1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/VrmlData/VrmlData_ShapeConvert.cxx
abv 896faa7296 0028417: Using PRECOMPILED HEADER to speed up compilation time
Use of Cotire tool is introduced for acceleration of CMake builds, by usage of precompiled headers.
CMake option BUILD_USE_PCH is added to enable / disable use of precompiled headers

When precompiled headers are used, additional compiler macros are defined globally in the build system to avoid problems due to different order of included files:
- NOMINMAX is defined on Windows to prevent defining "min" and "max" as macros by windows.h
- STRSAFE_NO_DEPRECATE and _SCL_SECURE_NO_WARNINGS are defined on Windows to prevent declaring functions of standard C library as deprecated by #pragma, and other warnings in system headers
- GL_GLEXT_LEGACY and GLX_GLEXT_LEGACY are defined to ensure that only OCCT's own glext.h is used
- __STDC_FORMAT_MACROS is defined to have standard C print format macros always defined

Code is corrected to avoid conflicts with system headers and in case of compiling together as unity builds (partially):
- Some locally defined variables in TKV3d, TKHLR are renamed to be unique
- Duplicated definitions of macros and global functions are eliminated in TKSTEP
- Useless header WNT_UInt.hxx is removed
- Usage of local variables conflicting with X11 macro is avoided in Draw_Viewer.cxx
- Local variables in AIS_ConcentricRelation.cxx are renamed to avoid conflict with macros defined in windows.h
- HXX files containing code are renamed to PXX or merged with corresponding CXX files.

IVtkTools classes are corrected to avoid compiler warnings disabled in non-PCH builds by inclusion of VTK headers.

Useless pragmas disabling warnings on MSVC are removed
2017-07-06 12:41:41 +03:00

540 lines
20 KiB
C++

// Created on: 2007-08-04
// Created by: Alexander GRIGORIEV
// Copyright (c) 2007-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <VrmlData_ShapeConvert.hxx>
#include <VrmlData_Scene.hxx>
#include <VrmlData_Group.hxx>
#include <VrmlData_Coordinate.hxx>
#include <VrmlData_IndexedFaceSet.hxx>
#include <VrmlData_IndexedLineSet.hxx>
#include <VrmlData_ShapeNode.hxx>
#include <BRepMesh_IncrementalMesh.hxx>
#include <BRep_Builder.hxx>
#include <BRep_Tool.hxx>
#include <Geom_Surface.hxx>
#include <NCollection_DataMap.hxx>
#include <Poly_Triangulation.hxx>
#include <Poly_Connect.hxx>
#include <Poly_PolygonOnTriangulation.hxx>
#include <Poly_Polygon3D.hxx>
#include <Precision.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TopExp_Explorer.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Shape.hxx>
#include <TopoDS_Wire.hxx>
#include <GCPnts_TangentialDeflection.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include <TShort_Array1OfShortReal.hxx>
#include <GeomLib.hxx>
#include <TShort_HArray1OfShortReal.hxx>
#include <VrmlData_Appearance.hxx>
//=======================================================================
//function : AddShape
//purpose :
//=======================================================================
void VrmlData_ShapeConvert::AddShape (const TopoDS_Shape& theShape,
const char * theName)
{
ShapeData aData;/* = { - compilation problem on SUN
TCollection_AsciiString(),
theShape,
NULL
};*/
aData.Shape = theShape;
aData.Node = NULL;
if (theName) {
char buf[2048], * optr = &buf[0];
char * eptr = &buf[sizeof(buf)-1];
for (const char * ptr = theName;; ptr++) {
char sym = *ptr;
if (sym == '\0' || sym == '\n' || sym == '\r') {
* optr = '\0';
break;
}
if (sym == '\"' || sym == '\\')
* optr = '/';
else if (sym == '.')
* optr = '_';
else
* optr = sym;
if (++optr >= eptr) {
*optr = '\0';
break;
}
}
aData.Name = buf;
}
myShapes.Append (aData);
}
//=======================================================================
//function : Convert
//purpose :
//=======================================================================
void VrmlData_ShapeConvert::Convert (const Standard_Boolean theExtractFaces,
const Standard_Boolean theExtractEdges,
const Standard_Real theDeflection,
const Standard_Real theDeflAngle)
{
const Standard_Real aDeflection =
theDeflection < 0.0001 ? 0.0001 : theDeflection;
Standard_Boolean Extract[2] = {theExtractFaces, theExtractEdges};
TopAbs_ShapeEnum ShapeType[2] = {TopAbs_FACE, TopAbs_EDGE};
Standard_Integer i;
const Handle(NCollection_IncAllocator) anAlloc = new NCollection_IncAllocator;
// Relocation map for converted shapes. We should distinguish both TShape
// and Orientation in this map.
