1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00
occt/src/GeomLib/GeomLib_IsPlanarSurface.cxx

315 lines
7.1 KiB
C++
Executable File

// File: GeomLib_IsPlanarSurface.cxx
// Created: Mon Nov 23 11:12:10 1998
// Author: Philippe MANGIN
// <pmn@sgi29>
#include <GeomLib_IsPlanarSurface.ixx>
#include <GeomLib.hxx>
#include <GeomAbs_CurveType.hxx>
#include <GeomAbs_SurfaceType.hxx>
#include <Geom_Curve.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_Surface.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <TColgp_HArray1OfPnt.hxx>
#include <TColgp_Array1OfPnt.hxx>
static Standard_Boolean Controle(const TColgp_Array1OfPnt& P,
const gp_Pln& Plan,
const Standard_Real Tol)
{
Standard_Integer ii;
Standard_Boolean B=Standard_True;
for (ii=1; ii<=P.Length() && B; ii++)
B = (Plan.Distance(P(ii)) < Tol);
return B;
}
static Standard_Boolean Controle(const TColgp_Array1OfPnt& Poles,
const Standard_Real Tol,
const Handle(Geom_Surface)& S,
gp_Pln& Plan)
{
Standard_Boolean IsPlan = Standard_False;
Standard_Boolean Essai = Standard_True;
Standard_Real gx,gy,gz;
Standard_Integer Nb = Poles.Length();
gp_Pnt Bary;
gp_Dir DX, DY;
if (Nb > 10) {
// Test allege (pour une rejection rapide)
TColgp_Array1OfPnt Aux(1,5);
Aux(1) = Poles(1);
Aux(2) = Poles(Nb/3);
Aux(3) = Poles(Nb/2);
Aux(4) = Poles(Nb/2+Nb/3);
Aux(5) = Poles(Nb);
GeomLib::Inertia(Aux, Bary, DX, DY, gx, gy, gz);
Essai = (gz<Tol);
}
if (Essai) { // Test Grandeur nature...
GeomLib::Inertia(Poles, Bary, DX, DY, gx, gy, gz);
if (gz<Tol && gy>Tol) {
gp_Pnt P;
gp_Vec DU, DV;
Standard_Real umin, umax, vmin, vmax;
S->Bounds(umin, umax, vmin, vmax);
S->D1( (umin+umax)/2, (vmin+vmax)/2, P, DU, DV);
// On prend DX le plus proche possible de DU
gp_Dir du(DU);
Standard_Real Angle1 = du.Angle(DX);
Standard_Real Angle2 = du.Angle(DY);
if (Angle1 > M_PI/2) Angle1 = M_PI-Angle1;
if (Angle2 > M_PI/2) Angle2 = M_PI-Angle2;
if (Angle2 < Angle1) {
du = DY; DY = DX; DX = du;
}
if (DX.Angle(DU) > M_PI/2) DX.Reverse();
if (DY.Angle(DV) > M_PI/2) DY.Reverse();
gp_Ax3 axe(Bary, DX^DY, DX);
Plan.SetPosition(axe);
Plan.SetLocation(Bary);
IsPlan = Standard_True;
}
}
return IsPlan;
}
static Standard_Boolean Controle(const Handle(Geom_Curve)& C,
const gp_Pln& Plan,
const Standard_Real Tol)
{
Standard_Boolean B = Standard_True;
Standard_Integer ii, Nb;
GeomAbs_CurveType Type;
GeomAdaptor_Curve AC(C);
Type = AC.GetType();
Handle(TColgp_HArray1OfPnt) TabP;
TabP.Nullify();
switch (Type) {
case GeomAbs_Line :
{
Nb = 2;
break;
}
case GeomAbs_Circle:
{
Nb = 3;
break;
}
case GeomAbs_Ellipse:
case GeomAbs_Hyperbola:
case GeomAbs_Parabola:
{
Nb = 5;
break;
}
case GeomAbs_BezierCurve:
{
Nb = AC.NbPoles();
Handle (Geom_BezierCurve) BZ = AC.Bezier();
TabP = new (TColgp_HArray1OfPnt) (1, AC.NbPoles());
for (ii=1; ii<=Nb; ii++)
TabP->SetValue(ii, BZ->Pole(ii));
break;
}
case GeomAbs_BSplineCurve:
{
Nb = AC.NbPoles();
Handle (Geom_BSplineCurve) BZ = AC.BSpline();
TabP = new (TColgp_HArray1OfPnt) (1, AC.NbPoles());
for (ii=1; ii<=Nb; ii++)
TabP->SetValue(ii, BZ->Pole(ii));
break;
}
default :
{
Nb = 8 + 3*AC.NbIntervals(GeomAbs_CN);
}
}
if (TabP.IsNull()) {
Standard_Real u, du, f, l, d;
