ncoeff;
for (kk = 1; kk <= i__1; ++kk) {
xxx += curve3[kk * 3 + 1];
yyy += curve3[kk * 3 + 2];
zzz += curve3[kk * 3 + 3];
/* L100: */
}
goto L5000;
} else if (*tparam == 0.) {
pntcrb[1] = curve3[4];
pntcrb[2] = curve3[5];
pntcrb[3] = curve3[6];
goto L9999;
}
/* ---------------------------- MSCHEMA OF HORNER ------------------------
*/
/* ---> Here TPARAM is different from 1.D0 and 0.D0. */
ndeg = *ncoeff - 1;
xxx = curve3[*ncoeff * 3 + 1];
yyy = curve3[*ncoeff * 3 + 2];
zzz = curve3[*ncoeff * 3 + 3];
for (kk = ndeg; kk >= 1; --kk) {
xxx = xxx * *tparam + curve3[kk * 3 + 1];
yyy = yyy * *tparam + curve3[kk * 3 + 2];
zzz = zzz * *tparam + curve3[kk * 3 + 3];
/* L200: */
}
goto L5000;
/* ------------------------ RETURN THE CALCULATED POINT ------------------
*/
L5000:
pntcrb[1] = xxx;
pntcrb[2] = yyy;
pntcrb[3] = zzz;
/* ------------------------------ THE END -------------------------------
*/
L9999:
return 0;
} /* mvpscr3_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mvsheld_
//purpose :
//=======================================================================
int AdvApp2Var_MathBase::mvsheld_(integer *n,
integer *is,
doublereal *dtab,
integer *icle)
{
/* System generated locals */
integer dtab_dim1, dtab_offset, i__1, i__2;
/* Local variables */
integer incr;
doublereal dsave;
integer i3, i4, i5, incrp1;
/************************************************************************
*******/
/* FUNCTION : */
/* ---------- */
/* PARSING OF COLUMNS OF TABLE OF REAL*8 BY SHELL METHOD*/
/* (IN INCREASING ORDER) */
/* KEYWORDS : */
/* ----------- */
/* POINT-ENTRY, PARSING, SHELL */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* N : NUMBER OF COLUMNS OF THE TABLE */
/* IS : NUMBER OF LINE OF THE TABLE */
/* DTAB : TABLE OF REAL*8 TO BE PARSED */
/* ICLE : POSITION OF THE KEY ON THE COLUMN */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* DTAB : PARSED TABLE */
/* COMMONS USED : */
/* ---------------- */
/* REFERENCES CALLED : */
/* ---------------------- */
/* Neant */
/* DESCRIPTION/NOTES/LIMITATIONS : */
/* ----------------------------------- */
/* CLASSIC SHELL METHOD : PARSING BY SERIES */
/* Declaration DTAB(IS, 1) corresponds to DTAB(IS, *) */
/* > */
/* ***********************************************************************
*/
/* Parameter adjustments */
dtab_dim1 = *is;
dtab_offset = dtab_dim1 + 1;
dtab -= dtab_offset;
/* Function Body */
if (*n <= 1) {
goto L9900;
}
/* ------------------------ */
/* INITIALIZATION OF THE SEQUENCE OF INCREMENTS */
/* FIND THE GREATEST INCREMENT SO THAT INCR < N/9 */
incr = 1;
L1001:
if (incr >= *n / 9) {
goto L1002;
}
/* ----------------------------- */
incr = incr * 3 + 1;
goto L1001;
/* LOOP ON INCREMENTS TILL INCR = 1 */
/* PARSING BY SERIES DISTANT FROM INCR */
L1002:
incrp1 = incr + 1;
/* ----------------- */
i__1 = *n;
for (i3 = incrp1; i3 <= i__1; ++i3) {
/* ---------------------- */
/* SET ELEMENT I3 AT ITS PLACE IN THE SERIES */
i4 = i3 - incr;
L1004:
if (i4 < 1) {
goto L1003;
}
/* ------------------------- */
if (dtab[*icle + i4 * dtab_dim1] <= dtab[*icle + (i4 + incr) *
dtab_dim1]) {
goto L1003;
}
i__2 = *is;
