mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
262 lines
16 KiB
C++
262 lines
16 KiB
C++
// Created on: 2014-05-22
|
|
// Created by: Varvara POSKONINA
|
|
// Copyright (c) 2005-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef _SelectMgr_RectangularFrustum_HeaderFile
|
|
#define _SelectMgr_RectangularFrustum_HeaderFile
|
|
|
|
#include <SelectMgr_Frustum.hxx>
|
|
|
|
//! This class contains representation of rectangular selecting frustum, created in case
|
|
//! of point and box selection, and algorithms for overlap detection between selecting
|
|
//! frustum and sensitive entities. The principle of frustum calculation:
|
|
//! - for point selection: on a near view frustum plane rectangular neighborhood of
|
|
//! user-picked point is created according to the pixel tolerance
|
|
//! given and then this rectangle is projected onto far view frustum
|
|
//! plane. This rectangles define the parallel bases of selecting frustum;
|
|
//! - for box selection: box points are projected onto near and far view frustum planes.
|
|
//! These 2 projected rectangles define parallel bases of selecting frustum.
|
|
//! Overlap detection tests are implemented according to the terms of separating axis
|
|
//! theorem (SAT).
|
|
class SelectMgr_RectangularFrustum : public SelectMgr_Frustum<4>
|
|
{
|
|
public:
|
|
|
|
//! Auxiliary structure to define selection primitive (point or box)
|
|
//! In case of point selection min and max points are identical.
|
|
struct SelectionRectangle
|
|
{
|
|
SelectionRectangle()
|
|
: myMinPnt(gp_Pnt2d(RealLast(), RealLast())),
|
|
myMaxPnt(gp_Pnt2d(RealLast(), RealLast())) {}
|
|
|
|
const gp_Pnt2d& MousePos() const { return myMinPnt; }
|
|
void SetMousePos (const gp_Pnt2d& thePos) { myMinPnt = thePos; myMaxPnt = thePos; }
|
|
|
|
const gp_Pnt2d& MinPnt() const { return myMinPnt; }
|
|
void SetMinPnt (const gp_Pnt2d& theMinPnt) { myMinPnt = theMinPnt; }
|
|
|
|
const gp_Pnt2d& MaxPnt() const { return myMaxPnt; }
|
|
void SetMaxPnt (const gp_Pnt2d& theMaxPnt) { myMaxPnt = theMaxPnt; }
|
|
|
|
private:
|
|
|
|
gp_Pnt2d myMinPnt;
|
|
gp_Pnt2d myMaxPnt;
|
|
};
|
|
|
|
//! Creates rectangular selecting frustum.
|
|
Standard_EXPORT SelectMgr_RectangularFrustum();
|
|
|
|
//! Initializes volume according to the point and given pixel tolerance
|
|
Standard_EXPORT void Init (const gp_Pnt2d& thePoint);
|
|
|
|
//! Initializes volume according to the selected rectangle
|
|
Standard_EXPORT void Init (const gp_Pnt2d& theMinPnt,
|
|
const gp_Pnt2d& theMaxPnt);
|
|
|
|
//! Returns True if Frustum (theVertices) intersects the circle.
|
|
Standard_EXPORT Standard_Boolean isIntersectCircle (const Standard_Real theRadius,
|
|
const gp_Pnt& theCenter,
|
|
const gp_Trsf& theTrsf,
|
|
const TColgp_Array1OfPnt& theVertices) const;
|
|
|
|
//! Returns True if Seg1 (thePnt1Seg1, thePnt2Seg1) and Seg2 (thePnt1Seg2, thePnt2Seg2) intersect.
|
|
Standard_EXPORT Standard_Boolean isSegmentsIntersect (const gp_Pnt& thePnt1Seg1,
|
|
const gp_Pnt& thePnt2Seg1,
|
|
const gp_Pnt& thePnt1Seg2,
|
|
const gp_Pnt& thePnt2Seg2) const;
|
|
|
|
//! Builds volume according to internal parameters.
|
|
//! NOTE: it should be called after Init() method
|
|
Standard_EXPORT virtual void Build() Standard_OVERRIDE;
|
|
|
|
//! Checks if it is possible to scale this frustum.
|
|
//! It is true for frustum built on a single point.
|
|
Standard_EXPORT virtual Standard_Boolean IsScalable() const Standard_OVERRIDE;
|
|
|
|
//! IMPORTANT: Scaling makes sense only for frustum built on a single point!
|
|
//! Note that this method does not perform any checks on type of the frustum.
|
|
//! Returns a copy of the frustum resized according to the scale factor given
|
|
//! and transforms it using the matrix given.
|
|
//! There are no default parameters, but in case if:
|
|
//! - transformation only is needed: @theScaleFactor must be initialized as any negative value;
|
|
//! - scale only is needed: @theTrsf must be set to gp_Identity.
|
|
//! Builder is an optional argument that represents corresponding settings for re-constructing transformed
|
|
//! frustum from scratch. Can be null if reconstruction is not expected furthermore.
