1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-05-01 10:26:12 +03:00
occt/src/PLib/PLib.hxx
akz 0e14656b30 0026042: OCCT won't work with the latest Xcode
Dereferenced null pointers was eliminated for PLib, BSplCLib and BSplSLib. All affected code was changed accordingly.
2015-10-01 13:44:10 +03:00

362 lines
16 KiB
C++

// Created on: 1995-08-28
// Created by: Laurent BOURESCHE
// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _PLib_HeaderFile
#define _PLib_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_Array2OfReal.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <Standard_Real.hxx>
#include <Standard_Integer.hxx>
#include <Standard_Boolean.hxx>
#include <TColgp_Array2OfPnt.hxx>
#include <GeomAbs_Shape.hxx>
class math_Matrix;
class PLib_Base;
class PLib_JacobiPolynomial;
class PLib_HermitJacobi;
class PLib_DoubleJacobiPolynomial;
//! PLib means Polynomial functions library. This pk
//! provides basic computation functions for
//! polynomial functions.
//! Note: weight arrays can be passed by pointer for
//! some functions so that NULL pointer is valid.
//! That means no weights passed.
class PLib
{
public:
DEFINE_STANDARD_ALLOC
//! Used as argument for a non rational functions
inline static TColStd_Array1OfReal* NoWeights()
{
return NULL;
}
//! Used as argument for a non rational functions
inline static TColStd_Array2OfReal* NoWeights2()
{
return NULL;
}
//! Copy in FP the coordinates of the poles.
Standard_EXPORT static void SetPoles (const TColgp_Array1OfPnt& Poles, TColStd_Array1OfReal& FP);
//! Copy in FP the coordinates of the poles.
Standard_EXPORT static void SetPoles (const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal& Weights, TColStd_Array1OfReal& FP);
//! Get from FP the coordinates of the poles.
Standard_EXPORT static void GetPoles (const TColStd_Array1OfReal& FP, TColgp_Array1OfPnt& Poles);
//! Get from FP the coordinates of the poles.
Standard_EXPORT static void GetPoles (const TColStd_Array1OfReal& FP, TColgp_Array1OfPnt& Poles, TColStd_Array1OfReal& Weights);
//! Copy in FP the coordinates of the poles.
Standard_EXPORT static void SetPoles (const TColgp_Array1OfPnt2d& Poles, TColStd_Array1OfReal& FP);
//! Copy in FP the coordinates of the poles.
Standard_EXPORT static void SetPoles (const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal& Weights, TColStd_Array1OfReal& FP);
//! Get from FP the coordinates of the poles.
Standard_EXPORT static void GetPoles (const TColStd_Array1OfReal& FP, TColgp_Array1OfPnt2d& Poles);
//! Get from FP the coordinates of the poles.
Standard_EXPORT static void GetPoles (const TColStd_Array1OfReal& FP, TColgp_Array1OfPnt2d& Poles, TColStd_Array1OfReal& Weights);
//! Returns the Binomial Cnp. N should be <= BSplCLib::MaxDegree().
Standard_EXPORT static Standard_Real Bin (const Standard_Integer N, const Standard_Integer P);
//! Computes the derivatives of a ratio at order
//! <N> in dimension <Dimension>.
//!
//! <Ders> is an array containing the values of the
//! input derivatives from 0 to Min(<N>,<Degree>).
//! For orders higher than <Degree> the inputcd /s2d1/BMDL/
//! derivatives are assumed to be 0.
//!
//! Content of <Ders> :
//!
//! x(1),x(2),...,x(Dimension),w
//! x'(1),x'(2),...,x'(Dimension),w'
//! x''(1),x''(2),...,x''(Dimension),w''
//!
//! If <All> is false, only the derivative at order
//! <N> is computed. <RDers> is an array of length
//! Dimension which will contain the result :
//!
//! x(1)/w , x(2)/w , ... derivated <N> times
//!
//! If <All> is true all the derivatives up to order
//! <N> are computed. <RDers> is an array of length
//! Dimension * (N+1) which will contains :
//!
//! x(1)/w , x(2)/w , ...
