1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-07 18:30:55 +03:00
occt/src/IntImp/IntImp_IntCS.gxx
abv 0797d9d30a 0025418: Debug output to be limited to OCC development environment
Macros ending on "DEB" are replaced by OCCT_DEBUG across OCCT code; new macros described in documentation.
Macros starting with DEB are changed to start with "OCCT_DEBUG_".
Some code cleaned.
2014-11-05 16:55:24 +03:00

161 lines
4.6 KiB
Plaintext

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef OCCT_DEBUG
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#endif
#include <StdFail_NotDone.hxx>
#include <Standard_DomainError.hxx>
#include <IntImp_ComputeTangence.hxx>
#include <math_FunctionSetRoot.hxx>
#include <Precision.hxx>
IntImp_IntCS::IntImp_IntCS(const Standard_Real U,
const Standard_Real V,
const Standard_Real W,
const TheFunction& F,
const Standard_Real TolTangency,
const Standard_Real MarginCoef) :
done(Standard_True),
empty(Standard_True),
myFunction(F),
tol(TolTangency*TolTangency)
{
if(tol<1e-13) { tol=1e-13; }
math_FunctionSetRoot Rsnld(myFunction);
Standard_Real u0,u1,v0,v1,w0,w1;
const ThePSurface& S = myFunction.AuxillarSurface();
const TheCurve& C = myFunction.AuxillarCurve();
w0 = TheCurveTool::FirstParameter(C);
w1 = TheCurveTool::LastParameter(C);
u0 = ThePSurfaceTool::FirstUParameter(S);
v0 = ThePSurfaceTool::FirstVParameter(S);
u1 = ThePSurfaceTool::LastUParameter(S);
v1 = ThePSurfaceTool::LastVParameter(S);
if (MarginCoef > 0.) {
if (!Precision::IsInfinite(u0) && !Precision::IsInfinite(u1)) {
Standard_Real marg = (u1-u0)*MarginCoef;
if (u0 > u1) marg = -marg;
u0 -= marg; u1 += marg;
}
if (!Precision::IsInfinite(v0) && !Precision::IsInfinite(v1)) {
Standard_Real marg = (v1-v0)*MarginCoef;
if (v0 > v1) marg = -marg;
v0 -= marg; v1 += marg;
}
}
Perform(U,V,W,Rsnld,u0,u1,v0,v1,w0,w1);
}
IntImp_IntCS::IntImp_IntCS(const TheFunction& F,
const Standard_Real TolTangency) :
done(Standard_True),
empty(Standard_True),
myFunction(F),
tol(TolTangency*TolTangency)
{
}
void IntImp_IntCS::Perform(const Standard_Real U,
const Standard_Real V,
const Standard_Real W,
math_FunctionSetRoot& Rsnld,
const Standard_Real u0,
const Standard_Real u1,
const Standard_Real v0,
const Standard_Real v1,
const Standard_Real w0,
const Standard_Real w1) {
done = Standard_True;
Standard_Real BornInfBuf[3], BornSupBuf[3], ToleranceBuf[3], UVapBuf[3];
math_Vector BornInf (BornInfBuf, 1, 3), BornSup (BornSupBuf, 1, 3), Tolerance (ToleranceBuf, 1, 3), UVap (UVapBuf, 1, 3);
UVap(1) = U;
UVap(2) = V;
UVap(3) = W;
const ThePSurface& S = myFunction.AuxillarSurface();
const TheCurve& C = myFunction.AuxillarCurve();
BornInf(1) = u0; BornInf(2) = v0;
BornSup(1) = u1; BornSup(2) = v1;
BornInf(3) = w0; BornSup(3) = w1;
Tolerance(1) = ThePSurfaceTool::UResolution(S,Precision::Confusion());
Tolerance(2) = ThePSurfaceTool::VResolution(S,Precision::Confusion());
Tolerance(3) = TheCurveTool::Resolution(C,Precision::Confusion());
Rsnld.SetTolerance(Tolerance);
Standard_Integer autretentative=0;
done=Standard_False;
do {
if(autretentative==1) {
UVap(3)=w0;
}
else if(autretentative==2) {
UVap(3)=w1;
}
autretentative++;
Rsnld.Perform(myFunction,UVap,BornInf,BornSup);
if (Rsnld.IsDone()) {
Standard_Real AbsmyFunctionRoot = Abs(myFunction.Root());
if (AbsmyFunctionRoot <= tol) {
Rsnld.Root(UVap);
u = UVap(1);
v = UVap(2);
w = UVap(3);
empty = Standard_False;
done=Standard_True;
}
}
}
while(done==Standard_False && autretentative<3);
}
Standard_Boolean IntImp_IntCS::IsDone() const { return done;}
Standard_Boolean IntImp_IntCS::IsEmpty()const {
if (!done) StdFail_NotDone::Raise();
return empty;
}
const gp_Pnt& IntImp_IntCS::Point() const
{
if (!done) StdFail_NotDone::Raise();
if (empty) Standard_DomainError::Raise();
return myFunction.Point();
}
void IntImp_IntCS::ParameterOnSurface(Standard_Real& U,
Standard_Real& V) const
{
if (!done) StdFail_NotDone::Raise();
if (empty) Standard_DomainError::Raise();
U=u;
V=v;
}
Standard_Real IntImp_IntCS::ParameterOnCurve() const
{
if (!done) StdFail_NotDone::Raise();
if (empty) Standard_DomainError::Raise();
return w;
}
TheFunction& IntImp_IntCS::Function() {return myFunction;}