1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-06 18:26:22 +03:00
occt/src/IntTools/IntTools_LineConstructor.cxx

755 lines
22 KiB
C++
Executable File

// File: IntTools_LineConstructor.cxx
// Created: Tue Feb 7 10:12:45 1995
// Author: Jacques GOUSSARD
// Copyright: OPEN CASCADE 1995
#include <IntTools_LineConstructor.ixx>
#include <GeomInt_LineTool.hxx>
#include <GeomInt_SequenceOfParameterAndOrientation.hxx>
#include <GeomInt_ParameterAndOrientation.hxx>
#include <IntPatch_Point.hxx>
#include <IntPatch_GLine.hxx>
#include <IntPatch_WLine.hxx>
#include <IntPatch_ALine.hxx>
#include <IntSurf_Transition.hxx>
#include <TopAbs_Orientation.hxx>
#include <Precision.hxx>
#include <gp_Pnt2d.hxx>
#include <Adaptor2d_HCurve2d.hxx>
#include <GeomAdaptor_HSurface.hxx>
#include <Standard_ConstructionError.hxx>
#include <IntSurf_Quadric.hxx>
#include <IntSurf_PntOn2S.hxx>
#include <ElCLib.hxx>
#include <GeomAbs_SurfaceType.hxx>
//
#include <TColStd_IndexedMapOfInteger.hxx>
//=======================================================================
//function : Recadre
//purpose :
//=======================================================================
static void Recadre(const Handle(GeomAdaptor_HSurface)& myHS1,
const Handle(GeomAdaptor_HSurface)& myHS2,
Standard_Real& u1,
Standard_Real& v1,
Standard_Real& u2,
Standard_Real& v2)
{
Standard_Boolean myHS1IsUPeriodic,myHS1IsVPeriodic;
const GeomAbs_SurfaceType typs1 = myHS1->GetType();
switch (typs1)
{
case GeomAbs_Cylinder:
case GeomAbs_Cone:
case GeomAbs_Sphere:
{
myHS1IsUPeriodic = Standard_True;
myHS1IsVPeriodic = Standard_False;
break;
}
case GeomAbs_Torus:
{
myHS1IsUPeriodic = myHS1IsVPeriodic = Standard_True;
break;
}
default:
{
//-- Case of periodic biparameters is processed upstream
myHS1IsUPeriodic = myHS1IsVPeriodic = Standard_False;
break;
}
}
Standard_Boolean myHS2IsUPeriodic,myHS2IsVPeriodic;
const GeomAbs_SurfaceType typs2 = myHS2->GetType();
switch (typs2)
{
case GeomAbs_Cylinder:
case GeomAbs_Cone:
case GeomAbs_Sphere:
{
myHS2IsUPeriodic = Standard_True;
myHS2IsVPeriodic = Standard_False;
break;
}
case GeomAbs_Torus:
{
myHS2IsUPeriodic = myHS2IsVPeriodic = Standard_True;
break;
}
default:
{
//-- Case of periodic biparameters is processed upstream
myHS2IsUPeriodic = myHS2IsVPeriodic = Standard_False;
break;
}
}
if(myHS1IsUPeriodic) {
const Standard_Real lmf = M_PI+M_PI; //-- myHS1->UPeriod();
const Standard_Real f = myHS1->FirstUParameter();
const Standard_Real l = myHS1->LastUParameter();
while(u1 < f) { u1+=lmf; }
while(u1 > l) { u1-=lmf; }
}
if(myHS1IsVPeriodic) {
const Standard_Real lmf = M_PI+M_PI; //-- myHS1->VPeriod();
const Standard_Real f = myHS1->FirstVParameter();