//! x(1)/w , x(2)/w , ... derivated <1> times
//! x(1)/w , x(2)/w , ... derivated <2> times
//! ...
//! x(1)/w , x(2)/w , ... derivated <N> times
//!
//! Warning: <RDers> must be dimensionned properly.
Standard_EXPORT static void RationalDerivative (const Standard_Integer Degree, const Standard_Integer N, const Standard_Integer Dimension, Standard_Real& Ders, Standard_Real& RDers, const Standard_Boolean All = Standard_True);
//! Computes DerivativesRequest derivatives of a ratio at
//! of a BSpline function of degree <Degree>
//! dimension <Dimension>.
//!
//! <PolesDerivatives> is an array containing the values
//! of the input derivatives from 0 to <DerivativeRequest>
//! For orders higher than <Degree> the input
//! derivatives are assumed to be 0.
//!
//! Content of <PoleasDerivatives> :
//!
//! x(1),x(2),...,x(Dimension)
//! x'(1),x'(2),...,x'(Dimension)
//! x''(1),x''(2),...,x''(Dimension)
//!
//! WeightsDerivatives is an array that contains derivatives
//! from 0 to <DerivativeRequest>
//! After returning from the routine the array
//! RationalDerivatives contains the following
//! x(1)/w , x(2)/w , ...
//! x(1)/w , x(2)/w , ... derivated once
//! x(1)/w , x(2)/w , ... twice
//! x(1)/w , x(2)/w , ... derivated <DerivativeRequest> times
//!
//! The array RationalDerivatives and PolesDerivatives
//! can be same since the overwrite is non destructive within
//! the algorithm
//!
//! Warning: <RationalDerivates> must be dimensionned properly.
Standard_EXPORT static void RationalDerivatives (const Standard_Integer DerivativesRequest, const Standard_Integer Dimension, Standard_Real& PolesDerivatives, Standard_Real& WeightsDerivatives, Standard_Real& RationalDerivates);
//! Performs Horner method with synthethic division
//! for derivatives
//! parameter <U>, with <Degree> and <Dimension>.
//! PolynomialCoeff are stored in the following fashion
//! c0(1) c0(2) .... c0(Dimension)
//! c1(1) c1(2) .... c1(Dimension)
//!
//! cDegree(1) cDegree(2) .... cDegree(Dimension)
//! where the polynomial is defined as :
//!
//! 2 Degree
//! c0 + c1 X + c2 X + .... cDegree X
//!
//! Results stores the result in the following format
//!
//! f(1) f(2) .... f(Dimension)
//! (1) (1) (1)
//! f (1) f (2) .... f (Dimension)
//!
//! (DerivativeRequest) (DerivativeRequest)
//! f (1) f (Dimension)
//!
//! this just evaluates the point at parameter U
//!
//! Warning: <Results> and <PolynomialCoeff> must be dimensioned properly
Standard_EXPORT static void EvalPolynomial (const Standard_Real U, const Standard_Integer DerivativeOrder, const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real& PolynomialCoeff, Standard_Real& Results);
//! Same as above with DerivativeOrder = 0;
Standard_EXPORT static void NoDerivativeEvalPolynomial (const Standard_Real U, const Standard_Integer Degree, const Standard_Integer Dimension, const Standard_Integer DegreeDimension, Standard_Real& PolynomialCoeff, Standard_Real& Results);
//! Applies EvalPolynomial twice to evaluate the derivative
//! of orders UDerivativeOrder in U, VDerivativeOrder in V
//! at parameters U,V
//!
//! PolynomialCoeff are stored in the following fashion
//! c00(1) .... c00(Dimension)
//! c10(1) .... c10(Dimension)
//! ....
//! cm0(1) .... cm0(Dimension)
//! ....
//! c01(1) .... c01(Dimension)
//! c11(1) .... c11(Dimension)
//! ....
//! cm1(1) .... cm1(Dimension)
//! ....
//! c0n(1) .... c0n(Dimension)
//! c1n(1) .... c1n(Dimension)
//! ....
//! cmn(1) .... cmn(Dimension)
//!
//! where the polynomial is defined as :
//! 2 m
//! c00 + c10 U + c20 U + .... + cm0 U
//! 2 m
//! + c01 V + c11 UV + c21 U V + .... + cm1 U V
//! n m n
//! + .... + c0n V + .... + cmn U V
//!