NCollection_DataMap <TopoDS_Shape,Handle(VrmlData_Geometry)>
aRelMap (100, anAlloc);
NCollection_List<ShapeData>::Iterator anIter (myShapes);
for (; anIter.More(); anIter.Next()) {
ShapeData& aData = anIter.ChangeValue();
Handle(VrmlData_Group) aGroup =
new VrmlData_Group (myScene, aData.Name.ToCString());
myScene.AddNode (aGroup);
for(i = 0; i < 2; ++i) {
if(!Extract[i]) continue;
TopExp_Explorer anExp (aData.Shape, ShapeType[i]);
for (; anExp.More(); anExp.Next()) {
const TopoDS_Shape& aShape = anExp.Current();
TopLoc_Location aLoc;
Handle(VrmlData_Geometry) aTShapeNode;
const Standard_Boolean isReverse=(aShape.Orientation()==TopAbs_REVERSED);
TopoDS_Shape aTestedShape;
aTestedShape.TShape (aShape.TShape());
aTestedShape.Orientation (isReverse ? TopAbs_REVERSED : TopAbs_FORWARD);
switch (ShapeType[i]) {
case TopAbs_FACE:
{
const TopoDS_Face& aFace = TopoDS::Face (aShape);
if (aFace.IsNull() == Standard_False) {
Handle(Poly_Triangulation) aTri =
BRep_Tool::Triangulation (aFace, aLoc);
if (aRelMap.IsBound (aTestedShape)) {
aTShapeNode = aRelMap(aTestedShape);
break;
}
if (aTri.IsNull() == Standard_False) {
TopoDS_Shape aTestedShapeRev = aTestedShape;
aTestedShapeRev.Orientation (isReverse ?
TopAbs_FORWARD : TopAbs_REVERSED);
Handle(VrmlData_IndexedFaceSet) aFaceSetToReuse;
if (aRelMap.IsBound (aTestedShapeRev))
aFaceSetToReuse = Handle(VrmlData_IndexedFaceSet)::DownCast
(aRelMap(aTestedShapeRev));
Handle(VrmlData_Coordinate) aCoordToReuse;
if (aFaceSetToReuse.IsNull() == Standard_False)
aCoordToReuse = aFaceSetToReuse->Coordinates();
aTShapeNode = triToIndexedFaceSet (aTri, aFace, aCoordToReuse);
myScene.AddNode (aTShapeNode, Standard_False);
// Bind the converted face
aRelMap.Bind (aTestedShape, aTShapeNode);
}
}
}
break;
case TopAbs_WIRE:
{
const TopoDS_Wire& aWire = TopoDS::Wire (aShape);
if (aWire.IsNull() == Standard_False) {
}
}
break;
case TopAbs_EDGE:
{
const TopoDS_Edge& aEdge = TopoDS::Edge (aShape);
if (aEdge.IsNull() == Standard_False) {
if (aRelMap.IsBound (aTestedShape)) {
aTShapeNode = aRelMap(aTestedShape);
break;
}
// Check the presence of reversly oriented Edge. It can also be used
// because we do not distinguish the orientation for edges.
aTestedShape.Orientation (isReverse ?
