1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-26 10:19:45 +03:00
occt/src/GeomConvert/GeomConvert_CompCurveToBSplineCurve.cxx
abv 2961777a50 0024992: missing implementation for GeomConvert_CompCurveToBSplineCurve::Clear()
Method GeomConvert_CompCurveToBSplineCurve::Clear() implemented
2014-07-31 14:44:31 +04:00

254 lines
7.8 KiB
C++

// Created on: 1996-09-23
// Created by: Philippe MANGIN
// Copyright (c) 1996-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// Modified: Fri Jul 10 11:23:35 1998
// JCT : Add WithRatio,MinM
#include <GeomConvert_CompCurveToBSplineCurve.ixx>
#include <Geom_BSplineCurve.hxx>
#include <GeomConvert.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_Array1OfInteger.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <gp_Vec.hxx>
#include <gp_Pnt.hxx>
#include <Precision.hxx>
//=======================================================================
//function : constructor
//purpose :
//=======================================================================
GeomConvert_CompCurveToBSplineCurve::GeomConvert_CompCurveToBSplineCurve (const Convert_ParameterisationType theParameterisation)
: myTol (Precision::Confusion()),
myType (theParameterisation)
{
//
}
//=======================================================================
//function : constructor
//purpose :
//=======================================================================
GeomConvert_CompCurveToBSplineCurve::
GeomConvert_CompCurveToBSplineCurve(const Handle(Geom_BoundedCurve)& BasisCurve,
const Convert_ParameterisationType Parameterisation) :
myTol(Precision::Confusion()),
myType(Parameterisation)
{
Handle(Geom_BSplineCurve) Bs =
Handle(Geom_BSplineCurve)::DownCast(BasisCurve);
if (!Bs.IsNull()) {
myCurve = Handle(Geom_BSplineCurve)::DownCast(BasisCurve->Copy());
}
else {
myCurve = GeomConvert::CurveToBSplineCurve (BasisCurve, myType);
}
}
//=======================================================================
//function : Add
//purpose :
//=======================================================================
Standard_Boolean GeomConvert_CompCurveToBSplineCurve::
Add(const Handle(Geom_BoundedCurve)& NewCurve,
const Standard_Real Tolerance,
const Standard_Boolean After,
const Standard_Boolean WithRatio,
const Standard_Integer MinM)
{
// conversion
Handle(Geom_BSplineCurve) Bs = Handle(Geom_BSplineCurve)::DownCast (NewCurve);
if (!Bs.IsNull())
{
Bs = Handle(Geom_BSplineCurve)::DownCast (NewCurve->Copy());
}
else
{
Bs = GeomConvert::CurveToBSplineCurve (NewCurve, myType);
}
if (myCurve.IsNull())
{
myCurve = Bs;
return Standard_True;
}
Standard_Boolean avant, apres;
myTol = Tolerance;
Standard_Integer LBs = Bs->NbPoles(), LCb = myCurve->NbPoles();
avant = (( myCurve->Pole(1).Distance(Bs->Pole(1)) < myTol)||
( myCurve->Pole(1).Distance(Bs->Pole(LBs))< myTol));
apres = (( myCurve->Pole(LCb).Distance(Bs->Pole(1)) < myTol) ||
( myCurve->Pole(LCb).Distance(Bs->Pole(LBs))< myTol));
// myCurve est (sera) elle fermee ?
if (avant && apres) { // On leve l'ambiguite
if (After) avant = Standard_False;
else apres = Standard_False;
}
// Ajout Apres ?
if ( apres) {
if (myCurve->Pole(LCb).Distance(Bs->Pole(LBs)) < myTol) {Bs->Reverse();}
Add(myCurve, Bs, Standard_True, WithRatio, MinM);
return Standard_True;
}
// Ajout avant ?
else if (avant) {
if (myCurve->Pole(1).Distance(Bs->Pole(1)) < myTol) {Bs->Reverse();}
Add(Bs, myCurve, Standard_False, WithRatio, MinM);
return Standard_True;
}
return Standard_False;
}
void GeomConvert_CompCurveToBSplineCurve::Add(
Handle(Geom_BSplineCurve)& FirstCurve,
Handle(Geom_BSplineCurve)& SecondCurve,
const Standard_Boolean After,
const Standard_Boolean WithRatio,
const Standard_Integer MinM)
{
// Harmonisation des degres.