|
|
Standard_EXPORT virtual Handle(SelectMgr_BaseIntersector) ScaleAndTransform (const Standard_Integer theScaleFactor,
|
|
const gp_GTrsf& theTrsf,
|
|
const Handle(SelectMgr_FrustumBuilder)& theBuilder) const Standard_OVERRIDE;
|
|
|
|
// SAT Tests for different objects
|
|
|
|
//! SAT intersection test between defined volume and given axis-aligned box
|
|
Standard_EXPORT virtual Standard_Boolean OverlapsBox (const SelectMgr_Vec3& theBoxMin,
|
|
const SelectMgr_Vec3& theBoxMax,
|
|
const SelectMgr_ViewClipRange& theClipRange,
|
|
SelectBasics_PickResult& thePickResult) const Standard_OVERRIDE;
|
|
|
|
//! Returns true if selecting volume is overlapped by axis-aligned bounding box
|
|
//! with minimum corner at point theMinPt and maximum at point theMaxPt
|
|
Standard_EXPORT virtual Standard_Boolean OverlapsBox (const SelectMgr_Vec3& theBoxMin,
|
|
const SelectMgr_Vec3& theBoxMax,
|
|
Standard_Boolean* theInside) const Standard_OVERRIDE;
|
|
|
|
//! Intersection test between defined volume and given point
|
|
Standard_EXPORT virtual Standard_Boolean OverlapsPoint (const gp_Pnt& thePnt,
|
|
const SelectMgr_ViewClipRange& theClipRange,
|
|
SelectBasics_PickResult& thePickResult) const Standard_OVERRIDE;
|
|
|
|
//! Intersection test between defined volume and given point
|
|
Standard_EXPORT virtual Standard_Boolean OverlapsPoint (const gp_Pnt& thePnt) const Standard_OVERRIDE;
|
|
|
|
//! SAT intersection test between defined volume and given ordered set of points,
|
|
//! representing line segments. The test may be considered of interior part or
|
|
//! boundary line defined by segments depending on given sensitivity type
|
|
Standard_EXPORT virtual Standard_Boolean OverlapsPolygon (const TColgp_Array1OfPnt& theArrayOfPnts,
|
|
Select3D_TypeOfSensitivity theSensType,
|
|
const SelectMgr_ViewClipRange& theClipRange,
|
|
SelectBasics_PickResult& thePickResult) const Standard_OVERRIDE;
|
|
|
|
//! Checks if line segment overlaps selecting frustum
|
|
Standard_EXPORT virtual Standard_Boolean OverlapsSegment (const gp_Pnt& thePnt1,
|
|
const gp_Pnt& thePnt2,
|
|
const SelectMgr_ViewClipRange& theClipRange,
|
|
SelectBasics_PickResult& thePickResult) const Standard_OVERRIDE;
|
|
|
|
//! SAT intersection test between defined volume and given triangle. The test may
|
|
//! be considered of interior part or boundary line defined by triangle vertices
|
|
//! depending on given sensitivity type
|
|
Standard_EXPORT virtual Standard_Boolean OverlapsTriangle (const gp_Pnt& thePnt1,
|
|
const gp_Pnt& thePnt2,
|
|
const gp_Pnt& thePnt3,
|
|
Select3D_TypeOfSensitivity theSensType,
|
|
const SelectMgr_ViewClipRange& theClipRange,
|
|
SelectBasics_PickResult& thePickResult) const Standard_OVERRIDE;
|
|
|
|
//! Intersection test between defined volume and given sphere
|
|
Standard_EXPORT virtual Standard_Boolean OverlapsSphere (const gp_Pnt& theCenter,
|
|
const Standard_Real theRadius,
|
|
const SelectMgr_ViewClipRange& theClipRange,
|
|
SelectBasics_PickResult& thePickResult) const Standard_OVERRIDE;
|
|
|
|
//! Intersection test between defined volume and given sphere
|
|
Standard_EXPORT virtual Standard_Boolean OverlapsSphere (const gp_Pnt& theCenter,
|
|
const Standard_Real theRadius,
|
|
Standard_Boolean* theInside) const Standard_OVERRIDE;
|
|
|
|
//! Returns true if selecting volume is overlapped by cylinder (or cone) with radiuses theBottomRad
|
|
//! and theTopRad, height theHeight and transformation to apply theTrsf.
|
|
Standard_EXPORT virtual Standard_Boolean OverlapsCylinder (const Standard_Real theBottomRad,
|
|
const Standard_Real theTopRad,
|
|
const Standard_Real theHeight,
|
|
const gp_Trsf& theTrsf,
|
|
const Standard_Boolean theIsHollow,
|
|
const SelectMgr_ViewClipRange& theClipRange,
|
|
SelectBasics_PickResult& thePickResult) const Standard_OVERRIDE;
|
|
|
|
//! Returns true if selecting volume is overlapped by cylinder (or cone) with radiuses theBottomRad
|
|
//! and theTopRad, height theHeight and transformation to apply theTrsf.