const Standard_Real l = myHS1->LastVParameter();
while(v1 < f) { v1+=lmf; }
while(v1 > l) { v1-=lmf; }
}
if(myHS2IsUPeriodic) {
const Standard_Real lmf = M_PI+M_PI; //-- myHS2->UPeriod();
const Standard_Real f = myHS2->FirstUParameter();
const Standard_Real l = myHS2->LastUParameter();
while(u2 < f) { u2+=lmf; }
while(u2 > l) { u2-=lmf; }
}
if(myHS2IsVPeriodic) {
const Standard_Real lmf = M_PI+M_PI; //-- myHS2->VPeriod();
const Standard_Real f = myHS2->FirstVParameter();
const Standard_Real l = myHS2->LastVParameter();
while(v2 < f) { v2+=lmf; }
while(v2 > l) { v2-=lmf; }
}
}
//=======================================================================
//function : Parameters
//purpose :
//=======================================================================
static void Parameters(const Handle(GeomAdaptor_HSurface)& myHS1,
const Handle(GeomAdaptor_HSurface)& myHS2,
const gp_Pnt& Ptref,
Standard_Real& U1,
Standard_Real& V1,
Standard_Real& U2,
Standard_Real& V2)
{
IntSurf_Quadric quad1,quad2;
switch (myHS1->Surface().GetType())
{
case GeomAbs_Plane: quad1.SetValue(myHS1->Surface().Plane()); break;
case GeomAbs_Cylinder: quad1.SetValue(myHS1->Surface().Cylinder()); break;
case GeomAbs_Cone: quad1.SetValue(myHS1->Surface().Cone()); break;
case GeomAbs_Sphere: quad1.SetValue(myHS1->Surface().Sphere()); break;
default: Standard_ConstructionError::Raise("IntTools_LineConstructor::Parameters");
}
switch (myHS2->Surface().GetType())
{
case GeomAbs_Plane: quad2.SetValue(myHS2->Surface().Plane()); break;
case GeomAbs_Cylinder: quad2.SetValue(myHS2->Surface().Cylinder()); break;
case GeomAbs_Cone: quad2.SetValue(myHS2->Surface().Cone()); break;
case GeomAbs_Sphere: quad2.SetValue(myHS2->Surface().Sphere()); break;
default: Standard_ConstructionError::Raise("IntTools_LineConstructor::Parameters");
}
quad1.Parameters(Ptref,U1,V1);
quad2.Parameters(Ptref,U2,V2);
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void IntTools_LineConstructor::Perform(const Handle(IntPatch_Line)& L)
{
Standard_Integer i,nbvtx;
Standard_Real firstp,lastp;
const Standard_Real Tol = Precision::PConfusion() * 35.0;
const IntPatch_IType typl = L->ArcType();
if(typl == IntPatch_Analytic)
{
Standard_Real u1,v1,u2,v2;
Handle(IntPatch_ALine)& ALine = *((Handle(IntPatch_ALine) *)&L);
seqp.Clear();
nbvtx = GeomInt_LineTool::NbVertex(L);
for(i=1;i<nbvtx;i++)
{
firstp = GeomInt_LineTool::Vertex(L,i).ParameterOnLine();
lastp = GeomInt_LineTool::Vertex(L,i+1).ParameterOnLine();
if(firstp!=lastp)
{
const Standard_Real pmid = (firstp+lastp)*0.5;
const gp_Pnt Pmid = ALine->Value(pmid);
Parameters(myHS1,myHS2,Pmid,u1,v1,u2,v2);
Recadre(myHS1,myHS2,u1,v1,u2,v2);
const TopAbs_State in1 = myDom1->Classify(gp_Pnt2d(u1,v1),Tol);