Standard_Integer Deg = Max(FirstCurve->Degree(), SecondCurve->Degree());
if (FirstCurve->Degree() < Deg) { FirstCurve->IncreaseDegree(Deg); }
if (SecondCurve->Degree() < Deg) { SecondCurve->IncreaseDegree(Deg); }
// Declarationd
Standard_Real L1, L2, U_de_raccord;
Standard_Integer ii, jj;
Standard_Real Ratio=1, Ratio1, Ratio2, Delta1, Delta2;
Standard_Integer NbP1 = FirstCurve->NbPoles(), NbP2 = SecondCurve->NbPoles();
Standard_Integer NbK1 = FirstCurve->NbKnots(), NbK2 = SecondCurve->NbKnots();
TColStd_Array1OfReal Noeuds (1, NbK1+NbK2-1);
TColgp_Array1OfPnt Poles (1, NbP1+ NbP2-1);
TColStd_Array1OfReal Poids (1, NbP1+ NbP2-1);
TColStd_Array1OfInteger Mults (1, NbK1+NbK2-1);
// Ratio de reparametrisation (C1 si possible)
if (WithRatio) {
L1 = FirstCurve->DN(FirstCurve->LastParameter(), 1).Magnitude();
L2 = SecondCurve->DN(SecondCurve->FirstParameter(), 1). Magnitude();
if ( (L1 > Precision::Confusion()) && (L2 > Precision::Confusion()) ) {
Ratio = L1 / L2;
}
if ( (Ratio < Precision::Confusion()) || (Ratio > 1/Precision::Confusion()) ) {Ratio = 1;}
}
if (After) {
// On ne bouge pas la premiere courbe
Ratio1 = 1;
Delta1 = 0;
Ratio2 = 1/Ratio;
Delta2 = Ratio2*SecondCurve->Knot(1) - FirstCurve->Knot(NbK1);
U_de_raccord = FirstCurve->LastParameter();
}
else {
// On ne bouge pas la seconde courbe
Ratio1 = Ratio;
Delta1 = Ratio1*FirstCurve->Knot(NbK1) - SecondCurve->Knot(1);
Ratio2 = 1;
Delta2 = 0;
U_de_raccord = SecondCurve->FirstParameter();
}
// Les Noeuds
Standard_Real eps;
for (ii=1; ii<NbK1; ii++) {
Noeuds(ii) = Ratio1*FirstCurve->Knot(ii) - Delta1;
if(ii > 1) {
eps = Epsilon (Abs(Noeuds(ii-1)));
if( eps < 5.e-10 ) eps = 5.e-10;
if(Noeuds(ii) - Noeuds(ii-1) <= eps) {
Noeuds(ii) += eps;
}
}
Mults(ii) = FirstCurve->Multiplicity(ii);
}
Noeuds(NbK1) = U_de_raccord;
eps = Epsilon (Abs(Noeuds(NbK1-1)));
if(Noeuds(NbK1) - Noeuds(NbK1-1) <= eps) {
Noeuds(NbK1) += eps;
}
Mults(NbK1) = FirstCurve->Degree();
for (ii=2, jj=NbK1+1; ii<=NbK2; ii++, jj++) {
Noeuds(jj) = Ratio2*SecondCurve->Knot(ii) - Delta2;
eps = Epsilon (Abs(Noeuds(jj-1)));
if( eps < 5.e-10 ) eps = 5.e-10;
if(Noeuds(jj) - Noeuds(jj-1) <= eps) {
Noeuds(jj) += eps;
}
Mults(jj) = SecondCurve->Multiplicity(ii);
}
Ratio = FirstCurve->Weight(NbP1) ;
Ratio /= SecondCurve->Weight(1) ;
// Les Poles et Poids
for (ii=1; ii<NbP1; ii++) {
Poles(ii) = FirstCurve->Pole(ii);
Poids(ii) = FirstCurve->Weight(ii);
}
for (ii=1, jj=NbP1; ii<=NbP2; ii++, jj++) {
Poles(jj) = SecondCurve->Pole(ii);
//
// attentiion les poids ne se raccord pas forcement C0
// d'ou Ratio
//
Poids(jj) = Ratio * SecondCurve->Weight(ii);
}
// Creation de la BSpline
myCurve = new (Geom_BSplineCurve) (Poles, Poids, Noeuds, Mults, Deg);
// Reduction eventuelle de la multiplicite jusqu'a MinM
Standard_Boolean Ok = Standard_True;
Standard_Integer M = Mults(NbK1);
while ( (M>MinM) && Ok) {
M--;
Ok = myCurve->RemoveKnot(NbK1, M, myTol);
}
}
//=======================================================================
//function : BSplineCurve
//purpose :
//=======================================================================
Handle(Geom_BSplineCurve) GeomConvert_CompCurveToBSplineCurve::BSplineCurve() const
{
return myCurve;
}
//=======================================================================
//function : Clear
//purpose :
//=======================================================================
void GeomConvert_CompCurveToBSplineCurve::Clear()
{
myCurve.Nullify();
}