for (i5 = 1; i5 <= i__2; ++i5) {
/* ------------------ */
dsave = dtab[i5 + i4 * dtab_dim1];
dtab[i5 + i4 * dtab_dim1] = dtab[i5 + (i4 + incr) * dtab_dim1];
dtab[i5 + (i4 + incr) * dtab_dim1] = dsave;
}
/* -------- */
i4 -= incr;
goto L1004;
L1003:
;
}
/* -------- */
/* PASSAGE TO THE NEXT INCREMENT */
incr /= 3;
if (incr >= 1) {
goto L1002;
}
L9900:
return 0 ;
} /* mvsheld_ */
//=======================================================================
//function : AdvApp2Var_MathBase::mzsnorm_
//purpose :
//=======================================================================
doublereal AdvApp2Var_MathBase::mzsnorm_(integer *ndimen,
doublereal *vecteu)
{
/* System generated locals */
integer i__1;
doublereal ret_val, d__1, d__2;
/* Local variables */
doublereal xsom;
integer i__, irmax;
/* ***********************************************************************
*/
/* FUNCTION : */
/* ---------- */
/* SERVES to calculate the euclidian norm of a vector : */
/* ____________________________ */
/* Z = V V(1)**2 + V(2)**2 + ... */
/* KEYWORDS : */
/* ----------- */
/* SURMFACIQUE, */
/* INPUT ARGUMENTS : */
/* ------------------ */
/* NDIMEN : Dimension of the vector */
/* VECTEU : vector of dimension NDIMEN */
/* OUTPUT ARGUMENTS : */
/* ------------------- */
/* MZSNORM : Value of the euclidian norm of vector VECTEU */
/* COMMONS USED : */
/* ---------------- */
/* .Neant. */
/* REFERENCES CALLED : */
/* ---------------------- */
/* Type Name */
/* R*8 ABS R*8 SQRT */
/* DESCRIPTION/NOTESS/LIMITATIONS : */
/* ----------------------------------- */
/* To limit the risks of overflow, */
/* the term of the strongest absolute value is factorized : */
/* _______________________ */
/* Z = !V(1)! * V 1 + (V(2)/V(1))**2 + ... */
/* > */
/* ***********************************************************************
*/
/* DECLARATIONS */
/* ***********************************************************************
*/
/* ***********************************************************************
*/
/* PROCESSING */
/* ***********************************************************************
*/
/* ___ Find the strongest absolute value term */
/* Parameter adjustments */
--vecteu;
/* Function Body */
irmax = 1;
i__1 = *ndimen;
for (i__ = 2; i__ <= i__1; ++i__) {
if ((d__1 = vecteu[irmax], advapp_abs(d__1)) < (d__2 = vecteu[i__], advapp_abs(d__2)
)) {
irmax = i__;
}
/* L100: */
}
/* ___ Calculate the norme */
if ((d__1 = vecteu[irmax], advapp_abs(d__1)) < 1.) {
xsom = 0.;
i__1 = *ndimen;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing 2nd power */
d__1 = vecteu[i__];
xsom += d__1 * d__1;
/* L200: */
}
ret_val = sqrt(xsom);
} else {
xsom = 0.;
i__1 = *ndimen;
for (i__ = 1; i__ <= i__1; ++i__) {
if (i__ == irmax) {
xsom += 1.;
} else {
/* Computing 2nd power */
d__1 = vecteu[i__] / vecteu[irmax];
xsom += d__1 * d__1;
}
/* L300: */
}
ret_val = (d__1 = vecteu[irmax], advapp_abs(d__1)) * sqrt(xsom);
}
/* ***********************************************************************
*/
/* RETURN CALLING PROGRAM */
/* ***********************************************************************
*/
return ret_val;
} /* mzsnorm_ */