if(in1 != TopAbs_OUT) {
const TopAbs_State in2 = myDom2->Classify(gp_Pnt2d(u2,v2),Tol);
if(in2 != TopAbs_OUT) {
seqp.Append(firstp);
seqp.Append(lastp);
}
}
}
}
done = Standard_True;
return;
}
else if(typl == IntPatch_Walking)
{
Standard_Real u1,v1,u2,v2;
Handle(IntPatch_WLine)& WLine = *((Handle(IntPatch_WLine) *)&L);
seqp.Clear();
nbvtx = GeomInt_LineTool::NbVertex(L);
for(i=1;i<nbvtx;i++)
{
firstp = GeomInt_LineTool::Vertex(L,i).ParameterOnLine();
lastp = GeomInt_LineTool::Vertex(L,i+1).ParameterOnLine();
if(firstp!=lastp)
{
if(lastp != firstp+1)
{
const Standard_Integer pmid = (Standard_Integer )( (firstp+lastp)/2);
const IntSurf_PntOn2S& Pmid = WLine->Point(pmid);
Pmid.Parameters(u1,v1,u2,v2);
Recadre(myHS1,myHS2,u1,v1,u2,v2);
const TopAbs_State in1 = myDom1->Classify(gp_Pnt2d(u1,v1),Tol);
if(in1 != TopAbs_OUT) {
const TopAbs_State in2 = myDom2->Classify(gp_Pnt2d(u2,v2),Tol);
if(in2 != TopAbs_OUT) {
seqp.Append(firstp);
seqp.Append(lastp);
}
}
}
else
{
const IntSurf_PntOn2S& Pfirst = WLine->Point((Standard_Integer)(firstp));
Pfirst.Parameters(u1,v1,u2,v2);
Recadre(myHS1,myHS2,u1,v1,u2,v2);
TopAbs_State in1 = myDom1->Classify(gp_Pnt2d(u1,v1),Tol);
if(in1 != TopAbs_OUT) { //-- !=ON donne Pb
TopAbs_State in2 = myDom2->Classify(gp_Pnt2d(u2,v2),Tol);
if(in2 != TopAbs_OUT) { //-- !=ON
const IntSurf_PntOn2S& Plast = WLine->Point((Standard_Integer)(lastp));
Plast.Parameters(u1,v1,u2,v2);
Recadre(myHS1,myHS2,u1,v1,u2,v2);
in1 = myDom1->Classify(gp_Pnt2d(u1,v1),Tol);
if(in1 != TopAbs_OUT) { //-- !=ON donne Pb
in2 = myDom2->Classify(gp_Pnt2d(u2,v2),Tol);
if(in2 != TopAbs_OUT) {
seqp.Append(firstp);
seqp.Append(lastp);
}
}
}
}
}
}
}
//XX
// 904/L7
//
// The One resulting curve consists of 7 segments that are
// connected between each other.
// The aim of the block is to reject these segments and have
// one segment instead of 7.
// The other reason to do that is value of TolReached3D=49.
// Why -? It is not known yet.
// PKV 22.Apr.2002
//
const GeomAbs_SurfaceType aST1 = myHS1->Surface().GetType();
const GeomAbs_SurfaceType aST2 = myHS2->Surface().GetType();
if ((aST1==GeomAbs_Plane && aST2==GeomAbs_SurfaceOfExtrusion) ||
(aST2==GeomAbs_Plane && aST1==GeomAbs_SurfaceOfExtrusion))
{
TColStd_IndexedMapOfInteger aMap;
TColStd_SequenceOfReal aSeqTmp;
Standard_Integer aNb, anIndex, aNbTmp, jx;
aNb=seqp.Length();
for(i=1; i<=aNb;++i) {
lastp =seqp(i);
anIndex=(Standard_Integer)lastp;
if (!aMap.Contains(anIndex)){
aMap.Add(anIndex);
aSeqTmp.Append(lastp);
}
else {
aNbTmp=aSeqTmp.Length();
aSeqTmp.Remove(aNbTmp);
}
}
//
seqp.Clear();
//
aNb=aSeqTmp.Length()/2;
for(i=1; i<=aNb;++i) {
jx=2*i;
firstp=aSeqTmp(jx-1);
lastp =aSeqTmp(jx);