//! with m = UDegree and n = VDegree
//!
//! Results stores the result in the following format
//!
//! f(1) f(2) .... f(Dimension)
//!
//! Warning: <Results> and <PolynomialCoeff> must be dimensioned properly
Standard_EXPORT static void EvalPoly2Var (const Standard_Real U, const Standard_Real V, const Standard_Integer UDerivativeOrder, const Standard_Integer VDerivativeOrder, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Integer Dimension, Standard_Real& PolynomialCoeff, Standard_Real& Results);
//! Performs the Lagrange Interpolation of
//! given series of points with given parameters
//! with the requested derivative order
//! Results will store things in the following format
//! with d = DerivativeOrder
//!
//! [0], [Dimension-1] : value
//! [Dimension], [Dimension + Dimension-1] : first derivative
//!
//! [d *Dimension], [d*Dimension + Dimension-1]: dth derivative
Standard_EXPORT static Standard_Integer EvalLagrange (const Standard_Real U, const Standard_Integer DerivativeOrder, const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real& ValueArray, Standard_Real& ParameterArray, Standard_Real& Results);
//! Performs the Cubic Hermite Interpolation of
//! given series of points with given parameters
//! with the requested derivative order.
//! ValueArray stores the value at the first and
//! last parameter. It has the following format :
//! [0], [Dimension-1] : value at first param
//! [Dimension], [Dimension + Dimension-1] : value at last param
//! Derivative array stores the value of the derivatives
//! at the first parameter and at the last parameter
//! in the following format
//! [0], [Dimension-1] : derivative at
//! first param
//! [Dimension], [Dimension + Dimension-1] : derivative at
//! last param
//!
//! ParameterArray stores the first and last parameter
//! in the following format :
//! [0] : first parameter
//! [1] : last parameter
//!
//! Results will store things in the following format
//! with d = DerivativeOrder
//!
//! [0], [Dimension-1] : value
//! [Dimension], [Dimension + Dimension-1] : first derivative
//!
//! [d *Dimension], [d*Dimension + Dimension-1]: dth derivative
Standard_EXPORT static Standard_Integer EvalCubicHermite (const Standard_Real U, const Standard_Integer DerivativeOrder, const Standard_Integer Dimension, Standard_Real& ValueArray, Standard_Real& DerivativeArray, Standard_Real& ParameterArray, Standard_Real& Results);
//! This build the coefficient of Hermite's polynomes on
//! [FirstParameter, LastParameter]
//!
//! if j <= FirstOrder+1 then
//!
//! MatrixCoefs[i, j] = ith coefficient of the polynome H0,j-1
//!
//! else
//!
//! MatrixCoefs[i, j] = ith coefficient of the polynome H1,k
//! with k = j - FirstOrder - 2
//!
//! return false if
//! - |FirstParameter| > 100
//! - |LastParameter| > 100
//! - |FirstParameter| +|LastParameter| < 1/100
//! - |LastParameter - FirstParameter|
//! / (|FirstParameter| +|LastParameter|) < 1/100
Standard_EXPORT static Standard_Boolean HermiteCoefficients (const Standard_Real FirstParameter, const Standard_Real LastParameter, const Standard_Integer FirstOrder, const Standard_Integer LastOrder, math_Matrix& MatrixCoefs);
Standard_EXPORT static void CoefficientsPoles (const TColgp_Array1OfPnt& Coefs, const TColStd_Array1OfReal* WCoefs, TColgp_Array1OfPnt& Poles, TColStd_Array1OfReal* WPoles);
Standard_EXPORT static void CoefficientsPoles (const TColgp_Array1OfPnt2d& Coefs, const TColStd_Array1OfReal* WCoefs, TColgp_Array1OfPnt2d& Poles, TColStd_Array1OfReal* WPoles);
Standard_EXPORT static void CoefficientsPoles (const TColStd_Array1OfReal& Coefs, const TColStd_Array1OfReal* WCoefs, TColStd_Array1OfReal& Poles, TColStd_Array1OfReal* WPoles);