f = AC.FirstParameter();
l = AC.LastParameter();
du = (l-f)/(Nb-1);
for (ii=1; ii<=Nb && B ; ii++) {
u = (ii-1)*du + f;
d = Plan.Distance(C->Value(u));
B = (d < Tol);
}
}
else {
B = Controle(TabP->Array1(), Plan, Tol);
}
return B;
}
GeomLib_IsPlanarSurface::GeomLib_IsPlanarSurface(const Handle(Geom_Surface)& S,
const Standard_Real Tol)
{
GeomAdaptor_Surface AS(S);
GeomAbs_SurfaceType Type;
Type = AS.GetType();
switch (Type) {
case GeomAbs_Plane :
{
IsPlan = Standard_True;
myPlan = AS.Plane();
break;
}
case GeomAbs_Cylinder :
case GeomAbs_Cone :
case GeomAbs_Sphere :
case GeomAbs_Torus :
{
IsPlan = Standard_False;
break;
}
case GeomAbs_BezierSurface :
case GeomAbs_BSplineSurface :
{
Standard_Integer ii, jj, kk,
NbU = AS.NbUPoles(), NbV = AS.NbVPoles();
TColgp_Array1OfPnt Poles(1, NbU*NbV);
if (Type == GeomAbs_BezierSurface) {
Handle(Geom_BezierSurface) BZ;
BZ = AS.Bezier();
for(ii=1, kk=1; ii<=NbU; ii++)
for(jj=1; jj<=NbV; jj++,kk++)
Poles(kk) = BZ->Pole(ii,jj);
}
else {
Handle(Geom_BSplineSurface) BS;
BS = AS.BSpline();
for(ii=1, kk=1; ii<=NbU; ii++)
for(jj=1; jj<=NbV; jj++,kk++)
Poles(kk) = BS->Pole(ii,jj);
}
IsPlan = Controle(Poles, Tol, S, myPlan);
break;
}
case GeomAbs_SurfaceOfRevolution :
{
Standard_Boolean Essai = Standard_True;
gp_Pnt P;
gp_Vec DU, DV, Dn;
gp_Dir Dir = AS.AxeOfRevolution().Direction();
Standard_Real Umin, Umax, Vmin, Vmax;
S->Bounds(Umin, Umax, Vmin, Vmax);
S->D1((Umin+Umax)/2, (Vmin+Vmax)/2, P, DU, DV);
Dn = DU^DV;
if (Dn.Magnitude() > 1.e-7) {
Standard_Real angle = Dir.Angle(Dn);
if (angle > M_PI/2) {
angle = M_PI - angle;
Dir.Reverse();
}
Essai = (angle < 0.1);
}
if (Essai) {
gp_Ax3 axe(P, Dir);
axe.SetXDirection(DU);
myPlan.SetPosition(axe);
myPlan.SetLocation(P);
Handle(Geom_Curve) C;
C = S->UIso(Umin);
IsPlan = Controle(C, myPlan, Tol);
}
else
IsPlan = Standard_False;
break;
}
case GeomAbs_SurfaceOfExtrusion :
{
Standard_Boolean Essai = Standard_False;
Standard_Real Umin, Umax, Vmin, Vmax;
Standard_Real norm;
gp_Vec Du, Dv, Dn;
gp_Pnt P;
S->Bounds(Umin, Umax, Vmin, Vmax);
S->D1((Umin+Umax)/2, (Vmin+Vmax)/2, P, Du, Dv);
Dn = Du^Dv;
norm = Dn.Magnitude();
if (norm > 1.e-15) {
Dn /= norm;
Standard_Real angmax = Tol / (Vmax-Vmin);
gp_Dir D(Dn);
Essai = (D.IsNormal(AS.Direction(), angmax));
}
if (Essai) {
gp_Ax3 axe(P, Dn, Du);
myPlan.SetPosition(axe);
myPlan.SetLocation(P);
Handle(Geom_Curve) C;
C = S->VIso((Vmin+Vmax)/2);
IsPlan = Controle(C, myPlan, Tol);
}
else
IsPlan = Standard_False;
break;
}
default :
{
Standard_Integer NbU,NbV, ii, jj, kk;
NbU = 8 + 3*AS.NbUIntervals(GeomAbs_CN);
NbV = 8 + 3*AS.NbVIntervals(GeomAbs_CN);
Standard_Real Umin, Umax, Vmin, Vmax, du, dv, U, V;
S->Bounds(Umin, Umax, Vmin, Vmax);
du = (Umax-Umin)/(NbU-1);
dv = (Vmax-Vmin)/(NbV-1);
TColgp_Array1OfPnt Pnts(1, NbU*NbV);
for(ii=0, kk=1; ii<NbU; ii++) {
U = Umin + du*ii;
for(jj=0; jj<NbV; jj++,kk++) {
V = Vmin + dv*jj;
S->D0(U,V, Pnts(kk));
}
}
IsPlan = Controle(Pnts, Tol, S, myPlan);
}
}
}
Standard_Boolean GeomLib_IsPlanarSurface::IsPlanar() const
{
return IsPlan;
}
const gp_Pln& GeomLib_IsPlanarSurface::Plan() const
{
if (!IsPlan) StdFail_NotDone::Raise(" GeomLib_IsPlanarSurface");
return myPlan;
}