seqp.Append(firstp);
seqp.Append(lastp);
}
}
////XX
done = Standard_True;
return;
}
else if (typl != IntPatch_Restriction)
{
Standard_Real u1,v1,u2,v2;
Handle(IntPatch_GLine)& GLine = *((Handle(IntPatch_GLine) *)&L);
seqp.Clear();
nbvtx = GeomInt_LineTool::NbVertex(L);
Standard_Boolean intrvtested = Standard_False;
for(i=1;i<nbvtx;i++)
{
firstp = GeomInt_LineTool::Vertex(L,i).ParameterOnLine();
lastp = GeomInt_LineTool::Vertex(L,i+1).ParameterOnLine();
if(Abs(firstp-lastp)>Precision::PConfusion())
{
intrvtested = Standard_True;
const Standard_Real pmid = (firstp+lastp)*0.5;
gp_Pnt Pmid;
switch (typl)
{
case IntPatch_Lin: Pmid = ElCLib::Value(pmid,GLine->Line()); break;
case IntPatch_Circle: Pmid = ElCLib::Value(pmid,GLine->Circle()); break;
case IntPatch_Ellipse: Pmid = ElCLib::Value(pmid,GLine->Ellipse()); break;
case IntPatch_Hyperbola: Pmid = ElCLib::Value(pmid,GLine->Hyperbola()); break;
case IntPatch_Parabola: Pmid = ElCLib::Value(pmid,GLine->Parabola()); break;
}
Parameters(myHS1,myHS2,Pmid,u1,v1,u2,v2);
Recadre(myHS1,myHS2,u1,v1,u2,v2);
const TopAbs_State in1 = myDom1->Classify(gp_Pnt2d(u1,v1),Tol);
if(in1 != TopAbs_OUT) {
const TopAbs_State in2 = myDom2->Classify(gp_Pnt2d(u2,v2),Tol);
if(in2 != TopAbs_OUT) {
seqp.Append(firstp);
seqp.Append(lastp);
}
}
}
}
if(typl == IntPatch_Circle || typl == IntPatch_Ellipse)
{
firstp = GeomInt_LineTool::Vertex(L,nbvtx).ParameterOnLine();
lastp = M_PI + M_PI + GeomInt_LineTool::Vertex(L,1).ParameterOnLine();
const Standard_Real cadrinf = GeomInt_LineTool::FirstParameter(L);
const Standard_Real cadrsup = GeomInt_LineTool::LastParameter(L);
Standard_Real acadr = (firstp+lastp)*0.5;
while(acadr < cadrinf) { acadr+=M_PI+M_PI; }
while(acadr > cadrsup) { acadr-=M_PI+M_PI; }
if(acadr>=cadrinf && acadr<=cadrsup)
{
if(Abs(firstp-lastp)>Precision::PConfusion())
{
intrvtested = Standard_True;
const Standard_Real pmid = (firstp+lastp)*0.5;
gp_Pnt Pmid;
if (typl == IntPatch_Circle)
Pmid = ElCLib::Value(pmid,GLine->Circle());
else
Pmid = ElCLib::Value(pmid,GLine->Ellipse());
Parameters(myHS1,myHS2,Pmid,u1,v1,u2,v2);
Recadre(myHS1,myHS2,u1,v1,u2,v2);
const TopAbs_State in1 = myDom1->Classify(gp_Pnt2d(u1,v1),Tol);
if(in1 != TopAbs_OUT) {
const TopAbs_State in2 = myDom2->Classify(gp_Pnt2d(u2,v2),Tol);
if(in2 != TopAbs_OUT) {
seqp.Append(firstp);
seqp.Append(lastp);
}
}
}
}
}
if (!intrvtested) {
// Keep a priori. A point 2d on each
// surface is required to make the decision. Will be done in the caller
seqp.Append(GeomInt_LineTool::FirstParameter(L));
seqp.Append(GeomInt_LineTool::LastParameter(L));
}
//
//modified by NIZNHY-PKV Mon Jan 21 17:02:12 2002 f
//
// Unite neighbouring intervals if it's possible.