Standard_EXPORT static void CoefficientsPoles (const Standard_Integer dim, const TColStd_Array1OfReal& Coefs, const TColStd_Array1OfReal* WCoefs, TColStd_Array1OfReal& Poles, TColStd_Array1OfReal* WPoles);
Standard_EXPORT static void Trimming (const Standard_Real U1, const Standard_Real U2, TColgp_Array1OfPnt& Coeffs, TColStd_Array1OfReal* WCoeffs);
Standard_EXPORT static void Trimming (const Standard_Real U1, const Standard_Real U2, TColgp_Array1OfPnt2d& Coeffs, TColStd_Array1OfReal* WCoeffs);
Standard_EXPORT static void Trimming (const Standard_Real U1, const Standard_Real U2, TColStd_Array1OfReal& Coeffs, TColStd_Array1OfReal* WCoeffs);
Standard_EXPORT static void Trimming (const Standard_Real U1, const Standard_Real U2, const Standard_Integer dim, TColStd_Array1OfReal& Coeffs, TColStd_Array1OfReal* WCoeffs);
Standard_EXPORT static void CoefficientsPoles (const TColgp_Array2OfPnt& Coefs, const TColStd_Array2OfReal* WCoefs, TColgp_Array2OfPnt& Poles, TColStd_Array2OfReal* WPoles);
Standard_EXPORT static void UTrimming (const Standard_Real U1, const Standard_Real U2, TColgp_Array2OfPnt& Coeffs, TColStd_Array2OfReal* WCoeffs);
Standard_EXPORT static void VTrimming (const Standard_Real V1, const Standard_Real V2, TColgp_Array2OfPnt& Coeffs, TColStd_Array2OfReal* WCoeffs);
//! Compute the coefficients in the canonical base of the
//! polynomial satisfying the given constraints
//! at the given parameters
//! The array FirstContr(i,j) i=1,Dimension j=0,FirstOrder
//! contains the values of the constraint at parameter FirstParameter
//! idem for LastConstr
Standard_EXPORT static Standard_Boolean HermiteInterpolate (const Standard_Integer Dimension, const Standard_Real FirstParameter, const Standard_Real LastParameter, const Standard_Integer FirstOrder, const Standard_Integer LastOrder, const TColStd_Array2OfReal& FirstConstr, const TColStd_Array2OfReal& LastConstr, TColStd_Array1OfReal& Coefficients);
//! Compute the number of points used for integral
//! computations (NbGaussPoints) and the degree of Jacobi
//! Polynomial (WorkDegree).
//! ConstraintOrder has to be GeomAbs_C0, GeomAbs_C1 or GeomAbs_C2
//! Code: Code d' init. des parametres de discretisation.
//! = -5
//! = -4
//! = -3
//! = -2
//! = -1
//! = 1 calcul rapide avec precision moyenne.
//! = 2 calcul rapide avec meilleure precision.
//! = 3 calcul un peu plus lent avec bonne precision.
//! = 4 calcul lent avec la meilleure precision possible.
Standard_EXPORT static void JacobiParameters (const GeomAbs_Shape ConstraintOrder, const Standard_Integer MaxDegree, const Standard_Integer Code, Standard_Integer& NbGaussPoints, Standard_Integer& WorkDegree);
//! translates from GeomAbs_Shape to Integer
Standard_EXPORT static Standard_Integer NivConstr (const GeomAbs_Shape ConstraintOrder);
//! translates from Integer to GeomAbs_Shape
Standard_EXPORT static GeomAbs_Shape ConstraintOrder (const Standard_Integer NivConstr);
Standard_EXPORT static void EvalLength (const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real& PolynomialCoeff, const Standard_Real U1, const Standard_Real U2, Standard_Real& Length);
Standard_EXPORT static void EvalLength (const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real& PolynomialCoeff, const Standard_Real U1, const Standard_Real U2, const Standard_Real Tol, Standard_Real& Length, Standard_Real& Error);
protected:
private:
friend class PLib_Base;
friend class PLib_JacobiPolynomial;
friend class PLib_HermitJacobi;
friend class PLib_DoubleJacobiPolynomial;
};
#endif // _PLib_HeaderFile