|
|
Standard_EXPORT virtual Standard_Boolean OverlapsCylinder (const Standard_Real theBottomRad,
|
|
const Standard_Real theTopRad,
|
|
const Standard_Real theHeight,
|
|
const gp_Trsf& theTrsf,
|
|
const Standard_Boolean theIsHollow,
|
|
Standard_Boolean* theInside = NULL) const Standard_OVERRIDE;
|
|
|
|
//! Returns true if selecting volume is overlapped by circle with radius theRadius,
|
|
//! boolean theIsFilled and transformation to apply theTrsf.
|
|
//! The position and orientation of the circle are specified
|
|
//! via theTrsf transformation for gp::XOY() with center in gp::Origin().
|
|
Standard_EXPORT virtual Standard_Boolean OverlapsCircle (const Standard_Real theBottomRad,
|
|
const gp_Trsf& theTrsf,
|
|
const Standard_Boolean theIsFilled,
|
|
const SelectMgr_ViewClipRange& theClipRange,
|
|
SelectBasics_PickResult& thePickResult) const Standard_OVERRIDE;
|
|
|
|
//! Returns true if selecting volume is overlapped by circle with radius theRadius,
|
|
//! boolean theIsFilled and transformation to apply theTrsf.
|
|
//! The position and orientation of the circle are specified
|
|
//! via theTrsf transformation for gp::XOY() with center in gp::Origin().
|
|
Standard_EXPORT virtual Standard_Boolean OverlapsCircle (const Standard_Real theBottomRad,
|
|
const gp_Trsf& theTrsf,
|
|
const Standard_Boolean theIsFilled,
|
|
Standard_Boolean* theInside = NULL) const Standard_OVERRIDE;
|
|
|
|
//! Measures distance between 3d projection of user-picked
|
|
//! screen point and given point theCOG.
|
|
//! It makes sense only for frustums built on a single point.
|
|
Standard_EXPORT virtual Standard_Real DistToGeometryCenter (const gp_Pnt& theCOG) const Standard_OVERRIDE;
|
|
|
|
//! Calculates the point on a view ray that was detected during the run of selection algo by given depth
|
|
Standard_EXPORT virtual gp_Pnt DetectedPoint (const Standard_Real theDepth) const Standard_OVERRIDE;
|
|
|
|
//! A set of helper functions that return rectangular selecting frustum data
|
|
const gp_Pnt* GetVertices() const { return myVertices; }
|
|
|
|
//! Returns projection of 2d mouse picked point or projection
|
|
//! of center of 2d rectangle (for point and rectangular selection
|
|
//! correspondingly) onto near view frustum plane
|
|
virtual const gp_Pnt& GetNearPnt() const Standard_OVERRIDE { return myNearPickedPnt; }
|
|
|
|
//! Returns projection of 2d mouse picked point or projection
|
|
//! of center of 2d rectangle (for point and rectangular selection
|
|
//! correspondingly) onto far view frustum plane
|
|
virtual const gp_Pnt& GetFarPnt() const Standard_OVERRIDE { return myFarPickedPnt; }
|
|
|
|
//! Returns view ray direction.
|
|
virtual const gp_Dir& GetViewRayDirection() const Standard_OVERRIDE { return myViewRayDir; }
|
|
|
|
//! Returns current mouse coordinates.
|
|
Standard_EXPORT virtual const gp_Pnt2d& GetMousePosition() const Standard_OVERRIDE;
|
|
|
|
//! Stores plane equation coefficients (in the following form:
|
|
//! Ax + By + Cz + D = 0) to the given vector
|
|
Standard_EXPORT virtual void GetPlanes (NCollection_Vector<SelectMgr_Vec4>& thePlaneEquations) const Standard_OVERRIDE;
|
|
|
|
//! Dumps the content of me into the stream
|
|
Standard_EXPORT virtual void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const Standard_OVERRIDE;
|
|
|
|
protected:
|
|
|
|
Standard_EXPORT void segmentSegmentDistance (const gp_Pnt& theSegPnt1,
|
|
const gp_Pnt& theSegPnt2,
|
|
SelectBasics_PickResult& thePickResult) const;
|
|
|
|
Standard_EXPORT bool segmentPlaneIntersection (const gp_Vec& thePlane,
|
|
const gp_Pnt& thePntOnPlane,
|
|
SelectBasics_PickResult& thePickResult) const;
|
|
|
|
private:
|
|
|
|
void cacheVertexProjections (SelectMgr_RectangularFrustum* theFrustum) const;
|
|
|
|
private:
|
|
enum { LeftTopNear, LeftTopFar,
|
|
LeftBottomNear, LeftBottomFar,
|
|
RightTopNear, RightTopFar,
|
|
RightBottomNear, RightBottomFar };
|
|
|
|
private:
|
|
|
|
SelectionRectangle mySelRectangle; //!< parameters for selection by point or box (it is used to build frustum)
|
|
gp_Pnt myNearPickedPnt; //!< 3d projection of user-picked selection point onto near view plane
|
|
gp_Pnt myFarPickedPnt; //!< 3d projection of user-picked selection point onto far view plane
|
|
gp_Dir myViewRayDir; //!< view ray direction
|
|
Standard_Real myScale; //!< Scale factor of applied transformation, if there was any
|
|
|
|
};
|
|
|
|
#endif // _SelectMgr_RectangularFrustum_HeaderFile
|