1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-08 18:40:55 +03:00
occt/src/Geom2d/Geom2d_Parabola.hxx
abv 92efcf78a6 0026936: Drawbacks of inlining in new type system in OCCT 7.0 -- automatic
Automatic restore of IMPLEMENT_STANDARD_RTTIEXT macro (upgrade -rtti)
2015-12-04 14:15:06 +03:00

233 lines
8.6 KiB
C++

// Created on: 1993-03-24
// Created by: JCV
// Copyright (c) 1993-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _Geom2d_Parabola_HeaderFile
#define _Geom2d_Parabola_HeaderFile
#include <Standard.hxx>
#include <Standard_Type.hxx>
#include <Standard_Real.hxx>
#include <Geom2d_Conic.hxx>
#include <Standard_Boolean.hxx>
#include <Standard_Integer.hxx>
class Standard_ConstructionError;
class Standard_RangeError;
class gp_Parab2d;
class gp_Ax2d;
class gp_Ax22d;
class gp_Pnt2d;
class gp_Vec2d;
class gp_Trsf2d;
class Geom2d_Geometry;
class Geom2d_Parabola;
DEFINE_STANDARD_HANDLE(Geom2d_Parabola, Geom2d_Conic)
//! Describes a parabola in the plane (2D space).
//! A parabola is defined by its focal length (i.e. the
//! distance between its focus and its apex) and is
//! positioned in the plane with a coordinate system
//! (gp_Ax22d object) where:
//! - the origin is the apex of the parabola, and
//! - the "X Axis" defines the axis of symmetry; the
//! parabola is on the positive side of this axis.
//! This coordinate system is the local coordinate
//! system of the parabola.
//! The orientation (direct or indirect) of the local
//! coordinate system gives an explicit orientation to the
//! parabola, determining the direction in which the
//! parameter increases along the parabola.
//! The Geom_Parabola parabola is parameterized as follows:
//! P(U) = O + U*U/(4.*F)*XDir + U*YDir, where:
//! - P is the point of parameter U,
//! - O, XDir and YDir are respectively the origin, "X
//! Direction" and "Y Direction" of its local coordinate system,
//! - F is the focal length of the parabola.
//! The parameter of the parabola is therefore its Y
//! coordinate in the local coordinate system, with the "X
//! Axis" of the local coordinate system defining the
//! origin of the parameter.
//! The parameter range is ] -infinite,+infinite [.
class Geom2d_Parabola : public Geom2d_Conic
{
public:
//! Creates a parabola from a non persistent one.
Standard_EXPORT Geom2d_Parabola(const gp_Parab2d& Prb);
//! Creates a parabola with its "MirrorAxis" and it's focal
//! length "Focal".
//! MirrorAxis is the axis of symmetry of the curve, it is the
//! "XAxis". The "YAxis" is parallel to the directrix of the
//! parabola and is in the direct sense if Sense is True.
//! The "Location" point of "MirrorAxis" is the vertex of the parabola
//! Raised if Focal < 0.0
Standard_EXPORT Geom2d_Parabola(const gp_Ax2d& MirrorAxis, const Standard_Real Focal, const Standard_Boolean Sense = Standard_True);
//! Creates a parabola with its Axis and it's focal
//! length "Focal".
//! The XDirection of Axis is the axis of symmetry of the curve,
//! it is the "XAxis". The "YAxis" is parallel to the directrix of the
//! parabola. The "Location" point of "Axis" is the vertex
//! of the parabola.
//! Raised if Focal < 0.0
Standard_EXPORT Geom2d_Parabola(const gp_Ax22d& Axis, const Standard_Real Focal);
//! D is the directrix of the parabola and F the focus point.
//! The symmetry axis "XAxis" of the parabola is normal to the
//! directrix and pass through the focus point F, but its
//! "Location" point is the vertex of the parabola.
//! The "YAxis" of the parabola is parallel to D and its "Location"
//! point is the vertex of the parabola.
Standard_EXPORT Geom2d_Parabola(const gp_Ax2d& D, const gp_Pnt2d& F);
//! Assigns the value Focal to the focal length of this parabola.
//! Exceptions Standard_ConstructionError if Focal is negative.
Standard_EXPORT void SetFocal (const Standard_Real Focal);
//! Converts the gp_Parab2d parabola Prb into this parabola.
Standard_EXPORT void SetParab2d (const gp_Parab2d& Prb);
//! Returns the non persistent parabola from gp with the same
//! geometric properties as <me>.