// It is valid when 3D intersection curve does not go through
// the apex on surface. So for the moment we take into account
// Plane and Cylinder - surfaces that do not contain an apex.
// by NIZNHY-PKV Tue Jan 22 14:00:51 2002
const GeomAbs_SurfaceType aST1 = myHS1->Surface().GetType();
const GeomAbs_SurfaceType aST2 = myHS2->Surface().GetType();
if ((aST1==GeomAbs_Plane || aST1==GeomAbs_Cylinder) &&
(aST2==GeomAbs_Plane || aST2==GeomAbs_Cylinder))
{
if(typl == IntPatch_Circle || typl == IntPatch_Ellipse)
{
Standard_Integer aNbParts = seqp.Length()/2;
//
if (aNbParts > 1)
{
Standard_Integer j, i2, j2;
Standard_Real aFi = seqp(1), aLi, aFj, aLj, aF, aL;
TColStd_SequenceOfReal aSeq;
aSeq.Append(aFi);
for (i=1; i<aNbParts; ++i)
{
j=i+1;
i2=2*i;
j2=2*j;
aFi=seqp(i2-1);
aLi=seqp(i2);
aFj=seqp(j2-1);
aLj=seqp(j2);
if (fabs (aFj-aLi) < Tol)
{
aL=aLj;
}
else
{
aL=aLi;
aSeq.Append(aL);
aF=aFj;
aSeq.Append(aF);
}
}
aSeq.Append(aLj);
//
seqp.Clear();
aNbParts=aSeq.Length();
for (i=1; i<=aNbParts; ++i)
{
aF=aSeq(i);
seqp.Append(aF);
}
}
}
}
//modified by NIZNHY-PKV Mon Jan 21 17:02:17 2002 t
//
done =Standard_True;
return;
}
done = Standard_False;
seqp.Clear();
nbvtx = GeomInt_LineTool::NbVertex(L);
if (nbvtx == 0) { // Keep a priori. Point 2d is required on each
// surface to make the decision. Will be done in the caller
seqp.Append(GeomInt_LineTool::FirstParameter(L));
seqp.Append(GeomInt_LineTool::LastParameter(L));
done = Standard_True;
return;
}
GeomInt_SequenceOfParameterAndOrientation seqpss;
TopAbs_Orientation or1=TopAbs_FORWARD,or2=TopAbs_FORWARD;
for (i=1; i<=nbvtx; i++)
{
const IntPatch_Point& thevtx = GeomInt_LineTool::Vertex(L,i);
const Standard_Real prm = thevtx.ParameterOnLine();
if (thevtx.IsOnDomS1())
{
switch (thevtx.TransitionLineArc1().TransitionType())
{
case IntSurf_In: or1 = TopAbs_FORWARD; break;
case IntSurf_Out: or1 = TopAbs_REVERSED; break;
case IntSurf_Touch: or1 = TopAbs_INTERNAL; break;
case IntSurf_Undecided: or1 = TopAbs_INTERNAL; break;
}
}
else
or1 = TopAbs_INTERNAL;
if (thevtx.IsOnDomS2())
{
switch (thevtx.TransitionLineArc2().TransitionType())
{
case IntSurf_In: or2 = TopAbs_FORWARD; break;
case IntSurf_Out: or2 = TopAbs_REVERSED; break;
case IntSurf_Touch: or2 = TopAbs_INTERNAL; break;
case IntSurf_Undecided: or2 = TopAbs_INTERNAL; break;
}
}
else
or2 = TopAbs_INTERNAL;
const Standard_Integer nbinserted = seqpss.Length();
Standard_Boolean inserted = Standard_False;
for (Standard_Integer j=1; j<=nbinserted;j++)
{
if (Abs(prm-seqpss(j).Parameter()) <= Tol)
{
// accumulate
GeomInt_ParameterAndOrientation& valj = seqpss.ChangeValue(j);
if (or1 != TopAbs_INTERNAL) {