TopAbs_FORWARD : TopAbs_REVERSED);
if (aRelMap.IsBound (aTestedShape)) {
aTShapeNode = aRelMap(aTestedShape);
break;
}
//try to find PolygonOnTriangulation
Handle(Poly_PolygonOnTriangulation) aPT;
Handle(Poly_Triangulation) aT;
TopLoc_Location aL;
BRep_Tool::PolygonOnTriangulation(aEdge, aPT, aT, aL);
// If PolygonOnTriangulation was found -> get the Polygon3D
Handle(Poly_Polygon3D) aPol;
if(!aPT.IsNull() && !aT.IsNull() && aPT->HasParameters()) {
BRepAdaptor_Curve aCurve(aEdge);
Handle(TColStd_HArray1OfReal) aPrs = aPT->Parameters();
Standard_Integer nbNodes = aPT->NbNodes();
TColgp_Array1OfPnt arrNodes(1, nbNodes);
TColStd_Array1OfReal arrUVNodes(1, nbNodes);
for(Standard_Integer j = 1; j <= nbNodes; j++) {
arrUVNodes(j) = aPrs->Value(aPrs->Lower() + j - 1);
arrNodes(j) = aCurve.Value(arrUVNodes(j));
}
aPol = new Poly_Polygon3D(arrNodes, arrUVNodes);
aPol->Deflection (aPT->Deflection());
}
else {
aPol = BRep_Tool::Polygon3D(aEdge, aL);
// If polygon was not found -> generate it
if (aPol.IsNull()) {
BRepAdaptor_Curve aCurve(aEdge);
const Standard_Real aFirst = aCurve.FirstParameter();
const Standard_Real aLast = aCurve.LastParameter();
GCPnts_TangentialDeflection TD (aCurve, aFirst, aLast,
theDeflAngle, aDeflection, 2);
const Standard_Integer nbNodes = TD.NbPoints();
TColgp_Array1OfPnt arrNodes(1, nbNodes);
TColStd_Array1OfReal arrUVNodes(1, nbNodes);
for (Standard_Integer j = 1; j <= nbNodes; j++) {
arrNodes(j) = TD.Value(j);
arrUVNodes(j) = TD.Parameter(j);
}
aPol = new Poly_Polygon3D(arrNodes, arrUVNodes);
aPol->Deflection (aDeflection);
}
}
if (aPol.IsNull())
continue;
aTShapeNode = polToIndexedLineSet (aPol);
myScene.AddNode (aTShapeNode, Standard_False);
// Bind the converted face
aRelMap.Bind (aTestedShape, aTShapeNode);
}
}
break;
default:
break;
}
if (aTShapeNode.IsNull() == Standard_False) {
const Handle(VrmlData_ShapeNode) aShapeNode =
new VrmlData_ShapeNode (myScene, 0L);
aShapeNode->SetAppearance (ShapeType[i] == TopAbs_FACE ?
defaultMaterialFace():defaultMaterialEdge());
myScene.AddNode (aShapeNode, Standard_False);
aShapeNode->SetGeometry (aTShapeNode);
if (aLoc.IsIdentity())
// Store the shape node directly into the main Group.
aGroup->AddNode (aShapeNode);
else {
// Create a Transform grouping node
Handle(VrmlData_Group) aTrans = new VrmlData_Group (myScene, 0L,
Standard_True);
gp_Trsf aTrsf (aLoc);
if (fabs(myScale - 1.) > Precision::Confusion()) {
const gp_XYZ aTransl = aTrsf.TranslationPart() * myScale;
aTrsf.SetTranslationPart (aTransl);
}
aTrans->SetTransform (aTrsf);
myScene.AddNode (aTrans, Standard_False);
aGroup->AddNode (aTrans);
// Store the shape node under the transform.
aTrans->AddNode (aShapeNode);
}
}
}
}
}
myShapes.Clear();
}
//=======================================================================
//function : triToIndexedFaceSet
//purpose :
//=======================================================================
Handle(VrmlData_Geometry) VrmlData_ShapeConvert::triToIndexedFaceSet
(const Handle(Poly_Triangulation)& theTri,
const TopoDS_Face& theFace,
const Handle(VrmlData_Coordinate)& theCoord)
{
Standard_Integer i;
const Standard_Integer nNodes (theTri->NbNodes());
const Standard_Integer nTriangles (theTri->NbTriangles());
const TColgp_Array1OfPnt& arrPolyNodes = theTri->Nodes();
const Poly_Array1OfTriangle& arrTriangles = theTri->Triangles();
const Handle(VrmlData_IndexedFaceSet) aFaceSet =
new VrmlData_IndexedFaceSet (myScene,
0L, // no name
Standard_True, // IsCCW
Standard_False, // IsSolid
Standard_False); // IsConvex
const Handle(NCollection_IncAllocator)& anAlloc = myScene.Allocator();
const Standard_Boolean isReverse = (theFace.Orientation() == TopAbs_REVERSED);