Standard_EXPORT gp_Parab2d Parab2d() const;
//! Computes the parameter on the reversed parabola
//! for the point of parameter U on this parabola.
//! For a parabola, the returned value is -U.
Standard_EXPORT Standard_Real ReversedParameter (const Standard_Real U) const Standard_OVERRIDE;
//! Returns RealFirst from Standard.
Standard_EXPORT Standard_Real FirstParameter() const Standard_OVERRIDE;
//! Returns RealLast from Standard.
Standard_EXPORT Standard_Real LastParameter() const Standard_OVERRIDE;
//! Returns False
Standard_EXPORT Standard_Boolean IsClosed() const Standard_OVERRIDE;
//! Returns False
Standard_EXPORT Standard_Boolean IsPeriodic() const Standard_OVERRIDE;
//! The directrix is parallel to the "YAxis" of the parabola.
//! The "Location" point of the directrix is the intersection
//! point between the directrix and the symmetry axis ("XAxis") of the parabola.
Standard_EXPORT gp_Ax2d Directrix() const;
//! Returns the eccentricity e = 1.0
Standard_EXPORT Standard_Real Eccentricity() const Standard_OVERRIDE;
//! Computes the focus of this parabola The focus is on the
//! positive side of the "X Axis" of the local coordinate system of the parabola.
Standard_EXPORT gp_Pnt2d Focus() const;
//! Computes the focal length of this parabola.
//! The focal length is the distance between the apex and the focus of the parabola.
Standard_EXPORT Standard_Real Focal() const;
//! Computes the parameter of this parabola, which is
//! the distance between its focus and its directrix. This
//! distance is twice the focal length.
//! If P is the parameter of the parabola, the equation of
//! the parabola in its local coordinate system is: Y**2 = 2.*P*X.
Standard_EXPORT Standard_Real Parameter() const;
//! Returns in P the point of parameter U.
//! If U = 0 the returned point is the origin of the XAxis and
//! the YAxis of the parabola and it is the vertex of the parabola.
//! P = S + F * (U * U * XDir + * U * YDir)
//! where S is the vertex of the parabola, XDir the XDirection and
//! YDir the YDirection of the parabola's local coordinate system.
Standard_EXPORT void D0 (const Standard_Real U, gp_Pnt2d& P) const Standard_OVERRIDE;
//! Returns the point P of parameter U and the first derivative V1.
Standard_EXPORT void D1 (const Standard_Real U, gp_Pnt2d& P, gp_Vec2d& V1) const Standard_OVERRIDE;
//! Returns the point P of parameter U, the first and second
//! derivatives V1 and V2.
Standard_EXPORT void D2 (const Standard_Real U, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2) const Standard_OVERRIDE;
//! Returns the point P of parameter U, the first second and third
//! derivatives V1 V2 and V3.
Standard_EXPORT void D3 (const Standard_Real U, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2, gp_Vec2d& V3) const Standard_OVERRIDE;
//! For the point of parameter U of this parabola,
//! computes the vector corresponding to the Nth derivative.
//! Exceptions Standard_RangeError if N is less than 1.
Standard_EXPORT gp_Vec2d DN (const Standard_Real U, const Standard_Integer N) const Standard_OVERRIDE;
//! Applies the transformation T to this parabola.
Standard_EXPORT void Transform (const gp_Trsf2d& T) Standard_OVERRIDE;
//! Computes the parameter on the transformed
//! parabola, for the point of parameter U on this parabola.
//! For a parabola, the returned value is equal to U
//! multiplied by the scale factor of transformation T.
Standard_EXPORT Standard_Real TransformedParameter (const Standard_Real U, const gp_Trsf2d& T) const Standard_OVERRIDE;
//! Returns a coefficient to compute the parameter on
//! the transformed curve for the transform of the
//! point on <me>.
//!
//! Transformed(T)->Value(U * ParametricTransformation(T))
//!
//! is the same point as
//!
//! Value(U).Transformed(T)
//!
//! This methods returns T.ScaleFactor()
Standard_EXPORT Standard_Real ParametricTransformation (const gp_Trsf2d& T) const Standard_OVERRIDE;
//! Creates a new object, which is a copy of this parabola.
Standard_EXPORT Handle(Geom2d_Geometry) Copy() const Standard_OVERRIDE;
DEFINE_STANDARD_RTTIEXT(Geom2d_Parabola,Geom2d_Conic)
protected:
private:
Standard_Real focalLength;
};
#endif // _Geom2d_Parabola_HeaderFile