if (valj.Orientation1() != TopAbs_INTERNAL) {
if (or1 != valj.Orientation1()) {
valj.SetOrientation1(TopAbs_INTERNAL);
}
}
else {
valj.SetOrientation1(or1);
}
}
if (or2 != TopAbs_INTERNAL) {
if (valj.Orientation2() != TopAbs_INTERNAL) {
if (or2 != valj.Orientation2()) {
valj.SetOrientation2(TopAbs_INTERNAL);
}
}
else {
valj.SetOrientation2(or2);
}
}
inserted = Standard_True;
break;
}
if (prm < seqpss(j).Parameter()-Tol ) {
// insert before position j
seqpss.InsertBefore(j,GeomInt_ParameterAndOrientation(prm,or1,or2));
inserted = Standard_True;
break;
}
}
if (!inserted) {
seqpss.Append(GeomInt_ParameterAndOrientation(prm,or1,or2));
}
}
// determine the state at the beginning of line
Standard_Boolean trim = Standard_False;
Standard_Boolean dansS1 = Standard_False;
Standard_Boolean dansS2 = Standard_False;
nbvtx = seqpss.Length();
for (i=1; i<= nbvtx; i++)
{
or1 = seqpss(i).Orientation1();
if (or1 != TopAbs_INTERNAL)
{
trim = Standard_True;
dansS1 = (or1 != TopAbs_FORWARD);
break;
}
}
if (i > nbvtx)
{
Standard_Real U,V;
for (i=1; i<=GeomInt_LineTool::NbVertex(L); i++ )
{
if (!GeomInt_LineTool::Vertex(L,i).IsOnDomS1() )
{
GeomInt_LineTool::Vertex(L,i).ParametersOnS1(U,V);
gp_Pnt2d PPCC(U,V);
if (myDom1->Classify(PPCC,Tol) == TopAbs_OUT) {
done = Standard_True;
return;
}
break;
}
}
dansS1 = Standard_True; // Keep in doubt
}
for (i=1; i<= nbvtx; i++)
{
or2 = seqpss(i).Orientation2();
if (or2 != TopAbs_INTERNAL)
{
trim = Standard_True;
dansS2 = (or2 != TopAbs_FORWARD);
break;
}
}
if (i > nbvtx)
{
Standard_Real U,V;
for (i=1; i<=GeomInt_LineTool::NbVertex(L); i++ )
{
if (!GeomInt_LineTool::Vertex(L,i).IsOnDomS2() )
{
GeomInt_LineTool::Vertex(L,i).ParametersOnS2(U,V);
if (myDom2->Classify(gp_Pnt2d(U,V),Tol) == TopAbs_OUT) {
done = Standard_True;
return;
}
break;
}
}
dansS2 = Standard_True; // Keep in doubt
}
if (!trim) { // necessarily dansS1 == dansS2 == Standard_True
seqp.Append(GeomInt_LineTool::FirstParameter(L));
seqp.Append(GeomInt_LineTool::LastParameter(L));
done = Standard_True;
return;
}
// sequence seqpss is peeled to create valid ends
// and store them in seqp(2*i+1) and seqp(2*i+2)
Standard_Real thefirst = GeomInt_LineTool::FirstParameter(L);
Standard_Real thelast = GeomInt_LineTool::LastParameter(L);
firstp = thefirst;
for (i=1; i<=nbvtx; i++)
{
or1 = seqpss(i).Orientation1();
or2 = seqpss(i).Orientation2();
if (dansS1 && dansS2)
{
if (or1 == TopAbs_REVERSED)
dansS1 = Standard_False;
/*else if (or1 == TopAbs_FORWARD) {
}*/
if (or2 == TopAbs_REVERSED)
dansS2 = Standard_False;
/*else if (or2 == TopAbs_FORWARD) {
}*/
if (!dansS1 || !dansS2)
{
lastp = seqpss(i).Parameter();