// Create the array of triangles
const Standard_Integer ** arrPolygons = static_cast<const Standard_Integer **>
(anAlloc->Allocate (nTriangles * sizeof(const Standard_Integer *)));
aFaceSet->SetPolygons (nTriangles, arrPolygons);
// Store the triangles
for (i = 0; i < nTriangles; i++) {
Standard_Integer * aPolygon = static_cast<Standard_Integer *>
(anAlloc->Allocate (4*sizeof(Standard_Integer)));
aPolygon[0] = 3;
arrTriangles(i+1).Get (aPolygon[1],aPolygon[2],aPolygon[3]);
aPolygon[1]--;
if (isReverse) {
const Standard_Integer aTmp = aPolygon[2]-1;
aPolygon[2] = aPolygon[3]-1;
aPolygon[3] = aTmp;
} else {
aPolygon[2]--;
aPolygon[3]--;
}
arrPolygons[i] = aPolygon;
}
// Create the Coordinates node
if (theCoord.IsNull() == Standard_False)
aFaceSet->SetCoordinates (theCoord);
else {
gp_XYZ * arrNodes = static_cast <gp_XYZ *>
(anAlloc->Allocate (nNodes * sizeof(gp_XYZ)));
for (i = 0; i < nNodes; i++)
arrNodes[i] = arrPolyNodes(i+1).XYZ() * myScale;
const Handle(VrmlData_Coordinate) aCoordNode =
new VrmlData_Coordinate (myScene, 0L, nNodes, arrNodes);
myScene.AddNode (aCoordNode, Standard_False);
aFaceSet->SetCoordinates (aCoordNode);
}
// Create the Normals node if theTri has normals
if(theTri->HasNormals()) {
gp_XYZ * arrVec = static_cast <gp_XYZ *>
(anAlloc->Allocate (nNodes * sizeof(gp_XYZ)));
const TShort_Array1OfShortReal& Norm = theTri->Normals();
Standard_Integer j;
for (i = 0, j = 1; i < nNodes; i++, j += 3) {
gp_XYZ aNormal(Norm(j), Norm(j+1), Norm(j+2));
arrVec[i] = aNormal;
}
const Handle(VrmlData_Normal) aNormalNode =
new VrmlData_Normal (myScene, 0L, nNodes, arrVec);
myScene.AddNode (aNormalNode, Standard_False);
aFaceSet->SetNormals (aNormalNode);
return Handle(VrmlData_Geometry) (aFaceSet);
}
Poly_Connect PC(theTri);
// Create the Normals node (if UV- values are available)
TopLoc_Location aLoc;
const Standard_Real aConf2 = Precision::SquareConfusion();
const Handle(Geom_Surface) aSurface = BRep_Tool::Surface (theFace, aLoc);
if (theTri->HasUVNodes() && aSurface.IsNull() == Standard_False) {
if (aSurface->IsCNu(1) && aSurface->IsCNv(1))
{
Standard_Integer nbNormVal = nNodes * 3;
Handle(TShort_HArray1OfShortReal) Normals =
new TShort_HArray1OfShortReal(1, nbNormVal);
const TColgp_Array1OfPnt2d& arrUV = theTri->UVNodes();
gp_XYZ * arrVec = static_cast <gp_XYZ *>
(anAlloc->Allocate (nNodes * sizeof(gp_XYZ)));
// Compute the normal vectors
Standard_Real Tol = Sqrt(aConf2);
for (i = 0; i < nNodes; i++) {
const gp_Pnt2d& aUV = arrUV(i+1);
gp_Dir aNormal;
if (GeomLib::NormEstim(aSurface, aUV, Tol, aNormal) > 1) {
//Try to estimate as middle normal of adjacent triangles
Standard_Integer n[3];
gp_XYZ eqPlan(0., 0., 0.);
for (PC.Initialize(i+1); PC.More(); PC.Next()) {
arrTriangles(PC.Value()).Get(n[0], n[1], n[2]);
gp_XYZ v1(arrPolyNodes(n[1]).Coord()-arrPolyNodes(n[0]).Coord());
gp_XYZ v2(arrPolyNodes(n[2]).Coord()-arrPolyNodes(n[1]).Coord());
gp_XYZ vv = v1^v2;
Standard_Real mod = vv.Modulus();
if (mod < Tol)
continue;
eqPlan += vv/mod;
}
if (eqPlan.SquareModulus() > gp::Resolution())
aNormal = gp_Dir(eqPlan);
}
if (isReverse)
aNormal.Reverse();
if (aNormal.X()*aNormal.X() < aConf2)
aNormal.SetX(0.);
if (aNormal.Y()*aNormal.Y() < aConf2)
aNormal.SetY(0.);
if (aNormal.Z()*aNormal.Z() < aConf2)
aNormal.SetZ(0.);
arrVec[i] = aNormal.XYZ();
Standard_Integer j = i * 3;
Normals->SetValue(j + 1, (Standard_ShortReal)aNormal.X());
Normals->SetValue(j + 2, (Standard_ShortReal)aNormal.Y());
Normals->SetValue(j + 3, (Standard_ShortReal)aNormal.Z());
}
theTri->SetNormals(Normals);
const Handle(VrmlData_Normal) aNormalNode =
new VrmlData_Normal (myScene, 0L, nNodes, arrVec);
myScene.AddNode (aNormalNode, Standard_False);