Standard_Real stofirst = Max(firstp, thefirst);
Standard_Real stolast = Min(lastp, thelast) ;
if (stolast > stofirst) {
seqp.Append(stofirst);
seqp.Append(stolast);
}
if (lastp > thelast)
break;
}
}
else
{
if (dansS1)
{
if (or1 == TopAbs_REVERSED)
dansS1 = Standard_False;
/*else if (or1 == TopAbs_FORWARD) {
}*/
}
else
{
if (or1 == TopAbs_FORWARD)
dansS1 = Standard_True;
/*else if (or1 == TopAbs_REVERSED) {
}*/
}
if (dansS2)
{
if (or2 == TopAbs_REVERSED)
dansS2 = Standard_False;
/*else if (or2 == TopAbs_FORWARD) {
}*/
}
else
{
if (or2 == TopAbs_FORWARD)
dansS2 = Standard_True;
/*else if (or2 == TopAbs_REVERSED) {
}*/
}
if (dansS1 && dansS2)
firstp = seqpss(i).Parameter();
}
}
// finally to add
if (dansS1 && dansS2)
{
lastp = thelast;
firstp = Max(firstp,thefirst);
if (lastp > firstp) {
seqp.Append(firstp);
seqp.Append(lastp);
}
}
done = Standard_True;
}
//=======================================================================
//function : PeriodicLine
//purpose :
//=======================================================================
void IntTools_LineConstructor::PeriodicLine (const Handle(IntPatch_Line)& L) const
{
const IntPatch_IType typl = L->ArcType();
if (typl != IntPatch_Circle && typl != IntPatch_Ellipse)
return;
const Standard_Real Tol = Precision::PConfusion();
Handle(IntPatch_GLine) glin = Handle(IntPatch_GLine)::DownCast(L);
Standard_Integer i,j,nbvtx = glin->NbVertex();
for (i=1; i<=nbvtx; i++)
{
IntPatch_Point thevtx = glin->Vertex(i);
const Standard_Real prm = thevtx.ParameterOnLine();
Standard_Boolean changevtx = Standard_False;
if (thevtx.IsOnDomS1() || thevtx.IsOnDomS2())
{
for (j=1; j<=nbvtx; j++)
{
if (j!=i)
{
const IntPatch_Point& thevtxbis = glin->Vertex(j);
const Standard_Real prmbis = thevtxbis.ParameterOnLine();
if (Abs(prm-prmbis) <= Tol)
{
Standard_Real u,v;
gp_Pnt2d p2d;
if (thevtx.IsOnDomS1() && thevtxbis.IsOnDomS1() &&
thevtxbis.TransitionLineArc1().TransitionType()==IntSurf_In)
{
p2d = thevtx.ArcOnS1()->Value(thevtx.ParameterOnArc1());
u = p2d.X(); v = p2d.Y();
p2d = thevtxbis.ArcOnS1()->Value(thevtxbis.ParameterOnArc1());
if (Abs(u-p2d.X()) > Tol || Abs(v-p2d.Y()) > Tol)
{
changevtx = Standard_True;
break;
}
}
if (thevtx.IsOnDomS2() && thevtxbis.IsOnDomS2() &&
thevtxbis.TransitionLineArc2().TransitionType()==IntSurf_In)
{
p2d = thevtx.ArcOnS2()->Value(thevtx.ParameterOnArc2());
u = p2d.X(); v = p2d.Y();
p2d = thevtxbis.ArcOnS2()->Value(thevtxbis.ParameterOnArc2());
if (Abs(u-p2d.X()) > Tol || Abs(v-p2d.Y()) > Tol)
{
changevtx = Standard_True;
break;
}
}
}
}
}
}
if (changevtx) {
thevtx.SetParameter(prm + 2.*M_PI);
glin->Replace(i,thevtx);
}
}
}