aFaceSet->SetNormals (aNormalNode);
}
}
return Handle(VrmlData_Geometry) (aFaceSet);
}
//=======================================================================
//function : polToIndexedLineSet
//purpose : single polygon3D => IndexedLineSet
//=======================================================================
Handle(VrmlData_Geometry) VrmlData_ShapeConvert::polToIndexedLineSet
(const Handle(Poly_Polygon3D)& thePol)
{
Standard_Integer i;
const Standard_Integer nNodes (thePol->NbNodes());
const TColgp_Array1OfPnt& arrPolyNodes = thePol->Nodes();
const Handle(NCollection_IncAllocator)& anAlloc = myScene.Allocator();
const Handle(VrmlData_IndexedLineSet) aLineSet =
new VrmlData_IndexedLineSet (myScene, 0L);
// Create the array of polygons (1 member)
const Standard_Integer ** arrPolygons = static_cast<const Standard_Integer **>
(anAlloc->Allocate (sizeof(const Standard_Integer *)));
aLineSet->SetPolygons (1, arrPolygons);
// Store the polygon
Standard_Integer * aPolygon = static_cast<Standard_Integer *>
(anAlloc->Allocate ((nNodes+1)*sizeof(Standard_Integer)));
aPolygon[0] = nNodes;
for (i = 1; i <= nNodes; i++)
aPolygon[i] = i-1;
arrPolygons[0] = aPolygon;
// Create the Coordinates node
gp_XYZ * arrNodes = static_cast <gp_XYZ *>
(anAlloc->Allocate (nNodes * sizeof(gp_XYZ)));
for (i = 0; i < nNodes; i++)
arrNodes[i] = arrPolyNodes(i+1).XYZ() * myScale;
const Handle(VrmlData_Coordinate) aCoordNode =
new VrmlData_Coordinate (myScene, 0L, nNodes, arrNodes);
myScene.AddNode (aCoordNode, Standard_False);
aLineSet->SetCoordinates (aCoordNode);
return Handle(VrmlData_Geometry) (aLineSet);
}
//=======================================================================
//function : defaultMaterialFace
//purpose :
//=======================================================================
Handle(VrmlData_Appearance) VrmlData_ShapeConvert::defaultMaterialFace () const
{
static char aNodeName[] = "__defaultMaterialFace";
Handle(VrmlData_Appearance) anAppearance =
Handle(VrmlData_Appearance)::DownCast(myScene.FindNode(aNodeName));
if (anAppearance.IsNull()) {
const Handle(VrmlData_Material) aMaterial =
new VrmlData_Material (myScene, 0L, 1.0, 0.022, 0.);
aMaterial->SetDiffuseColor (Quantity_Color(0.780392, 0.568627, 0.113725,
Quantity_TOC_RGB));
aMaterial->SetEmissiveColor(Quantity_Color(0.329412, 0.223529, 0.027451,
Quantity_TOC_RGB));
aMaterial->SetSpecularColor(Quantity_Color(0.992157, 0.941176, 0.807843,
Quantity_TOC_RGB));
myScene.AddNode (aMaterial, Standard_False);
anAppearance = new VrmlData_Appearance (myScene, aNodeName);
anAppearance->SetMaterial (aMaterial);
myScene.AddNode (anAppearance, Standard_False);
}
return anAppearance;
}
//=======================================================================
//function : defaultMaterialEdge
//purpose :
//=======================================================================
Handle(VrmlData_Appearance) VrmlData_ShapeConvert::defaultMaterialEdge () const
{
static char aNodeName[] = "__defaultMaterialEdge";
Handle(VrmlData_Appearance) anAppearance =
Handle(VrmlData_Appearance)::DownCast(myScene.FindNode(aNodeName));
if (anAppearance.IsNull()) {
const Handle(VrmlData_Material) aMaterial =
new VrmlData_Material (myScene, 0L, 0.2, 0.2, 0.2);
aMaterial->SetDiffuseColor (Quantity_Color(0.2, 0.7, 0.2,
Quantity_TOC_RGB));
aMaterial->SetEmissiveColor(Quantity_Color(0.2, 0.7, 0.2,
Quantity_TOC_RGB));
aMaterial->SetSpecularColor(Quantity_Color(0.2, 0.7, 0.2,
Quantity_TOC_RGB));
myScene.AddNode (aMaterial, Standard_False);
anAppearance = new VrmlData_Appearance (myScene, aNodeName);
anAppearance->SetMaterial (aMaterial);
myScene.AddNode (anAppearance, Standard_False);
}
return anAppearance;
}